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Abstract: Currently, targeted alpha therapy (TAT) is a new therapy involving the administration of a
therapeutic drug that combines a substance of α-emitting nuclides that kill cancer cells and a drug
that selectively accumulates in cancer cells. It is known to be effective against cancers that are difficult
to treat with existing methods, such as cancer cells that are widely spread throughout the whole body,
and there are high expectations for its early clinical implementation. The nuclides for TAT, including
149Tb, 211At, 212/213Bi, 212Pb (for 212Bi), 223Ra, 225Ac, 226/227Th, and 230U, are known. However, some
nuclides encounter problems with labeling methods and lack sufficient preclinical and clinical data.
We labeled the compounds targeting prostate specific membrane antigen (PSMA) with 211At and
225Ac. PSMA is a molecule that has attracted attention as a theranostic target for prostate cancer, and
several targeted radioligands have already shown therapeutic effects in patients. The results showed
that 211At, which has a much shorter half-life, is no less cytotoxic than 225Ac. In 211At labeling, our
group has also developed an original method (Shirakami Reaction). We have succeeded in obtaining a
highly purified labeled product in a short timeframe using this method.

Keywords: astatine-211; actinium-225; PSMA; cytotoxicity; double strand brake; reproductive capability

1. Introduction

There are many nuclides that could be used in targeted α therapy (TAT) (Table 1) [1].
Among them, astatine-211 (211At) and actinium-225 (225Ac) are thought to be useful α-
emitting nuclides (Table 2). This is because these nuclides can be produced in relatively
large quantities [2]. Prostate specific membrane antigen (PSMA) is highly expressed in
metastatic and castration-resistant prostate cancers and is a well-known therapeutic target
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for prostate cancer in radioligand therapy [3–5]. Although the functions of PSMA in cancer
cells are still unclear, its expression increases in correlation with the degree of cancer
progression, making it an extremely useful theranostic target for prostate cancer. Prostate
cancer is mainly seen in people over 60 years old, and it is known that more than half of
men over 80 years old have latent prostate cancer [6]. Remarkable results in TAT have
been reported using 225Ac-labeled therapeutics, and their usefulness is clear [7]. However,
the supply of 225Ac is insufficient for widespread clinical application. The current supply
of 225Ac is mostly due to the decay of uranium-223 (233U), with a worldwide supply of
approximately 63 GBq (2 Ci)/year [8]. Therefore, lutetium-177 (177Lu), a β-ray emitting
nuclide, is used and [177Lu]PSMA-617 has already been approved and is commercially
available in the US and Europe [9]. Initial treatment for prostate cancer generally includes
surgery or radiation therapy, followed by hormone therapy. Recently, various treatments
have been implemented for hormone-sensitive prostate cancer (HSPC). Castration-resistant
prostate cancer (CRPC) has a poor prognosis, and taxane chemotherapy, such as docetaxel
(DTX) and cabazitaxel (CBZ), is administered, but the treatment effect may not be sufficient.
In the TheraP trial, it was reported that 177Lu-PSMA-617 treatment had fewer side effects
and lowered PSA levels compared to CBZ [10]. We are currently conducting research with
211At, which can be produced using an accelerator, and have successfully labeled astatine
as a highly selective PSMA compound [11]. We previously showed the strong therapeutic
effect of this compound and its promising potential for clinical applications.

Table 1. TAT Radionuclides.

Nuclide Half-Life Decay Stable
227Th/223Ra 18.7 days/11.4 days α, β− 207Pb
225Ac/213Bi 10 days/45.6 min α, β− 209Bi

211At 7.2 h α, EC 207Pb
212Pb/212Bi 10.6 h/60.6 min α, β− 208Pb
230U/226Th 20.8 days/30.6 min α, β−, EC 206Pb

149Tb 4.1 h α, EC 145Nd
Th: thorium, Ra: radium, Tb: terbium, Nd: neodymium, Ac: actinium, Bi: bismuth, At: astatine, Pb: lead, U: uran.

This study aimed to clarify the performance of the PSMA-targeting compound labeled
with 211At (211At-PSMA-5) in comparison to 225Ac-PSMA-617. These nuclides differ in
their physical half-lives (225Ac; 10 days, 211At; 7.2 h), the number of α-particle emissions
(225Ac; 4, 211At; 1), and in the properties of the elements themselves (225Ac; actinoid, 211At;
halogen), resulting in the need for different binding domains for labeling. Even when using
the same α-particle emitting nuclide, it is thought that there are other problems of practical
application other than the amount of supply. Examples include the ease of labeling, the
amount of compound used, and efficacy. If a small amount of the compound is used,
the side effects caused by the compound might be reduced to a minimum. However, no
comparison has been made to date between α-emitting nuclear medicine therapeutics that
have the same molecular targets, e.g., PSMA. We have conducted this experiment in the
hope that it will be useful for selecting the optimal nuclide for each situation.

Nuclear medicine involves minimally invasive procedures. However, by fully under-
standing the principles and properties of nuclear medicine therapeutics, we believe that
they are effective. Furthermore, through an investigation of the dynamics and pathological
analysis of nuclear medicine, it has been shown that the side effects are not significantly
different from those of other drugs [12–15]. Nuclear medicine therapeutics are expected
to become new treatment options for patients for whom existing therapeutic drugs are
not suitable. To expand patient options, we hope to demonstrate scientific evidence of its
effectiveness, especially in TAT.
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Table 2. Comparison of physical properties between 211At and 225Ac.

211At 225Ac

Half-life 7.2 h 10 days

Maximumα energy (MeV)
and emission rate 5.87–41.8% 5.83–100.0%

Tissue range 55 to 70 µm 47 to 85 µm

Particle α (2 routes) 4α, 2β

Effective dose rate constant
(µSv·m2·MBq−1·h−1) 0.0058 0.0027

Source [16] [17]

2. Results
2.1. Evaluation of Effects on Cell Viability

We seeded the cell line LNCaP, which is known for its high PSMA expression, and the
cell line PC3, characterized by low PSMA expression, at a density of 1 × 104 cells/well in
a 96-well plate. The cells were treated with 225Ac-PSMA-617 or 211At-PSMA-5 for 3 days,
and cell viability was evaluated. The toxicity of the labeled PSMA was more pronounced in
LNCaP cells than in PC3 cells (Figure 1). The 225Ac-PSMA-617 nuclide had a stronger effect
on cell viability than 211At-PSMA-5; however, above a certain concentration, cell viability
did not decrease in a dose-dependent manner.
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Figure 1. Cell viability following PSMA-targeted radioligand administration in LNCaP (PSMAhigh)
and PC3 (PSMAlow) cell lines. Diamonds represent PC3 cell lines and circles represent LNCaP cell
lines. The mean ± S.E of the triplicate results is shown.

2.2. Evaluation of Effect on Replication

We performed a colony formation assay to assess the extent to which 225Ac-PSMA-
617 and 211At-PSMA-5 affected the replication ability of the cells. Figure 2 shows a nu-
merical graph based on the photographs shown in Figure 3. Cytotoxicity occurred in
both PC3 (PSMAlow) and LNCaP (PSMAhigh) cells in a concentration-dependent manner
(Figures 2A and 3A). This effect appeared to be stronger in cells with high PSMA expression.
When the cells were treated with 225Ac-PSMA-617, dose-dependent inhibition of replication
was observed in both PC3 and LNCaP cells. After treatment with 211At-PSMA-5, no effect
was observed in PC3 cells (Figures 2B and 3B).
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Figure 3. Cell images. (A) (a) PC3 (PSMAlow) and (b) LNCaP (PSMAhigh) cells treated with 225Ac-
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(PSMAhigh) cells (Figure 4). Figure 5 depicts a numerical graph based on the photographs 

Figure 2. Colony formation (% of control). (A) (a) PC3 (PSMAlow) and (b) LNCaP (PSMAhigh) cells
treated with 225Ac-PSMA-617. (B) (a) PC3 and (b) LNCaP cells treated with 211At-PSMA-5. The
mean ± S.E of the triplicate results is shown.

Int. J. Mol. Sci. 2024, 25, x FOR PEER REVIEW 4 of 14 
 

 

 
Figure 2. Colony formation (% of control). (A) (a) PC3 (PSMAlow) and (b) LNCaP (PSMAhigh) cells 
treated with 225Ac-PSMA-617. (B) (a) PC3 and (b) LNCaP cells treated with 211At-PSMA-5. The mean 
± S.E of the triplicate results is shown. 

(A) 

 
(B) 

 
Figure 3. Cell images. (A) (a) PC3 (PSMAlow) and (b) LNCaP (PSMAhigh) cells treated with 225Ac-
PSMA-617 and stained with crystal violet. (B) (a) PC3 and (b) LNCaP cells treated with 211At-PSMA-
5 and stained with crystal violet. 

2.3. Evaluation of Cytotoxicity 
DNA double strand breaks (DSBs) were observed in both PC3 (PSMAlow) and LNCaP 

(PSMAhigh) cells (Figure 4). Figure 5 depicts a numerical graph based on the photographs 

Figure 3. Cell images. (A) (a) PC3 (PSMAlow) and (b) LNCaP (PSMAhigh) cells treated with 225Ac-
PSMA-617 and stained with crystal violet. (B) (a) PC3 and (b) LNCaP cells treated with 211At-PSMA-5
and stained with crystal violet.
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2.3. Evaluation of Cytotoxicity

DNA double strand breaks (DSBs) were observed in both PC3 (PSMAlow) and LNCaP
(PSMAhigh) cells (Figure 4). Figure 5 depicts a numerical graph based on the photographs
shown in Figure 4. Green fluorescence indicates the presence of γH2AX, a marker of DSB.
Focies of γH2AX were strongly induced by 225Ac-PSMA-617 (Figure 5A), and many focies
were induced by 211At-PSMA-5 (Figure 5B). When comparing their effects on (a) PC3 and
(b) LNCaP cells, more foci were found in the LNCaP cells, indicating that many DSBs
appeared in the LNCaP cells.
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Figure 4. Percentage of cells with >5γH2AX foci/cells. (A) The white bar represents PC3 (PSMAlow)
cells treated with 225Ac-PSMA-617, the gray bar represents LNCaP (PSMAhigh) cells treated with
225Ac-PSMA-617. (B) the white bar represents PC3 cells treated with 211At-PSMA-5, and the gray bar
represents LNCaP cells treated with 211At-PSMA-5. The mean ± S.E of the triplicate results is shown.
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2.4. Uptake of 225Ac-PSMA-617 or 211At-PSMA-5

The 225Ac-PSMA-617 nuclide had a low background of intracellular uptake and was
hardly taken up by PC3 (PSMAlow) cells (Figure 6a). In contrast, 211At-PSMA-5 was taken
up in a certain amount by PC3 cells and large amounts of uptake were observed in LNCaP
(PSMAhigh) cells (Figure 6b).
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2.5. Inhibition of Unlabeled Chemicals

The inhibition of uptake by unlabeled chemicals using LNCaP cells (PSMAhigh) is
shown in Figure 7. When we confirmed the presence of competitive inhibition by unlabeled
chemicals for uptake at the same dose, it was clear that 211At-PSMA-5 (Figure 7b) was
inhibited at a lower concentration than 225Ac-PSMA-617 (Figure 7a). The IC50 of 225Ac-
PSMA-617 was 2.64 nM and that of 211At-PSMA-5 was 0.32 nM. Non-specific binding was
evaluated using PC3 cells (PSMAlow). The effects of non-labeled chemicals on both the
uptake of 225Ac-PSMA-617 (Figure 7c) and 211At-PSMA-5 (Figure 7d) in PC3 cells were
thought to be minimal.
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2.6. Stability of 225Ac-PSMA-617 and 211At-PSMA-5

The stability of 211At-PSMA5 was evaluated using HPLC, TLC, and electrophoresis.
Its stability in blood and urine, along with the absence of metabolites and degradation prod-
ucts, was detected in vitro experiments. In in vivo experiments, slight (<1%) deastatination
was observed. The same evaluations were conducted on 225Ac-PSMA-617, confirming that
it was stable.

3. Discussion

In this study, 225Ac-PSMA-617 and 211At-PSMA-5 were compared in terms of their
nuclide decay number (Bq) in order to focus on the performance of the labeled chemicals.
This study revealed that 225Ac, which contains many α-particles, is highly cytotoxic, as
was expected (Figure 1). The strong cytotoxic effect of 225Ac-PSMA-617 was reflected in
the loss of replication ability (Figures 2 and 3). At first glance, 225Ac-PSMA-617 seemed to
have stronger cytotoxicity than 211At-PSMA-5. However, considering the AUC and α-ray
emission ratio, it was difficult to say that 225Ac-PSMA-617 was more effective than 211At-
PSMA-5 because there was a 25 to 83-fold difference even with the same radioactivity (Bq).
We also compared γH2AX as an indicator of radiation-induced DNA damage (DNA double
strand breaks, DSBs), and it became clear that 211At-PSMA-5 induces DNA damage at the
same levels of 225Ac-PSMA-617 (Figures 4 and 5). This was thought to be because 211At-
PSMA-5 was taken up by cells in larger amounts and acted closer to the nucleus (Figure 6).
Labeled chemicals appear to work more effectively as nuclear medicine therapeutics for
intracellular uptake. It is interesting to note that more 211At-PSMA-5 was taken up by
the cells even though both chemical structures are similar (Figures 8 and 9). However,
considering their structures, there seems to be a slight difference in fat solubility. Since
211At-PSMA-5 is slightly more lipophilic, it is presumed to have a higher affinity for the
cell membrane (Figure 7). The correction for non-specific binding concerning IC50 should
be strictly calculated using the inhibition value in an experimental system using PC3 cells
(PSMAlow), Xenopus oocytes, or HEK293 cells overexpressing PSMA. However, for both
225Ac-PSMA-617 and 211At-PSMA-5, the ratio of PC3 to LNCaP cell uptake at 120 min did
not change (approximately 30%) (Figure 6). Even when the background was subtracted
at the same rate, the relationship between the IC50 of 225Ac-PSMA-617 and 211At-PSMA-5
was similar. Thus, the IC50 was calculated from the LNCaP value (Figure 7). The IC50
value of 225Ac-PSMA-617 was approximately eight-fold higher than that of 211At. The
lipid solubility of chemicals is an important factor in nuclear medicine. This is because a
certain degree of fat solubility improves tumors [18–21]. However, if fat solubility is too
high, adsorption onto plastic experimental tools will be high. For example, an increase
in the amount of adsorption on the purification column results in a poor collection yield.
Additionally, when administered to animals, it has been observed that excretion from the
intestinal tract increases and the amount excreted in feces increases. Screening for suitable
compounds should consider both accumulation and excretion.

225Ac is an excellent therapeutic-emitting nuclide, but its current supply is limited.
PSMA is also highly specific and only has a few side effects (caused by damage to the
salivary and lacrimal glands, such as dry eye [22] and xerostomia [23]). Non-specific
accumulation over a long period would induce side effects. If the ratio of non-specific
accumulation is the same, the nuclide with a shorter half-time is less likely to induce side
effects due to non-specific accumulation. The 211At-PSMA-5 nuclide requires significantly
fewer chemicals for labeling than 225Ac-PSMA-617, and its cost of manufacturing is also
lower. In this study, we attempted to compare two α-emitting nuclides used in TAT. We
believe that our results suggest that, even though its half-life is much shorter than 225Ac,
211At can be sufficiently tolerated in clinical use by effectively utilizing its properties. If the
half-life is short, the hospitalization period for nuclide decay can be shortened. This might
reduce the burden on patients.
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Although there are many clinical reports of 225Ac-PSMA-617 use in humans, there are
only a few reports on animal experiments using 225Ac. Additionally, these reports were
published later than the human reports. The 225Ac-PSMA-617 nuclide demonstrated high
levels of accumulation in the liver. However, it is well known that 225Ac alone accumulates
in the liver. There are doubts as to whether the results showing accumulation only in
the liver can depict metastasis [24]. A previous study used a combination of the PD-L1
antibody and 225Ac-PSMA-617 in RM1-PGLS mice. Although it is used in combination with
an immune checkpoint inhibitor, it has not been as effective as expected [25,26]. Rodent
metabolism is different from that of primates, meaning that research results on rodents are
not guaranteed to be applicable to humans. In contrast, 211At-PSMA-5 was investigated for
imaging in cynomolgus monkeys by Watabe et al. Additionally, no acute inflammation was
observed, and the side effects were expected to be minimal. Although clinical trials using
211At-PSMA-5 have not yet been conducted, animal studies have shown positive results [11].
Thus, we expect that future clinical trials of 211At-PSMA-5 will yield good results.

Irradiation to the target with high linear energy transfer (LET) radiation is highly
lethal. Thus, resistance to this radiation is unlikely to occur. Therefore, selecting a specific
and excellent molecular target, such as PSMA, is essential for nuclear medicine. To achieve
a stable supply of nuclides, selecting optimal molecular targets, establishing chemicals that
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recognize and label these targets, and collaborating across departments, such as medicine,
science, and nuclear physics, is necessary.

We also confirmed the utility of 225Ac in another molecular target, fibroblast activate
protein α (FAPα) [27,28]. However, as previously mentioned, its supply is insufficient for
clinical use [8]. Various research groups are attempting to find methods to produce it in
large quantities; however, no satisfactory method has yet been established. Therefore, there
is an urgent need to establish a method for producing 225Ac. Currently, we believe that the
most promising method in Japan is the use of an electron linear accelerator. The production
of 225Ac was conducted using 226Ra and a linear accelerator at Tohoku university [226Ra(γ,
n)225Ra→225Ac]. In Japan, the National Institute for Quantum Science and Technology
(QST) and Nihon Medi-physics, Co. Ltd. are also trying to produce it with the transmutation
of 226Ra to obtain 225Ac [226Ra(p, 2n)225Ac] [29]. In Canada’s particle accelerator center
(TRIUMF), a method of obtaining 225Ac through the nuclear spallation of thorium-232
[232Th(p, spall)225Ra→225Ac] is being attempted [30]. In contrast, 211At has a short half-life;
therefore, it must be manufactured in large quantities. This must be performed efficiently
because it uses an accelerator. It is desirable to create multiple bases within a country
where supplies are needed. However, to transport them to places where transportation is
difficult, it is necessary to create large quantities. In 2023, Haba et al. aimed to develop
targeted irradiation technology that minimizes the loss of 211At due to radioactive decay
and increases the production efficiency of 211At through high-intensity beam irradiation.
Their results may be useful for the mass production and supply of 211At.

The half-life of 211At is 7.2 h and α decays to bismuth-207 (207Bi with a half-life of
32 years) with a probability of 41.8%. Therefore, with a probability of 58.2%, it can become
polonium-211 (211Po) through electron capture decay. Since 211Po undergoes α decay
immediately (with a half-life of 0.52 s) to the stable isotope lead-207 (207Pb), 211At emits
α-particles with virtually 100% probability. On the other hand, there are many daughter
nuclides of 225Ac, such as francium-221 (221Fr, with a half-life of 0.12 µ seconds), 217At
(with a half-life of 20 milliseconds), 213Bi (with a half-life of 47 min), 213Po (with a half-life
of 3.65 µ seconds), thallium-209 (209Tl, with a half-life of 1 h), 209Pb (with a half-life of
3.3 h), and 209Bi (stable), all of which have short lifetimes. Because none of these generate
radon as daughter nuclide, which is a gas, post-administration management is easy. For
practical use, it is very important that the nuclides are easily handled. In addition to the
two nuclides discussed in this research, there are several other α-emitting nuclides that
may be used for TAT, as shown in Table 1. However, various choices should be made with
consideration of the balance between demand and supply.

We are currently developing nuclear medicine therapeutics using the 211At and 225Ac
nuclides. During this period, we have observed the advantages and disadvantages of
each nuclide. Initially, we thought that 225Ac-PSMA-617 would provide better results
than 211At-PSMA-5 and we hoped that 211At-PSMA-5 would be the next choice. However,
the performance of 211At-PSMA-5 was unexpectedly good. High-power accelerators are
currently needed to obtain 211At. However, since it can be obtained using accelerators, it is
easier to obtain than 225Ac, particularly in Japan. Although the availability of nuclides dif-
fers from country to country, it can be said that, at least in Japan, astatine has been shown to
be extremely useful as a labeled nuclide for nuclear medicine therapeutics. We are currently
conducting an investigator-initiated clinical trial of astatine-labeled chemicals (Na211At,
targeting thyroid cancer) at Osaka University Hospital. By demonstrating the usefulness of
nuclear medicine therapeutics, especially α-emitting nuclear medicine therapeutics, we
hope that this will become a new choice for patients who are currently unable to undergo
surgery or for whom existing drugs are not effective.

The most important step in the development of nuclear medicine is the selection
of molecular targets. If expressed in normal tissues as well as in cancer tissues, nuclear
medicine therapeutics can accumulate in normal tissues and damage them, causing side
effects. Therefore, it is desirable to use molecular targets with a higher specificity. In
the development of compounds, even for the same molecular target, selectivity can vary
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significantly depending on the structure of the compound. In addition, side effects can
occur when the labeled nuclide is released from the compound. This is because 211At
behaves in a similar fashion to iodine and 225Ac accumulates in the bones and liver [31].
Consideration is also required in order to ensure safety. Key considerations in the clinical
application of 225Ac-PSMA-617 include liver uptake, which is assumed to result from the
decay products of 225Ac-PSMA-617. DTPA is an abbreviation for diethylenetriamine penta-
acetic acid, a chelate compound with affinity for metals, and is a type of chemical protective
agent against radiation damage. For example, Techne® DTPA Kits (PDRadiopharma, Inc.,
Tokyo, Japan) or Indium (111In) DTPA Injections (Nihon Medi-Physics Co., Ltd., Tokyo,
Japan) exist. This protective agent has the function of removing radioactive materials from
the body and is said to be most effective in excreting radioisotopes. DTPA may be added to
the formulation of 225Ac-PSMA-617 to prevent uptake in the liver (faster renal clearance). In
the case of 211At-PSMA-5, the properties of the element are different from 225Ac; therefore,
it may be necessary to use a different drug.

The functions of PSMA itself in cancer tissues are gradually being elucidated. For
example, research conducted by Watanabe, et al. revealed the existence of PSMA-positive
tumor endothelial cells in human prostate tumors, which enhance tumor angiogenesis
in prostate cancer tissues [32]. The elucidation of the role of PSMA in cancer tissues has
supported its importance as a molecular target. On the other hand, reports on the structure
and dynamics of chemicals are also being considered [33]. We are also conducting studies,
but because the in vivo environment and the stability of compounds are interrelated, the
results are often not what we expected. We hope that similar studies conducted by various
groups will clarify this relationship.

4. Materials and Methods

The 211At nuclide was acquired from RIKEN through a supply platform for short-lived
radioisotopes. The 211At nuclide was produced according to the 209Bi(α, 2n)211At reaction
and was separated from the Bi target using the dry distillation method. The separated 211At
was then dissolved in pure water [11]. The 225Ac nuclide was produced mainly by mem-
bers of Tohoku University [34,35]. Experiments after isolation were conducted at Osaka
University. The intensity of the nuclides were measured using a germanium semiconductor
detector (BE2020, Canberra, Mirion Technologies, Inc., Atlanta, GA. USA) and a γ-counter
(Wizard2 2480, PerkinElmer, Inc., Shelton, CT, USA). The samples treated with 225Ac were
maintained until radiative equilibrium was reached before the measurements were taken,
according to a previous study [31].

4.1. Structure and Preparation of 225Ac-PSMA-617 and 211At-PSMA-5

The PSMA-selected chemicals were labeled with each nuclide using previously re-
ported procedures. These structures are shown in Figures 8 and 9. The PSMA-5 precursor
was synthesized at the Peptide Institute. Inc. (Osaka, Japan) for the Shirakami Reaction. The
labeling method is explained in detail in the next section. To evaluate the quality of the
labeled chemicals, we used a previously reported method.

4.2. Nuclide Production and Chemical Labeling

4.2.1. Production and PSMA-5 Labeling of 211At

PSMA-5 was used as a highly selective PSMA compound to label with 211At. This
compound has been previously reported by Watabe et al. We determined this compound to
be optimal based on the labeling efficiency and in vitro and in vivo experimental results [11].
The method we used for labeling PSMA-5 was the “borono group-astatine exchange
reaction”, also known as the “Shirakami reaction” [36].

4.2.2. Production and PSMA-617 Labeling of 225Ac

The labeling method for 225Ac was established according to a previous study [37].
The 225Ac used for labeling was separated at the Tohoku University Institute for Materials
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Research and was then transported to Osaka University for use. PSMA-617 was dissolved
in DMSO (1 mg/mL) and a 10% DMSO aqueous solution was prepared. This solution was
mixed with 0.2 M AcONH4 and 10% Ascorbic acid and was incubated in 80 ◦C for 2 h.
After measuring the dose using a Curie meter (ICG-8; ALOKA, Ltd., Tokyo, Japan), the
quality was confirmed using electrophoresis and it was then used in experiments.

4.3. Cell Culture

The PC3 and LNCaP cells were obtained from RIKEN and ATCC cell banks, respec-
tively. The cells were maintained in RPMI1640 (Fujifilm Wako Pure Chemical, Osaka,
Japan) supplemented with 10% heat-inactivated fetal bovine serum (Thermo Fisher Scien-
tific, Waltham, MA, USA) and 1% penicillin-streptomycin (Fujifilm Wako Pure Chemical).
Sodium pyruvate (Fujifilm Wako Pure Chemical) was added to the LNCaP culture medium
at a concentration of 1%. The cells were maintained using trypsin-EDTA (Fujifilm Wako
Pure Chemical), according to standard methods. Both cell lines were in the logarithmic
growth phase at the time of experimental preparation.

4.4. Evaluation of Cell Viability

Two days before treatment, the cells were seeded in 1 × 104 cells/mL in 96-well
culture plates. The cell numbers were measured using TC-20TM (Bio-Rad Laboratories, Inc.,
Hercules, CA, USA). After 1 h of treatment, the cells were cultured for three days. Cell
viability was evaluated using a cell counting kit-8 (Dojin, Kumamoto, Japan), according to
the manufacturer’s protocol. The absorbance was measured at 450 nm using a MultiSkan
FC (Thermo Fisher Scientific).

4.5. Colony Formation Assay

Both LNCaP (PSMAhigh) and PC3 (PSMAlow) cells were seeded in 24-well plates and
treated with labeled PSMAs at various concentrations. After 1 h of treatment, the cells were
peeled and seeded at 1000 cells per well. Colony formation was observed for two weeks.
After observation, the cells were fixed with 1% crystal violet solution. Colony formation
was calculated by analyzing the coverage ratio of cells based on photographs using ImageJ
software (https://imagej.net/downloads, accessed on 1 April 2023) [38].

4.6. Evaluation of DNA Double Strand Breaks

The cells were seeded in a culture chamber (WATSON, Tokyo, Japan). After treatment
with labeled chemicals, the cells were fixed and did the immunofluorescence staining,
according to a previously reported protocol [37]. The cells were observed using a BZ-X810
microscope (KEYENCE, Osaka, Japan). The fluorescence intensities were analyzed using
ImageJ software [38].

4.7. Uptake of 225Ac-PSMA-617 and 211At-PSMA-5

Both LNCaP (PSMAhigh) and PC3 (PSMAlow) cells were collected after 5, 30, 60, and
120 min of treatment, washed with PBS (-) three times, lysed using 0.1 N NaOH solutions,
and collected into microtubes. The sample counts were measured using a γ-counter
and their counts were corrected for the amounts of cell protein, according to a previous
published protocol [39]. We also measured the protein amounts in the cell suspension using
a protein assay BCA kit (Fujifilm Wako Pure Chemical), according to the manufacture’s
protocol. The absorbance was measured at 570 nm using a MultiSkan FC.

4.8. Inhibition Assay

Based on previous research [40], the LNCaP cells were simultaneously treated with
unlabeled chemicals (PSMA-617 or PSMA-5). For the inhibition assay, the cell uptake
experiments and procedures were the same, except for treatment with the compound as an
inhibitor. The amount of unlabeled compound added was more than 100 times that of the
labeled compound.

https://imagej.net/downloads
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5. Conclusions

Let us consider the respective absorbed doses of 211At-PSMA-5 and 225Ac-PSMA617 in
the cell experiments. Since the cell treatment conditions were the same, it can be assumed
that the masses of cells were the same. In this case, the energy value and the absorbed dose
was proportional. In other words, it is thought that comparisons can be made in becquerel,
considering the half-life. For example, assuming that there is no washout from the cells,
considering the area under curve (AUC) for 3 days, 225Ac-PSMA-617 is about 6.3 times
more powerful than 211At-PSMA-5. Considering that 225Ac emits four α rays, it is about
25 times more powerful. However, the amount of uptake itself is halved (Figure 6), which is
approximately 12 times as much. There is no more than a 10-fold difference in their effects
on the cells (Figure 4). Therefore, it can be said that PSMA-5 is superior as a compound. It
might be better to consider the stability of PSMA-5 in more detail, but we consider that this
stability might be increased by inducing three unnatural amino acids (Figure 9). PSMA-5 is
expected to be sufficient for clinical use.

It might be said that 211At-PSMA-5 is more easily taken up by LNCaP cells than 225Ac-
PSMA-617, suggesting that PSMA-5 might be superior as a compound (Figures 6 and 7).
On the other hand, whether it is better in clinical practice may depend on the balance
between effectiveness and potential side effects, aside from the availability of the nuclide.
Although more studies may be needed, our findings indicate the possibility of completing
treatment regimens faster because of the shorter half-life of 211At-PSMA-5 for repeated
administration compared to 225Ac-PSMA-617.

6. Patents

Patent No. JP7237366B2, JP7232527B2.
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