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Abstract: Rice blast is one of the most devastating diseases, causing a significant reduction in global
rice production. Developing and utilizing resistant varieties has proven to be the most efficient
and cost-effective approach to control blasts. However, due to environmental pressure and intense
pathogenic selection, resistance has rapidly broken down, and more durable resistance genes are
being discovered. In this paper, a novel wall-associated kinase (WAK) gene, Pb4, which confers
resistance to rice blast, was identified through a genome-wide association study (GWAS) utilizing
249 rice accessions. Pb4 comprises an N-terminal signal peptide, extracellular GUB domain, EGF
domain, EGF-Ca2+ domain, and intracellular Ser/Thr protein kinase domain. The extracellular
domain (GUB domain, EGF domain, and EGF-Ca2+ domain) of Pb4 can interact with the extracellular
domain of CEBiP. Additionally, its expression is induced by chitin and polygalacturonic acid. Further-
more, transgenic plants overexpressing Pb4 enhance resistance to rice blast. In summary, this study
identified a novel rice blast-resistant gene, Pb4, and provides a theoretical basis for understanding
the role of WAKs in mediating rice resistance against rice blast disease.

Keywords: rice blast; genome-wide association study; Pb4; WAK

1. Introduction

Rice blast, caused by the pathogen Magnaporthe oryzae (M. oryzae), is one of the most
devastating diseases that occurs throughout all growth stages of rice plants and seriously
affects both the yield and grain quality of rice crops [1]. Using resistance genes from
disease-resistant varieties for breeders is a more cost-effective and environmentally friendly
approach. However, most resistance (R) genes conform to the gene-for-gene theory and
exhibit race-specific resistance. Due to the high variability of rice blast fungus, the majority
of resistance genes will become ineffective within 3–5 years [2]. Thus, more R genes and
defense regulator (DR) genes that confer broad-spectrum resistance should be discovered.

To date, over 100 genes conferring resistance to rice blast have been identified, and
at least 30 genes have been cloned in rice [2]. However, the majority of these genes
are resistant to seedling blast, and only a few, such as Pb1, Pb2, Pb3, Pi25, Pi64, and
Pi68(t), confer resistance to panicle blast [3–8]. Among the cloned R genes, the majority
encode a nucleotide-binding leucine-rich repeat (NLR) protein, except for bsr-d1, bsr-k1,
rod1, pi21, and Pi-d2, where bsr-d1 functions as a C2H2-type transcription factor, while
Bsr-k1 encodes a protein containing tetratricopeptide repeats (TPRs) [9]. ROD1 acts as a
calcium ion (Ca2+) sensor and plays a crucial role in promoting the scavenging of reactive
oxygen species (ROS) [10]. Pi21 encodes a proline-rich protein containing a metal-binding
domain [11]. Pi-d2 encodes a receptor-like kinase protein with a predicted extracellular
domain containing the bulb-type mannose-specific binding lectin (B-lectin), as well as
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an intracellular serine-threonine kinase domain [12]. There are also some receptor-like
kinase (RLK) genes conferring resistance to other pathogens, such as Xa21 and Xa26,
both encoding an extracellular leucine-rich repeat (LRR) and intracellular kinase domain,
conferring resistance to Xanthomonas oryzae pv. oryzae [13]. Further, Xa4, encoding a
wall-associated kinase (WAK) protein, provides durable resistance against bacterial leaf
blight [14].

WAKs are closely involved in the plant immune process, functioning as receptors of
damage-associated molecular patterns (DAMPs). WAKs participate in various physiologi-
cal processes, including responses to pathogens and metal stress and the regulation of cell
elongation. In the context of pathogen response, WAKs are involved in recognizing and
transmitting signals from the cell wall to the intracellular components, thereby activating
defense responses. They can detect changes in the cell wall caused by pathogen invasion
or other environmental stresses, initiating downstream signaling pathways that regulate
the expression of defense-related genes and the production of defense compounds [15].
Structurally, WAKs consist of several conserved domains: an amino-terminal (N-terminal)
signal peptide, an extracellular WAK galacturonan-binding (GUB) domain, an epidermal
growth factor (EGF) domain, an EGF-Ca2+ domain, and a carboxy-terminal (C-terminal)
cytoplasmic Ser/Thr protein kinase domain [16]. In Arabidopsis, the AtGRP3 protein, pectin,
and oligogalacturonides (OGs) can bind to the extracellular domain of AtWAK1 and At-
WAK2 [17–20]. WAKs play a crucial role in the plant defense response against pathogens.
The transcription factor PIBP1 interacts with PigmR and activates the expression of Os-
WAK14, thereby enhancing the PigmR-mediated defense against rice blast fungus [21].
OsWAK25 is induced by salicylic acid (SA) and mechanical injury, and overexpression of
OsWAK25 enhances rice blast resistance [22]. The resistance gene Xa4 provides durable
resistance against bacterial leaf blight by strengthening the cell wall by promoting cellulose
synthesis and inhibiting cell wall loosening [14].

Genome-wide association studies (GWAS) have become a widely used tool for map-
ping resistance loci, analyzing the association between a specific resistance phenotype and
natural genetic variations, such as single-nucleotide polymorphisms, indels, or the copy
number of variations. GWAS is a highly efficient approach that conducts whole-genome
scans to identify genomic regions linked to the phenotype of interest. This method has
greatly benefited from the rapid advancements in high-throughput sequencing technologies,
such as second-generation sequencing, SMART sequencing, and nanopore sequencing [23].
To date, researchers have gained valuable loci through GWAS assays by analyzing the
genetic variation, population structure, and diversity in various crop species. For instance,
12 loci associated with bacterial blight resistance were identified through GWAS within
the 3000 Rice Genomes Project [24]. A total of 27 rice blast-resistant loci were identified
through the GWAS using the Rice Diversity Panel II (C-RDP-II). The rice blast resistance
genes PiPR1, RNG1, and RNG2 were successfully cloned through GWAS [25,26].

In this study, we conducted a GWAS involving 249 rice cultivars to analyze blast
resistance loci and Pb4 was identified to positively regulate rice resistance. Pb4 is a typical
WAK protein, which consists of an N-terminal signal peptide, extracellular GUB domain,
EGF domain, EGF-Ca2+ domain, TM domain, and intracellular Ser/Thr protein kinase
domain. The extracellular domain of Pb4 can interact with the extracellular domain of
CEBiP, and its expression is induced by chitin and polygalacturonic acid. These findings
provide a theoretical basis for understanding the role of WAKs in mediating rice resistance
against rice blast disease.

2. Results
2.1. Structure and Phenotype of the Population

To map the rice blast-resistant genes, 249 cultivars with relatively uniform growth
periods were selected from the 3K rice accessions. The population structure was analyzed
using the 3K core SNP, with k (the number of groups) ranging from 2 to 12. The cross-
validation error was minimized when k = 7 (Figure 1A,B). Therefore, 249 rice varieties
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were divided into seven subgroups: 26 GJ-adm, 12 GJ-sbtrp, 30 GJ-tmp, 32 GJ-trpA, 20 GJ-
trpB, 32 XI-1A, 49 XI-1B, 20 XI-adm, 14 cA (Aus), and 14 admix individuals (Figure 1C).
A maximum likelihood (ML) phylogenetic tree was constructed using the 3K core SNP,
showing that individuals with the same group structure were more likely to aggregate
together and form a clade (Figure 1D). To investigate the panicle blast resistance of the
population, 249 cultivars were inoculated with the blast strain Hoku1 at the booting stage
in the field (Nanjing, China) over different years. The percentage of diseased grains
varied greatly from 0 to 100%, indicating a broad range of panicle blast resistance levels
(Figure 2A,B). The average percentage of diseased grains in the GJ subgroups was 19% and
22% in 2020 and 2021, respectively, whereas, in the XI subgroups, it was 9% and 8%, showing
a higher susceptibility compared to the XI subgroups (Figure 2C,D). A moderate positive
linear correlation (r = 0.62, p-value < 2.2 × 10−16) was calculated between phenotypes in
two different years, indicating that the data can be treated as replicated data for GWAS
analysis.
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Figure 1. Population structure of the 249 rice accessions. (A) Plot of the CV error with k ranging from
2 to 12. The k means the subgroups of the populations. (B) Population structure based on different ks.
Each color represents a different subgroup. (C) The number of rice accessions in different subgroups
based on K = 7. GJ-sbtrp = Geng/japonica subtropical subpopulation, GJ-trp = Geng/japonica
tropical subpopulation, GJ-tmp = Geng/japonica temperate subpopulation, GJ-adm = Geng/japonica
admixed types between two or more GJ subpopulations, XI-1 = Xian/indica subpopulation 1, XI-
adm = Xian/indica admixed types between two or more XI subpopulations, cA (Aus) = centrum-Aus
population, admix = admixed between any two or more of the XI, GJ, or cA (Aus) populations.
(D) Phylogenetic tree of the 249 rice accessions; samples are colored by their assignment to k = 7
subgroups from Admixture.
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resistance is a result of polygenicity. In 2020, a total of 2873 SNPs (−log10p > 4) showed a 
significant association with the blast resistance trait, and 3118 SNPs were significantly as-
sociated in 2021. Among them, 727 SNPs were detected in both years. Based on the signif-
icant associated SNPs, 37 and 38 BRLs were identified in the two respective years. In 2020, 
the identified 37 loci were distributed on all 12 chromosomes. In 2021, no loci were iden-
tified on chromosomes 8 and 9 (Figure 3A,D). Out of these loci, 10 BRLs had been previ-
ously reported, and 7 BRLs were consistently identified in both years. Specifically, BRL3, 
BRL5, BRL8, and BRL11 were co-localized with known blast resistance genes Pi63, Pi56, 

Figure 2. The panicle blast resistance of the 249 rice accessions. (A,B) The frequency distribution of
panicle blast phenotypes for 249 rice varieties inoculated with the Hoku1 strain in the years 2020 and
2021, respectively. (C,D) Box plots for panicle blast resistance, based on the K = 7 subgroups. The
horizontal line in the center of each box denotes the median. The upper and lower limits of each box
represent quartiles.

2.2. Identification of Blast-Resistant Loci in Whole Genome

A genome-wide association study (GWAS) was conducted to identify blast-resistant
loci (BRL) using a mixed linear model (MLM) based on 3,883,371 high-quality SNPs
(MAF > 0.05, missing rate < 50%). The kinship and population structure were used as
covariates to control for false positives; the QQ plot still exhibits inflation, perhaps because
disease resistance is a result of polygenicity. In 2020, a total of 2873 SNPs (−log10p > 4)
showed a significant association with the blast resistance trait, and 3118 SNPs were signifi-
cantly associated in 2021. Among them, 727 SNPs were detected in both years. Based on
the significant associated SNPs, 37 and 38 BRLs were identified in the two respective years.
In 2020, the identified 37 loci were distributed on all 12 chromosomes. In 2021, no loci were
identified on chromosomes 8 and 9 (Figure 3A,D). Out of these loci, 10 BRLs had been
previously reported, and 7 BRLs were consistently identified in both years. Specifically,
BRL3, BRL5, BRL8, and BRL11 were co-localized with known blast resistance genes Pi63,
Pi56, pb1, and Pita, respectively [3,27–29] (Table 1). BRL1, BRL14, BRL15, BRL19, and BRL20
have been reported by Li et al. (2019) [30], and BRL17 has been reported by Liu et al.
(2020) [25]. BRL2 and BRL13, BRL4 and BRL17, BRL6 and BRL18, BRL7 and BRL19, BRL9
and BRL21, BRL10 and BRL22, as well as BRL12 and BRL23, were identified repeatedly in
2020 and 2021 (Table 1).
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p-value, −log10p.

Table 1. Part of the loci identified in 249 rice varieties in 2020 and 2021 by inoculating with the Hoku1.

Locus Chr Position Top SNP p-Value Years Locus
Reference

BRL1 3 15255983-15434525 118389 4.86 × 10−5 2020 [30]
BRL2 4 4088528-4505882 4088552 3.4708 × 10−6 2020
BRL3 4 32972226-33188952 33188952 1.626 × 10−5 2020 Pi63
BRL4 6 1454195-1604484 1490561 2.461 × 10−6 2020
BRL5 9 8674158-9304868 9069693 1.812 × 10−5 2020 pi56
BRL6 10 4221890-5647528 4798719 1.5076 × 10−8 2020
BRL7 10 7667073-8691546 7837737 6.7119 × 10−9 2020
BRL8 11 22734774-23104761 22905810 9.0682 × 10−7 2020 pb1
BRL9 11 24235297-25570330 24926857 7.8047 × 10−11 2020

BRL10 11 28018096-28187112 28103725 4.9804 × 10−6 2020
BRL11 12 10653088-10797158 10734066 9.7844 × 10−6 2020 Pita
BRL12 12 15203722-15771634 15673466 6.6541 × 10−7 2020
BRL13 4 4112569-4517761 4444275 1.648 × 10−6 2021
BRL14 4 5459995-5745230 5590542 1.4732 × 10−6 2021 [30]
BRL15 5 7403759-7735177 7735177 5.0795 × 10−7 2021 [30]
BRL16 5 16077078-16438269 16438239 3.0808 × 10−8 2021 [25]
BRL17 6 1216276-1514569 1490561 2.0864 × 10−6 2021
BRL18 10 4203994-5367946 4749066 5.9358 × 10−7 2021
BRL19 10 6200492-9329504 6525986 1.571 × 10−9 2021 [30]
BRL20 11 8017796-8518194 8409165 1.5501 × 10−6 2021 [30]
BRL21 11 24202727-24319531 24319531 1.3067 × 10−7 2021
BRL22 11 28136278-28187112 28186726 1.203 × 10−5 2021
BRL23 12 15535945-16059900 15673466 1.0786 × 10−7 2021

2.3. Analysis of the Candidate Genes in BRL10 and BRL22

To further ascertain the resistance-related genes, we analyzed the loci consistently
identified in both years. BRL10 and BRL22, located at the end of the long arm of chromo-
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some 11, emerged as repeat loci in both years and were specifically focused on in this study.
The combined positions of BRL10 and BRL22, spanning from 28018096 to 28187112, were
selected for subsequent pairwise linkage disequilibrium (LD) analysis. An LD block with
D’ > 0.85, extending from position 28136278 to 28187112, was chosen as the candidate re-
gion (Figure 4A). According to the Rice Genome Annotation Project (http://rice.uga.edu/,
accessed on 1 June 2020), this genomic region contains four candidate genes, including
LOC_Os11g46870, LOC_Os11g46880, LOC_Os11g46900, and LOC_Os11g46890 (Figure 4A,
Table 2). LOC_Os11g46870, LOC_Os11g46880, and LOC_Os11g46900 encode kinase pro-
teins, while LOC_Os11g46890 encodes a protein with an unknown function (Figure 4A,
Table 2). Within this region, seven associated SNPs were detected, including six SNPs in
the intergenic region and one nonsynonymous SNP in LOC_Os11g46890, causing a Glycine
(Gly) to Serine (Ser) substitution at position 183 (Table 3). Because few SNPs are located in
the genes, it is challenging to determine disease-resistant casual genes through haplotype
analysis. To further investigate the potential resistance genes in this locus, we examined
the inducing expression patterns of four candidate genes challenged with the rice blast
pathogen. The expression of LOC_Os11g46890 was not detected. Among the remaining
three genes, LOC_Os11g46880 showed a significant induced expression pattern in response
to the rice blast pathogen but not the other two genes (Figure 4B–D). The gradual increase
in the expression level of this gene indicated a positive response to rice blast fungus. Based
on this observation, we consider LOC_Os11g46880 as the potential disease-resistant-related
gene in this locus.
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LD block (right). (B–D) qRT-PCR analysis of the candidate genes during M. oryzae infection. The
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Table 2. The annotation of the candidate genes.

Gene Annotation Position Length

LOC_Os11g46880 protein kinase domain containing Chr11:28159898-28165301 711
LOC_Os11g46870 protein kinase Chr11:28142191-28148337 680
LOC_Os11g46900 wall-associated receptor kinase Chr11:28174980-28179995 707
LOC_Os11g46890 expressed protein Chr11:28172388-28172985 199

Table 3. Types of variations observed in significant SNPs within the candidate region.

SNP Ref Alt Mutant Gene Change

Chr11-28136278 G A Intergenic LOC_Os11g46860-LOC_Os11g46870 -

Chr11-28141062 C T Intergenic LOC_Os11g46860-LOC_Os11g46870 -

Chr11-28141136 G A Intergenic LOC_Os11g46860-LOC_Os11g46870 -

Chr11-28168626 G A Intergenic LOC_Os11g46880-LOC_Os11g46890 -

Chr11-28172439 C T Nonsynonymous LOC_Os11g46890 Gly183Ser

Chr11-28186916 G T Intergenic LOC_Os11g46900-LOC_Os11g46910 -

Chr11-28187112 C A Intergenic LOC_Os11g46900-LOC_Os11g46910 -

2.4. Pb4 Positively Regulates Resistance to Rice Blast

LOC_Os11g46880 is predicted to contain an extracellular N-terminal signal peptide,
GUB domain, EGF domain, EGF-Ca2+ domain, and intracellular Ser/Thr protein kinase
domain, indicative of a typical WAK protein. There are 125 and 25 WAKs that have
been annotated in rice and Arabidopsis thaliana, respectively. In rice, the 125 WAKs can
be classified into 67 WAK-RLKs containing both extracellular EGF-like domains and the
cytoplasmic kinase domain, 28 WAK-RLCKs containing only the cytoplasmic kinase do-
main, 13 WAK-RLPs containing only the extracellular EGF-like domain, 12 WAK-short
genes, which share 40% identity with a longer WAK protein but lack a domain, and 5 WAK-
pseudogenes with stop codons or frameshifts in the coding region. The kinase domain
of the 67 WAK-RLKs and 27 WAK-RLCKs in rice, along with the 24 Arabidopsis thaliana
WAKs and LOC_Os11g46880, were used to conduct an ML evolutionary tree. The evolu-
tionary tree revealed that most WAKs were species-specific, and genes in the WAK-RLK or
WAK-RLCK were more formed with a clade, indicating a significant correlation between
the kinase domain and the extracellular domain. Notably, LOC_Os11g46880 was most
similar to the WAK-RLK gene OsWAK122 in a rice WAK-RLK clade (Figure 5A). To further
investigate the role of LOC_Os11g46880 in the infection process of rice blast fungus, we
generated overexpression transgenic plants of LOC_Os11g46880. Transgenic lines 22, 23,
and 25, which had a higher expression, exhibited significantly enhanced resistance to rice
blast compared to the wild type (Figure 5B–D). It was indicated that LOC_Os11g46880 pos-
itively regulated resistance to rice panicle blast, and we named it Pb4, following the panicle
resistance gene Pb3. Given that Pb4 is a WAK-RLK and most RLKs are located in the cell
membrane, we conducted subcellular localization studies of N. benthamiana and confirmed
its subcellular location in the cell membrane (Figure 6C). Previous reports showed that
OsWAK’s expression is under the control of CEBiP, and the extracellular domain of CEBiP
can interact with the extracellular domain of CERK [31,32]. In yeast two-hybrid assays, we
found that the extracellular domain of Pb4 also interacted with the extracellular domain of
CEBiP. However, the full-length Pb4 did not interact with the full-length CEBiP in yeast,
which might be due to the presence of a transmembrane domain (Figure 6A,B). Given
that CEBiP acts as a receptor for chitin in rice, we hypothesize that the expression of Pb4
may also be induced by chitin. By treating rice seedlings with chitin, the expression of Pb4
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was indeed induced (Figure 5E). Several WAKs have been reported to act as receptors for
OGs. We then treated rice with OGs and found that the expression of Pb4 was significantly
induced (Figure 5F). Taken together, as a WAK-RLK, Pb4 positively regulates rice resistance
against rice panicle blast. The interaction between the extracellular domain of PB4 and
CEBiP, as well as the induced expression by chitin and polygalacturonic acid, suggest that
Pb4 may participate in the immune response of rice to chitin and oligogalacturonides.
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24 WAKs (1 WAK was not predicted a kinase domain) with kinase domain in Arabidopsis. The
purple branches represent Arabidopsis WAKs, the yellow branches represent rice WAK-RLKs, the
blue branches represent rice WAK-RLCKs, and the black branch corresponds to LOC_Os11g46880,
which is Pb4. (B,C) Increased blast resistance of Pb4. Panicles were inoculated with M. oryzae at
the booting stage. The diseased grains were counted at 10 dpi. Scale bar, 2 cm. * p < 0.05, ****
p < 0.0001. (D) Expression levels of Pb4 in overexpression plants. Error bars, mean ± SD (n = 3).
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with chitin or polygalacturonic acid. Error bars, mean ± SD (n = 3).
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3. Discussion

Rice blast disease, caused by the fungus Magnaporthe oryzae, is one of the most devas-
tating diseases that significantly impact rice production globally. Among various disease
symptoms, the seedling blast and panicle blast are the most common; however, the eco-
nomic and production losses caused by panicle blast are more significant [33]. Though
more than 100 genes have been identified for seedling blast, very few genes conferring
resistance to panicle blast were cloned [33]. Developing and utilizing resistant rice varieties
is the most efficient and cost-effective approach to control blast. However, currently, only
a few of the cloned R genes can be applied in breeding due to a lack of broad-spectrum
and durable resistance. Among the cloned R genes, Pi1, Pi5, Pi33, Pi54, Piz, Piz-t, Pi2,
Pi9, Pi40, and Pigm confer broad-spectrum resistance to leaf blast [34–41]. Pb1, Pb2, Pb3,
Pi25, Pi64, Pi68(t), and Pigm loci confer resistance to panicle blast, and only Pigm provides
broad-spectrum resistance to panicle blast [3–8,42].

Compared to traditional linkage mapping, GWAS is time-saving and labor-saving and
can be used to discover novel disease-associated-resistant genes with higher resolution [23].
In this research, we identified 68 blast resistance loci through GWAS assays using 249 rice
varieties selected from the 3K rice population. Through the LD block and expression
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analysis of the candidate genes after inoculating with rice blast fungus, we identified
LOC_Os11g46880 as a resistance-related gene for further research and named it Pb4. Pb4
encodes a typical WAK-RLK protein with an N-terminal signal peptide, extracellular GUB
domain, EGF domain, EGF-Ca2+ domain, and an intracellular Ser/Thr protein kinase
domain. The overexpression transgenic plants of Pb4 showed enhanced resistance to
panicle blast with a reduced diseased grains rate compared to the wild type.

As typical RLK proteins, WAKs are a superfamily with 125 annotated genes in rice
and 25 genes in Arabidopsis thaliana. According to the conserved domains, the 125 WAKs in
rice have been classified into five subfamilies, including 67 WAK-RLKs, 28 WAK-RLCKs,
13 WAK-RLPs, 12 WAK-short genes, and 5 WAK-pseudogenes. Previous reports suggest
that WAKs are involved in the recognition of carbohydrate-based DAMPs or PAMPs as
PRRs [43] and are connected with the cell wall through pectin binding sites [44]. In Ara-
bidopsis thaliana, both AtWAK1 and AtWAK2 can bind to pectin through their extracellular
non-EGF domains in vitro [45,46]. However, so far, only AtWAK1 has been confirmed as
a receptor of oligogalacturonides (OGs) using domain-swapping methods in vivo, which
activates the intracellular kinase domain and triggers downstream defense responses [46].
On the other hand, AtWAK2 is required for the activation of numerous genes, including
MAPK6 phosphorylation, in the protoplasts upon pectin induction [45]. In this study, the
expression of Pb4 was significantly induced by polygalacturonic acid, suggesting it may be
involved in OGs recognition as a PRR protein.

Several studies have directly demonstrated the roles of WAKs in the resistance re-
sponses against bacterial and fungal pathogens. In Arabidopsis, overexpression of AtWAK1
enhances resistance to Botrytis cinerea [47], while AtWAKL22 confers dominant resistance to
Fusarium wilt disease [48]. In rice, the recently cloned disease resistance gene Xa4, encod-
ing a WAK protein, can promote cellulose synthesis, inhibit cell wall loosening, strengthen
the plant cell wall, and provide durable resistance against rice bacterial blight [49]. Sub-
cellular localization and apoplastic fractionation experiments in N. benthamiana revealed
that OsWAK1 is associated with the cell wall, and its expression is induced by the rice
blast fungus, salicylic acid (SA), methyl jasmonate (MeJA), and mechanical injury. Os-
WAK14, OsWAK91, and OsWAK92 mediate rice blast resistance, triggering ROS burst and
the expression of defense-related genes. As a large gene family in rice, WAKs may form a
heteromeric complex to conduct function. Yeast two-hybrid experiments have shown that
OsWAK14, OsWAK91, and OsWAK92 can indeed form both homomeric and heteromeric
complexes [50,51]. In cotton, GhWAK7A can interact with GhLYK5 and GhCERK1 in
the uninfected state. However, during fungal pathogen infection, GhLYK5 can recognize
chitin, which is released from fungal cell walls, and interact with GhCERK1 to promote the
phosphorylation of GhWAK7A. Phosphorylated GhLYK5 may facilitate and maintain the
formation of the GhLYK5-GhCERK1 complex, thus further activating cytoplasmic signaling
and eliciting defense responses [16]. We also found that the expression of Pb4 is inducible
by chitin, and the extracellular domain of Pb4 can interact with the extracellular domain
of CEBiP in yeast two-hybrid assays. As an RLP protein without an intracellular kinase
domain, CEBiP often interacts with an RLK protein, such as CERK1, to transmit signals
from the extracellular to intracellular, leading to the activation of downstream signaling
pathways. The interaction between Pb4 and CEBiP may indicate they form complexes to
recognize external signals and activate intracellular defense signaling.

In summary, we identified a novel non-NLR panicle resistance gene through GWAS,
which belongs to the WAK gene family. As an RLK protein, Pb4 may act as a receptor for the
OGs derived from the cell wall and form a co-receptor with CEBiP to recognize the chitin
released from the M. oryzae cell wall to activate PTI. It might also confer broad-spectrum
resistance to pathogens through strengthening the plant’s cell wall. The specific mecha-
nisms underlying intracellular signal transmission, as well as the potential recognition
of other PAMPs or DAMPs by WAKs and the resistance spectrum of Pb4, require further
investigation. In summary, this study identified a novel panicle blast-resistant gene for
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breeding and provides a theoretical basis for understanding the role of WAKs in mediating
rice resistance against rice blast disease.

4. Materials and Methods
4.1. Plant and Fungal Materials

A total of 249 cultivars from the 3K rice accessions with a relatively uniform growth
period were selected to grow in Nanjing, Jiangsu province, which were provided by the
Shanghai Institute of Plant Physiology and Ecology. The rice blast strain Hoku1 used in
this study was provided by the Institute of Crop Science, Chinese Academy of Agricultural
Sciences. The blast fungi were grown on corn–rice–straw agar plates at 28 ◦C for seven
days and then transferred in black light (20 W) in an incubator at 28 ◦C for sporulation
and culture for 7–10 days to promote spores production. For panicle blast inoculation,
rice plants in the booting stage were inoculated with the conidial suspension by using an
injection method as described previously [52]. Three plants of each line and three panicles
per plant were inoculated with a conidial suspension (1 × 105 conidia/mL). The disease
severity was visually assessed, and the percentage of diseased grains was determined two
weeks after inoculation according to the method previously described [53].

4.2. Population Structure and GWAS Analysis

The population structure of the 249 cultivars was analyzed using ADMIXTURE (ver-
sion 1.3.0) on the core SNPs [54]. The k (number of groups) was set from 2 to 12, and k = 7
was chosen due to its cross-validation error being minimum. The group membership for
each sample was defined by applying the threshold of ≥0.65 to this matrix. If the sum of
the components for the subpopulations within the major groups XI and GJ was ≥0.65, the
samples were classified as XI-adm or GJ-adm, respectively, and the remaining samples
were deemed admixed (admix). The construction of phylogenetic trees was performed
using FastTree based on the maximum likelihood method using the core SNPs [55].

GWAS analysis of panicle blast resistance was conducted using the mixed linear model
in Tassel 5.0 and the filtered SNPs (MAF > 0.05, missing rate < 50%) [54]. The p-value < 10−4

was chosen as the threshold to define significant SNPs, and a region with more than eight
consecutive SNPs (the distance between SNPs was less than 200 kb) was named as a locus.
The kinship and population structure (k = 7) were used as covariates. Manhattan and
QQ plots were plotted using the R package “cmplot” [56]. A linkage disequilibrium (LD)
heatmap was generated with LDBlockShow [57].

4.3. RNA Extraction and Real-Time PCR

For the expression pattern analysis of Pb4, samples were collected at different time
points after the rice blast pathogen inoculation or treated with chitin at a concentration of
10 µg/mL and polygalacturonic acid at a concentration of 100 µg/mL, immediately frozen
in liquid nitrogen, and stored at −80 ◦C. Total RNA was extracted using the ATGPure®

Cell/Tissue RNA Extraction Kit (Code: R201). The first-strand cDNA synthesis was then
conducted using HiScript® II RT SuperMix (Code: R223-01). For the qRT-PCR, the AceQ®

qPCR SYBR Green Master Mix (Product Code: Q111-02) was employed, and the entire qRT-
PCR process was carried out on an LC480 II qPCR system (Roche fluorescence quantitative
LightCycler480, San Francisco, CA, USA). The expression level of Actin was used as an
internal control.

4.4. Construction of Transgenic Rice Plants

Full-length cDNA of Pb4 was inserted into the pCAMBIA1300s vector to generate the
overexpression transgenic vector driven by the 35s promoter. The verified vector plasmid
was then transformed into susceptible rice plants, Suyunuo, using the Agrobacterium-
mediated method. The primers YZ-Pb4-F/R and q-Pb4-F/R were used to validate positive
transgenic plants and analyze the expression levels of Pb4 (Supplemental Table S1).
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4.5. Subcellular Localization

Full-length cDNA of Pb4, fused with GFP, was constructed into the PCAMBIA1300s-
GFP vector driven by the 35s promoter to generate the subcellular localization vector. The
Agrobacterium carrying the Pb4-GFP and P19 plasmid were respectively prepared in the
infiltration medium (10 mM MgCl2, 10 mM MES, 100 µM Acetosyringone, pH = 5.6) to an
OD600 = 1.0. They were mixed in equal amounts and injected into N. benthamiana leaves.
After 48 h, the samples were observed using a Leica laser scanning confocal microscope.

4.6. Y2H Assay

Y2H assays were conducted using the Gold Yeast Two-Hybrid System (Clontech)
protocol. Different lengths of Pb4 and CEBiP cDNA fragments were cloned into the pGADT7
and pGBKT7 vectors, respectively. pGBKT7 and pGADT7 vectors were co-transformed
into the Y2H Gold yeast strain. The transformed yeast cells were grown on selection plates
(SD/-Leu/-Trp/-His/-Ade) to detect the interactions.

Supplementary Materials: The supporting information can be downloaded at: https://www.mdpi.
com/article/10.3390/ijms25020830/s1.
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