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Abstract: The mechanistic influences of dopamine (DA) signaling and impact on motor function
are nearly always interpreted from changes in nigrostriatal neuron terminals in striatum. This is a
standard practice in studies of human Parkinson’s disease (PD) and aging and related animal models
of PD and aging-related parkinsonism. However, despite dozens of studies indicating an ambiguous
relationship between changes in striatal DA signaling and motor phenotype, this perseverating
focus on striatum continues. Although DA release in substantia nigra (SN) was first reported almost
50 years ago, assessment of nigral DA signaling changes in relation to motor function is rarely
considered. Whereas DA signaling has been well-characterized in striatum at all five steps of
neurotransmission (biosynthesis and turnover, storage, release, reuptake, and post-synaptic binding)
in the nigrostriatal pathway, the depth of such interrogations in the SN, outside of cell counts, is
sparse. However, there is sufficient evidence that these steps in DA neurotransmission in the SN are
operational and regulated autonomously from striatum and are present in human PD and aging and
related animal models. To complete our understanding of how nigrostriatal DA signaling affects
motor function, it is past time to include interrogation of nigral DA signaling. This brief review
highlights evidence that changes in nigral DA signaling at each step in DA neurotransmission are
autonomous from those in striatum and changes in the SN alone can influence locomotor function.
Accordingly, for full characterization of how nigrostriatal DA signaling affects locomotor activity,
interrogation of DA signaling in SN is essential.

Keywords: substantia nigra; dopamine; tyrosine hydroxylase; dopamine receptor; striatum; reuptake;
phosphorylation; nigrostriatal; Parkinson’s disease; aging

1. Introduction

Ever since dopamine (DA) and norepinephrine (NE) neuronal pathways were iden-
tified and functionally characterized in vivo [1–8], the depth and breadth of studies of
how these neurotransmitters affect both cognitive and motor behavior has been immense.
The viability and function of the neuronal pathways that produce these neurotransmitters,
nigrostriatal and ceruleo-cortical, respectively, are significantly decreased in Parkinson’s
disease (PD). As such, the five components of neurotransmission (biosynthesis, storage, re-
lease, reuptake, and post-synaptic function) have been studied for respective contributions
to deficits in DA or NE signaling in PD. The range of approaches used to interrogate these
pathways include defining PD-related genes and physiological regulation of catecholamine
genes [8–12], expression of catecholamine-regulating enzymes and transporters [13–20],
post-translational modification of biosynthesis enzymes [21–28], neuron electrophysio-
logical properties [29–34], release and uptake [35–40], pre- and post-synaptic receptor
function [22,30,34,41–45], basal ganglia circuit function [46–52], and growth factor signal-
ing [53–64]. Clearly the investment of resources in these multiple areas of research is for
the ultimate goals of understanding PD etiology, the consequences of DA or NE loss that
arise from PD on motor and cognitive skills, and to identify a sound mechanistic rationale
for effective treatments to delay or arrest disease progression. Notably, the vast majority
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of studies that focus on the relationship between motor function and DA signaling have
evaluated one or more of the five components of neurotransmission in the striatum, the
terminal field region of the nigrostriatal pathway. It is important to keep in mind that at
the time of PD diagnosis, the striatal regions already show ~70–80% loss of DA-regulating
proteins or aspects of DA signaling (such as DA release). This non-linear relationship brings
up two yet to be resolved questions: why is motor impairment not detected prior to 80%
loss, and second, why does the severity of motor impairment continue to worsen when
loss in striatum reaches near 100% 4–5 years after diagnosis [20].

2. Insights of How Striatal DA Signaling Affects Locomotor Function Have Reached
a Plateau

In the context of PD, DA is, by far, the most studied of the catecholamines, with NE
running a distant second. Since 1962, there have been ~29,000 publications associated with
DA and PD vs. ~1700 associated with NE and PD. The evidence for deficient nigrostriatal
DA signaling as the primary cause of motor symptoms of PD is strong. Yet there still
remains a critical unresolved issue that hampers progress: a continuous perseverating
focus to attribute deficient DA signaling in the striatum as the sole culprit for motor
impairment. This focus is undoubtedly driven by the longstanding working model of basal
ganglia circuit dysfunction that arises from the loss of striatal DA due to the progressive
loss of nigrostriatal neurons. It is argued that this striato-centric focus has generated a
plateau in our understanding of exactly how any of the five steps of neurotransmission
with deficient DA-regulating function in striatum actually impair motor function. For
definition purposes, the relation of nigrostriatal DA signaling to motor impairment will
focus upon bradykinesia/hypokinesia, which is among four cardinal signs of PD which also
include rigidity and postural instability and tremor at rest. Indeed, there are clinically based
examples of where improvements in striatal DA signaling did not equate to alleviation
of motor impairment in PD patients [60,64,65]. More evidence of this lack of alignment
between striatal DA levels and severity of motor impairment is seen at the later stages
of PD. Although the severity of motor impairment continues to worsen 4 to 5 years after
PD diagnosis, loss of striatal DA-regulating proteins or signaling has already reached
near 100% [20,66–69]. There is a comparable amount of evidence for this misalignment
between striatal DA levels and motor function status in pre-clinical studies of rat PD
models [22,57–59,70–76]. Motor impairment may also be present with far less than 80%,
if any, striatal DA loss [54,65,70,72] or, conversely, motor impairment may not be present
even though striatal DA loss meets or exceeds 80% [22,73,74]. Motor impairment can also
be alleviated without any increase in or recovery of striatal DA or DA-regulating protein
loss [54,57,59,73–76].

It is not the position of this review to assert that striatal DA signaling does not influence
motor function. The weight of evidence that shows the influence of striatal DA signaling
on basal ganglia circuits is too great to list here. However, the incongruities between the
level of locomotor function and DA signaling in striatum can no longer be ignored if we
are to solve which critical dopaminergic element(s) are to be targeted to maximize effective
therapeutic strategies. This brief review will present evidence that challenges the central
dogma that compromised DA signaling in striatum is the sole deficiency of DA that impairs
locomotor function. The overwhelming evidence that nigrostriatal DA signaling does affect
locomotor function has been obtained from our knowledge of PD and from studies that
experimentally modulate components of DA neurotransmission. The key question is where
in the nigrostriatal pathway does DA have the greatest influence on locomotor function;
particularly regarding the mechanisms that drive the initiation of self-generated movement.
Although the evidence that nigral DA signaling can influence motor function is sparse, it
has nonetheless been in existence since the 1980s [77–81]. The paucity of studies evaluating
the SN is likely due to a prevailing presumption that neurotransmitter functions at the axon
terminal are the sole influence of behavioral outcomes. Thus, interrogation of nigral DA
signaling has not been considered in experimental designs to define how components of
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nigrostriatal DA signaling affect locomotor activity. In this light, it is reasonable to presume
that the numerous ambiguities between striatal DA regulation and motor function that
have accumulated in the literature over the past several decades could have been resolved
if assessment of nigral DA signaling was included in the study design.

3. Dissecting the Impact of the Five Components of DA Neurotransmission on
Locomotor Function

As goes with the loss of nigrostriatal neurons in PD, the loss of DA-regulating proteins
and processes involved in neurotransmission follows. Interference with the functions of any
of these proteins or processes can also affect locomotor function in naïve (non-PD) animal
models. Tyrosine hydroxylase (TH) is the rate-limiting step of DA biosynthesis, converting
tyrosine to L-dihydroxyphenylalanine (L-DOPA). Inhibition of TH with alpha-methyl-p-
tyrosine (AMPT) decreases DA tissue levels and inhibits locomotor activity [7,82–86]. In
humans, inhibition of hyperkinetic movements, such as chorea, dystonia, or dyskinesia,
can also be produced by AMPT [87,88]. The storage of DA and NE is controlled by
vesicular monoamine transporter 2 (VMAT2), which imports monoamines like DA into
synaptic vesicles using a proton gradient. This function is inhibited by reserpine, which
also inhibits locomotor activity [89–91], as first identified by a parkinsonian symptom side
effect produced in hypertension treatment [92]. VMAT2 is expressed in both striatum and
SN [93,94], which confers the capacity for storing DA for eventual release in the entire
nigrostriatal pathway.

Once DA is packaged in synaptic vesicles, it can be released by neuronal activity or by
modulation of transporter function through stimulant action. At the extracellular level, DA
release from the nigrostriatal pathway is the step that delivers tissue content, via vesicular
delivery, to the synapse [95–98], wherein DA has four fates, binding to the pre- or post-
synaptic DA receptors, reuptake into the neuron, or diffusion away from the release site [99].
Drugs that target DA receptors, the post-synaptic DA D1 receptor or pre- and post-synaptic
DA D2 receptor, also influence locomotor activity and are targets for pharmacotherapy
in PD treatment [100]. An acute regimen of antipsychotics such as haloperidol or either
DA D1 or D2 receptor antagonists reduce locomotor activity [101–105]. Conversely, DA
D1 or D2 agonists increase locomotor activity in rodents and primates [43,106,107] and
improve motor functions in late-stage human PD [108–110]. The release of DA can also be
modulated by DA D2 autoreceptor function [111] in both striatum and SN [31,112]. Finally,
it should be mentioned that although the focus of this review on DA receptors is upon the
D1 receptor, with brief overview of the D2 receptor, the three other DA receptors have been
recently shown to play a role in locomotor impairments of PD, particularly the D3 and D5
receptors [113–116].

Functionally, the regulation of DA release by neuronal activity is critical for initiation
of locomotor activity [117–121]. Deficits in DA release, such as occurs in aging or from over-
expression of alpha-synuclein, are associated with decreased locomotor activity [122–124].
Conversely, under conditions that increase DA release, such as induced by amphetamine
or methamphetamine [125–127], there is increased locomotor activity [128–130].

The termination of DA signaling occurs by reduction of extracellular DA levels in
the synapse, largely, though not exclusively [99], through reuptake by the dopamine
transporter (DAT) [131–133]; a process that occurs in SN as well as striatum [134–136]. DAT
protein expression is considerably greater in the striatum [94], and, not withstanding possible
influences of trafficking or contributions of other monoamine transporters, this difference may
explain why DA release and uptake dynamics differ between these two regions [134–136].
Through constant trafficking between cytosol and plasma membrane, DAT function is
dynamically regulated, including aging and in PD [137–139]. The DAT, like the DA D2
receptor, also has considerable interaction with other components of DA neurotransmission,
including DA D2 receptors [34,112], and has considerable influence on maintaining DA
tissue levels, TH expression, and phosphorylation selectively in the striatum, but not in
SN [140,141]. There is also evidence of plasticity in DA uptake under conditions where
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DA and DAT levels are particularly low. In such cases, the NE transporter may also
transport DA, with inherently low DA innervation or from severe loss of nigrostriatal
neuron terminals [142,143].

Given the considerable influence of DAT on DA homeostasis, locomotor activity is
strongly affected by DAT expression levels. DAT knockout mice or rats show a hyperkinetic
phenotype [144–146]. This hyperkinetic phenotype is not likely explained by the low DA
uptake capacity in the striatum due to DAT knockout, as DA tissue content levels are
severely reduced to a level that is comparable to nigrostriatal lesion (>90% loss) [140,141].
Systemic delivery of nomifensine, a DAT inhibitor, increases locomotor activity [147],
consistent with the hyperkinetic phenotype of the knockout [144–146]. While presumably
this effect would be considered to be due to elevated extracellular DA levels in striatum
from interference with DA uptake, we recently reported that infusion of nomifensine in
striatum did not increase locomotor activity in aged rats, despite a striatum-specific increase
in extracellular DA levels produced by nomifensine infusion therein [148].

4. Similarities and Differences in DA Signaling between Striatum and SN in Basal
Conditions

Functional readouts of each of the five components of DA signaling have been estab-
lished in the striatum and SN. These include expression levels of the regulating proteins
(TH, DAT, VMAT2, and DA receptors), tissue and extracellular DA levels, DA release,
DA uptake, and post-translational modifications of regulating proteins, particularly site-
specific TH phosphorylation (Table 1). The differences in expression levels and function
between striatum and SN under basal conditions provide the necessary basis upon which
to evaluate the impact of perturbations on the nigrostriatal pathway that arise from ag-
ing and PD. At the biosynthesis level, several stark differences between striatum and
SN are apparent. Tissue levels of DA are 20–30 times greater in the striatum than in the
SN [22,54,84,94,148–151]. There are three factors that appear to drive this disparity in DA
tissue levels: DA turnover, TH phosphorylation at ser31, and DAT expression. The SN has
a 2-fold greater rate of DA turnover [22,54,84,94,148,149], which presumably means less
available DA for release therein compared with striatum. The phosphorylation of TH at
ser31, as opposed to ser40, matches the differences in DA tissue content across four DA
regions in vivo [84,151]. TH phosphorylation stoichiometry at ser31 averages at least 3-fold
higher in the striatum [18,22,54,84,137,141,148–151], which suggests a lesser capacity for
DA biosynthesis in the SN. Finally, the expression of DAT and DA uptake capacity is much
greater in the striatum than in SN [94,112,141,143]. In DAT knockout mice, there is severe
loss of DA tissue levels in striatum, whereas there is no loss seen in the SN [141]. This
disparity strongly suggests that striatal DA content is heavily influenced by DAT expression
and function. Thus, it is clear that the disparities in DA biosynthesis (and catabolism), ser31
TH phosphorylation, DAT expression, and DA uptake between striatum and SN contribute
to less tissue DA in the SN (Table 1).
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Table 1. Comparison of dopamine (DA) regulation between striatum and substantia nigra (SN) at each of the 5 steps in neurotransmission. (1) DA biosynthesis,
6 different measures are presented: tissue DA (as ng DA/mg tissue protein), DA turnover (ng dihydroxyphenylacetic acid per ng dopamine), tyrosine hydroxylase
(TH) (as ng TH protein/µg tissue protein), DA normalized against total TH protein (as ng DA/ng TH, an estimate of DA biosynthesis), ser31 and ser40 TH
phosphorylation stoichiometry (ser31, ser40) (determined as ng phosphorylation quantity per ng total TH protein); (2) DA uptake, 3 different measures are presented:
DAT per TH (total DAT immunoreactivity per total TH protein quantified), DAT per protein (total DAT immunoreactivity per total protein), and DA uptake (as
pmole DA per second or per total protein per minute); (3) DA storage, 2 different measures are presented: VMAT per TH (vesicular monoamine transporter 2
(VMAT) per total TH protein) and VMAT per protein (VMAT per total protein); (4) DA release or baseline levels, results presented as µM concentration during
release or fmole quantity at baseline *; (5) post-synaptic DA receptor D1R, results presented as immunoreactivity of D1R quantified per total protein.

DA Biosynthesis DA Uptake DA Storage DA Post-
Synaptic

Region ng/mg DA ng/µg DAT DAT DA Uptake VMAT VMAT Release DA
Receptor

DA Turnover TH ng DA/ng
TH ser31 ser40 per TH Per

Protein
(pmole/unit

time) per TH Per Protein or Baseline * D1R Study

Striatum 214 0.391 0.547 0.33 0.022 Salvatore et al. [151]
225 0.068 1.06 0.212 0.322 0.026 26 1637 17 6.1 Keller et al. [94]
128 0.016 0.6 0.213 0.29 0.025 Salvatore and Pruett [84]

7.1 pmole/mg 1.14 µM [134] Chotibut et al., 2012 [143]
protein/min [139] 1.0 µM [112] Hoffman et al., 1998 [134]

5.0 pmole/s [130] 5.1 fmol [152] * Cragg and Greenfield, 1997 [112];
Robertson et al., 1991 [152]

318 0.08 0.53 0.6 0.37 Pruett and Salvatore, 2013 [54]
225 0.52 0.433 0.635 * 0.064 * Salvatore et al., 2016 [150]
140 0.19 0.45 0.311 0.31 55 Salvatore et al., 2017 [149]
225 0.11 0.48 0.469 0.26 0.026 3772 70 Salvatore et al., 2023 [148]
150 0.11 0.4 0.375 0.38 0.015 Kasanga et al., 2023 [22]

MEAN 203.1 0.096 0.554 0.395 0.323 0.023 26 2704.5 6 17 6.1 1.1 62.5
SEM 58.3 0.053 0.202 0.135 0.039 0.004 0 1067.5 0 0

SN 7.6 0.053 0.143 0.104 0.046 Salvatore et al. [151]
9.5 0.15 0.15 0.063 0.108 0.053 2.6 197 110 5 Keller et al. [94]
5.9 0.2 0.09 0.066 0.069 0.016 Salvatore and Pruett [84]

3.3 pmole/mg 0.18 µM [134] Chotibut et al., 2012 [143] Hoffman
et al., 1998 [134]

protein/min [139] 0.25 µM [112] Cragg and Greenfield, 1997 [112]
1.0 pmole/s [130] 0.61 fmol [152] * Robertson et al., 1991 [152]

9.5 0.15 0.051 0.186 0.09 Pruett and Salvatore, 2013 [54]
6.5 0.023 0.283 0.144 * Salvatore et al., 2016 [150]
6 0.22 0.06 0.1 0.134 0.049 82 Salvatore et al., 2017 [149]

8.5 0.29 0.049 0.173 0.14 0.022 828 100 Salvatore et al., 2023 [148]
10 0.2 0.12 0.083 0.09 0.018 Kasanga et al., 2023 [22]

MEAN 7.9 0.202 0.075 0.137 0.105 0.034 2.6 512.5 2.1 110 5 0.22 91
SEM 1.6 0.047 0.04 0.071 0.023 0.016 0 315.5 0 0
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Additional observations of the other three components of DA neurotransmission
indicate that storage capacity may be much greater in the SN, as VMAT2 expression
with respect to inherent TH protein levels is much higher (Table 1) [94]. This differential
storage capacity may counteract the great disparity in DA tissue levels between these two
regions, as DA release capacity differences are not as great, with ~5-fold less DA release
or extracellular levels in SN vs. striatum [112,134,136,152]. Finally, at the post-synaptic
DA receptor level of DA neurotransmission, the few observations comparing striatum
and SN within the same studies suggest a 30% greater expression level of the D1 receptor
in the SN [148,149]. This differential may optimize DA signaling in the SN, particularly
during loss of DA as would occur in PD progression. In summary, the current battery of
results shows that differences in DA signaling between striatum and SN can be attributed
to inherent differences in each of the five components of neurotransmission.

5. Approaches and Outcomes Needed to Discern Role of Striatal and Nigral DA
Signaling

There is considerable evidence that the proteins and processes associated with the five
steps of DA neurotransmission in the nigrostriatal pathway are operational in both striatum
and SN. Modifications at these steps can alter DA signaling dynamics in either region, although
there are notable differences in the functional dynamics between these regions at some of
these steps, such as DAT expression and reuptake capacity [94,134,143]. The release of DA
occurs in both striatum and SN with activation of nigrostriatal neurons [95–98,117,121,153]
and is associated with self-directed movement [117–121,154]. Thus, with DA release
contemporaneously occurring in striatum and SN, it would seem to be experimentally
challenging to decipher the role of DA signaling in either region in locomotor function.
However, with localized delivery of DA-modulating compounds into striatum or SN,
it is plausible to target one or more of these steps in one region to modify and isolate
DA signaling dynamics. Thus, interference at a step in DA neurotransmission in one
region would be expected to influence extracellular DA levels only in the targeted region.
Accordingly, this approach would at least partially address the reality of contemporaneous
DA release that occurs in striatum and SN from neuronal activity. The critical outcomes
needed from this approach are 2-fold: (1) modulate DA signaling in the targeted region,
and (2) the modulation in the targeted area does not affect DA signaling in the non-targeted
region. For example, to identify a role for nigral DA signaling in motor function, targeting
a component of DA signaling in SN would be expected to not influence DA signaling in
striatum. Such an approach is feasible, and therefore it is possible to parse out the relative
contributions of DA signaling in striatum or SN and respective impact on locomotor
function [44,54,84,121,148,149,155,156]. Most importantly, as the functional status of each
step in DA neurotransmission is established in normal and disease states in either striatum
or SN, region-specific modulation of DA signaling makes it possible to infer what impact
the loss of such functions in disease states in these regions has on locomotor function.

6. Autonomy of DA Biosynthesis in SN and Impact on Motor Function in Aging and PD

Targeting one of the five steps of neurotransmission in a specific region of the nigros-
triatal pathway represents an experimental approach to emulate specific mechanisms of
DA signaling that exist in vivo in normal or disease states. For example, if TH levels are
reduced selectively in the SN in a disease or aging model, then targeting TH activity in
that region in an appropriate control animal can be useful to determine if the loss of TH or
its function contributes to deficient DA signaling and locomotor function [149,155]. The
specific targeting of SN or striatum to modulate DA signaling by targeting one of the five
steps of neurotransmission is a critical experimental approach, because differences in DA
regulation exist at multiple steps in normal (or naïve) rodents (Table 1), PD models, and in
models of aging-related parkinsonism. Moreover, because such differences in multiple DA
signaling steps between striatum and SN have also been identified in human PD and aging,
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it is feasible to determine, by experimental modulation within these regions, if any specific
change in DA signaling is driving locomotor impairment.

Most studies that have evaluated how components of DA signaling from SN or striatum
affect locomotor function have focused upon the DA biosynthesis step. This is likely due to the
fact that there is severe TH loss in PD. Differences in TH expression, TH phosphorylation, and
DA tissue content exist between the SN and striatum under normal [84,141,148–151,157,158],
PD- [18,20,22,57,58,66–69,72,159], or aging-related conditions [54,61,84,148,149,151,159–161],
both in animal models and in human PD [20,66–69,159] and aging [159,161–163]. As pre-
viously discussed and shown in Table 1, naïve (young age or without nigrostriatal lesion)
rodents have 3- to 4-fold greater TH expression in the striatum. This difference in TH
expression between striatum and SN is magnified by ~15- to 25-fold greater DA tissue
levels in striatum; a disparity likely due to 3- to 10-fold greater ser31 TH phosphorylation
in the striatum. Therefore, with the clear autonomy of TH regulation between striatum and
SN, differences in TH expression or ser31 TH phosphorylation arising from nigrostriatal
neuron loss or aging must be taken in the context of changes that are specific to each region.
As such, determining the effect of nigrostriatal neuron loss or aging on these components
of DA biosynthesis against changes in locomotor function must be evaluated with the
understanding that baseline levels differ greatly between striatum and SN. These baseline
levels contribute individually to the locomotor profile. Thus, a relatively smaller change in
these components in one region, such as SN, may actually have a much more significant
impact on locomotor function, despite a larger change observed in the other region, in the
context of responses to perturbations in the nigrostriatal pathway from aging or PD.

7. Nigrostriatal DA Signaling and Aging-Related Parkinsonism: Relevance to PD

Bradykinesia (or hypokinesia) is the most prevalent motor symptom of aging-related
parkinsonism. As shown in rat models of aging-related parkinsonism and PD, three in-
dices of DA biosynthesis (DA tissue content, TH protein, and TH phosphorylation) in
the SN, but not striatum, are associated with changes in locomotor function. From the
standpoint of aging, studies on rodents [54,84,122,123,148–151], primates [164–166], and
humans [167–169] all indicate that loss of DA or TH in striatum varies considerably, from
virtually no loss to 50% compared to young cohorts. Notably, no aging study has reported
that striatal DA or TH loss reaches the accepted 80% loss threshold associated with PD
motor symptom onset [19,20,73,170–172]. However, in primates, the severity of bradykine-
sia covaries with TH or DAT loss in the SN [160]. Moreover, in an established rat model
of aging, nigra-specific loss of TH protein and decreased ser31 TH phosphorylation were
also associated with a 40% decrease in DA tissue levels, with no loss of DA, TH protein,
or decreased ser31 phosphorylation in striatum [151]. To determine if this nigra-specific
loss of DA was contributing to decreased locomotor activity (which would be bradykine-
sia/hypokinesia in humans), we infused the TH inhibitor AMPT into the SN of young rats
to produce DA reduction comparable to that in aged rats. This delivery in the SN did not
affect DA levels in striatum. Locomotor activity was decreased during the time established
for DA reduction in the SN [155]. In another study, we targeted the striatum with AMPT to
decrease DA by 30% (the maximum obtainable by this approach). Although DA reduction
was specific for the striatum, there was no effect on locomotor activity [149].

Using the same approach in aging rats, we infused nomifensine into either region to
determine if augmenting extracellular DA levels, by blocking DA reuptake, would increase
locomotor activity [148]. Essentially, this approach was to counteract aging-related dimin-
ished DA release that was previously established to occur in either region [122,123,164].
Again, the infusion approach produced a region-specific increase in extracellular DA levels.
We found that increasing DA by nomifensine infusion into the SN was associated with in-
creased locomotor activity, whereas nomifensine infusion into the striatum by nomifensine
had no effect on locomotor activity [148]. These results indicate that aging-related decreases
in DA release in the nigrostriatal pathway associated with decreased locomotor activity are
due to decreased release in the SN. Thus, by experimentally modulating DA locally in SN
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or striatum to mimic or counteract aging effects at the biosynthesis or (indirectly) release
steps, the results point to deficient DA signaling in the SN as a contributing mechanism to
reduced locomotor activity in aging rats. It would be logical therefore to presume that the
inhibition of motor activity following systemic AMPT [7], or the enhancement of motor
activity following systemic nomifensine [122,147] or elimination of reuptake in the DAT
knockout [144–146], is being driven, at least in part, by modulation of nigral DA signaling.

To summarize, aging-related parkinsonism cannot be explained by loss of TH pro-
tein or DA tissue levels in striatum, given the high variability of loss across studies and
that TH or DA loss does not reach the accepted consensus of 80% loss associated with
the onset of motor symptoms in PD [19]. Instead, the deficiencies in DA signaling of
the nigrostriatal pathway to drive parkinsonism reach sufficient levels in the SN, but not
in striatum (Figure 1). Thus, even though parkinsonian motor symptoms occur during
aging, the considerable variability in DA or TH loss in the striatum makes it impossible
to pin culpability on deficient striatal DA signaling as the single source of aging-related
parkinsonian signs. Our work, along with others, makes the case that multiple steps of
DA neurotransmission in the SN are affected in aging that coincide with the development
of parkinsonian-like symptoms. The first likely event in the lifespan is an aging-related
decrease in DA D1 receptors (to be discussed further below) followed by decreased expres-
sion of TH protein and a phosphorylation-site-specific decrease in ser31 (and not ser40).
It is unknown if the decrease in TH protein is due only to neuronal loss that has been
documented to also occur [162]. As a result of these decreases, DA tissue content is reduced,
likely driving the decrease in DA release previously reported in the SN [164]. Importantly,
the decreases in TH protein, neuron loss, and tissue DA in the SN in models of aging
are comparable to those reported in the SN in human PD and PD models at the onset of
bradykinesia [19,20,35,159,170,171]. This consistency with the changes in the SN that also
occur in PD makes it further plausible that deficient DA signaling in the SN is responsible
for decreased locomotor activity or parkinsonism in aging.
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tein progresses (→) in the SN toward the latter (aged) part of the lifespan, with steadily decreasing 
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Figure 1. Molecular changes in components of dopamine (DA) signaling in substantia nigra (SN)
are autonomous from those in striatum during aging and coincide with decreasing locomotor function.
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more highly variable (-) in aging, with maximum loss of ~50% being the most ever reported [164–169].
Conversely, in the SN, there are several aging-related changes occurring at the biosynthesis and
receptor levels. Loss of the DA D1 receptor (D1) occurs in the middle to late-middle stages of the
lifespan and temporally coincides with the onset of locomotor decline [149]. Loss of TH protein pro-
gresses (→) in the SN toward the latter (aged) part of the lifespan, with steadily decreasing DA tissue
content [84,148,151,159–166]. Notably, there is also a decrease in site-specific TH phosphorylation at
ser31 (ser31 pTH), but not at ser40 (ser40 pTH), that occurs only in the SN [151]. Aging-related loss
of nigral TH protein and tissue DA is comparable to loss at the onset of locomotor impairment in
PD [19], suggesting that DA tissue losses from decreased ser31 TH phosphorylation and TH protein
are mechanisms of hypokinesia seen in aging.

8. Nigrostriatal DA Signaling and PD-Related Motor Impairment

From the perspective of deficient DA signaling impact on motor impairment in PD, a
long-standing unresolved issue is why motor impairment does not occur until there is 70–80%
TH or DA loss in striatum. It was long thought that increased DA turnover reflected increased
DA signaling during progressive loss of the nigrostriatal neuron terminals [19,73,172–175],
thus compensating for TH protein loss to enable normal locomotor activity. L-DOPA, the
product of TH, remains the gold standard for treating motor symptoms. Thus, it stands
to reason that compensating for TH loss through engagement of innate compensatory
mechanisms that increase DA levels would promote maintaining locomotor function until
striatal TH loss was too severe.

Increased DA turnover was proposed to be an indicator of enhanced DA signaling
to compensate for TH protein loss during nigrostriatal neuron loss [19,52,73,172–175].
However, Bezard and colleagues definitively showed in an elegant timeline study using
MPTP-lesioned primates in which increased DA turnover occurred only after bradykinesia
manifested; there was no evidence of increased DA turnover during the asymptomatic
period [19]. Also, 80% TH and DA loss in striatum appeared to be necessary for the onset
of bradykinesia; even 60% TH loss in striatum was observed during the asymptomatic
period. Fortunately, this study also assessed TH loss in the SN and found that, at the onset
of motor impairment, there was ~40% loss in the SN; far less than 80% loss seen at the axon
terminals. This loss in the SN may be related to regionally selective loss of nigral neurons,
as shown in human aging and PD [159,161]. Also, this disparity in TH loss between SN and
striatum has strong translational relevance because this disparity consistently manifests
in human PD [20,66–68]. Nonetheless, the lack of evidence to support a role for increased
DA turnover in striatum to offset the onset of locomotor impairment gave rise to the
consideration that non-DA related mechanisms to be responsible for delaying the onset of
motor impairment [52].

Recent work from our group indicates that the compensatory mechanism to mitigate
the severity of hypokinesia and delay its onset against progressive nigrostriatal neuron
loss is related to increased DA signaling in the SN, and not striatum [22]. This mechanism
involves an increase in ser31 TH phosphorylation, specifically in the SN, that begins early
after nigrostriatal loss induction by 6-hydroxydopamine (6-OHDA) and is maintained at
least until neuronal loss reaches 80% in the SN. As a result of this increase in ser31 TH
phosphorylation, there is less loss of DA as compared to TH throughout neuronal loss [22].
This differential in DA and TH loss also manifests in the SN, contralateral to the lesioned
side, as TH loss begins there at a later time after lesion induction. When correlating the
loss of DA in SN and striatum against the severity of motor decline in the open field, only
DA loss in the SN has significant correlation [22]. In striatum, we found no difference in
TH and DA loss, as both exceeded 90% early after lesion induction, commensurate with
decreased ser31 TH phosphorylation and increased DA turnover. In contrast, DA turnover
decreased in the SN as neuron loss progressed. Our findings of diminished lesion impact
on DA tissue content in the SN are also reflected in the extracellular realm, wherein baseline
DA levels are unaffected by 6-OHDA lesions despite severe neuronal loss [176]. Together,
these results frame a new perspective on the mechanism by which motor impairment is
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delayed by increased DA biosynthesis in the SN, despite progressive nigrostriatal neuron
loss that occurs in PD (Figure 2). Moreover, these results are disease-relevant and further
support a role for nigral DA signaling in locomotor function.
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Figure 2. Disparate molecular changes in dopamine (DA) signaling components in substantia nigra
(SN) and striatum in response to neuronal loss and relation to decreased locomotor function. Induction
of nigrostriatal neuron loss by 6-OHDA produces a progressive loss of neurons over 4 weeks. Loss
of tyrosine hydroxylase (TH) protein in SN is less than the magnitude of loss in the striatum at the
earlier time points post-lesion, and tissue DA loss is substantially and consistently less in the SN
than in striatum. In response to TH loss, there is a site-specific increase in TH phosphorylation
at ser31 (ser31 pTH), not ser40 (ser40 pTH), restricted to the SN; whereas in striatum, there is a
progressive decrease in ser31 pTH. This increase in ser31 pTH in the SN offsets the progressive loss
of TH therein to keep DA loss at a lower level than TH. As DA tissue loss increases in the SN, the DA
D1 receptor (D1) increases expression at the latter stages of neuron loss. The increases in both ser31
TH phosphorylation and D1 in the SN are compensatory mechanisms to delay the onset of locomotor
impairment and alleviate its severity.

9. Autonomy of Post-Synaptic DA Signaling in SN and Impact on Motor Function

The activation of the DA D1 receptor, expressed on striatonigral neurons, in the
SN mediates GABA release [30,42,47]. This release of GABA decreases the normally
inhibitory output of the basal ganglia, thus reducing the inhibitory output that facilitates
the generation of movement. Both aging and PD can affect D1 receptor expression, which
posits the function and expression of this receptor as contributing mechanisms in motor
impairment. In the middle to late-middle stage of the lifespan, there is a 30% decrease in
expression of this receptor in the rat SN and a smaller decrease in striatum [149] (Figure 1).
This decrease is associated with an aging-related decrease in locomotor activity. In human
aging, DA D1 receptor expression also decreases proportionally with age [177], which
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may contribute to the onset of mild bradykinesia beginning in late middle age in humans.
Previous work by Trevitt and colleagues modulated D1 receptor function in SN and striatum
to evaluate its relative impact on locomotor function in rats. They showed nigral infusion of
a DA D1 receptor antagonist was highly potent in reducing operant behavior and open-field
activity [44]. Decreased locomotor activity is also produced by DA D1 receptor antagonists
following systemic delivery [105]. Thus, it is plausible that the locomotor-modulating action
of DA D1 receptor drugs, in animal models and humans alike, is driven by modulation of
its post-synaptic functions in the SN [43,103,105–109]. Thus, it is plausible that local release
of GABA in the SN depends largely upon activation of DA D1 receptors following local DA
release in the SN [30,42,47]. With the understanding that GABAergic input to the midbrain
arises from nuclei, in addition to striatum, that influence locomotor activity [178], GABA
release from striatonigral terminals enables the disinhibition of basal ganglia output from
the SN pars reticulata neurons. It is feasible that this sequence of events, that originates
from DA release in the SN, provides the signal to increase locomotor activity (Figure 3).
This work also suggests that the first onset of aging-related decreases in locomotor activity
in the lifespan may be driven by decreased DA D1 receptor expression in the SN [149].
Consistent with this relationship, aging-related deficits in motor function may be alleviated
by increased DA D1 receptor expression, exclusively in the SN [148].

In PD, the DA D1 receptor has recently been identified as a novel target to treat motor
impairment in the later stages of the disease [108–110]. The status of DA D1 receptor
expression or function is far less known than the DA D2 receptor [100,179]. Our work in
the 6-OHDA model indicates that the DA D1 receptor is upregulated, specifically in the
SN, as nigrostriatal neuron and DA loss increase therein [22]. In contrast to the changes in
SN, D1 receptor expression is unchanged in striatum, despite the severe loss of DA therein
beginning early after nigrostriatal neuron lesions. We speculate this increase in the SN is
a response by the striatonigral neurons to maintain DA signaling in the SN. Notably, D1
receptor expression does not change in SN in the early stages of neuronal loss, when DA
tissue levels are unaffected. Thus, with D1 receptor upregulation in the latter stages of PD,
it stands to reason that a D1 receptor agonist could substitute for DA, given the reduction
in DA levels at the latter stage of neuron loss.

In summary, multiple lines of evidence from human PD and aging and related animal
models indicate that DA signaling in the SN plays a significant role in locomotor activity
levels. Changes at the biosynthesis, release, reuptake, and post-synaptic signaling steps
in the SN occur autonomously from changes (if any) in the striatum, making a clear case
that augmenting DA signaling in the SN alone could be achieved by several possible
strategies to alleviate locomotor impairment. Moreover, targeting specific steps of DA
neurotransmission that are affected in aging and PD can reveal which deficit (and where in
the nigrostriatal pathway) is responsible for decreasing DA signaling to impair locomotor
activity. As long as there is a means to locally modulate one or more of the components of DA
neurotransmission, such as inhibition of DA biosynthesis in striatum or SN [84,148,149,155]
or augmenting it by infusion of L-DOPA [39,180–182], it is possible to pinpoint the most
critical losses responsible for locomotor impairment.
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Figure 3. Compensatory response in substantia nigra (SN) to maintain dopamine (DA) signaling.
(A) Early stage of nigrostriatal neuron loss. During nigrostriatal neuron loss, tyrosine hydroxylase
(TH) protein loss (downward arrow) in SN precedes neuron loss. To maintain DA tissue levels, TH
phosphorylation at ser31 (Ser31P) increases (beige upward arrow), offsetting DA loss that would
otherwise occur (as seen in striatum) [22]. Adequate tissue DA levels maintain sufficient DA release in
SN pars compacta (SNc) to activate post-synaptic DA D1 receptors (D1), thus enabling GABA release
(red arrows) from striatonigral terminals. This release from striatonigral neurons in SN pars reticulata
(SNr) mitigates tonic GABA release from the SNr efferent on the thalamocortical neurons (TCN)
to promote locomotor activity via glutamate release (green arrows). (B) Late stage of nigrostriatal
neuron loss. Although ser31P is still increased, TH protein progresses further and is sufficient to
diminish DA tissue levels, although DA loss is still less than TH protein loss [22]. The decrease in
DA tissue content diminishes release capacity. In response, the D1 is upregulated (beige upward
arrow) on post-synaptic striatonigral terminals to compensate for decreased synaptic DA levels.
The overall plasticity of increased DA biosynthesis and D1 expression in the SN is hypothesized to
mitigate the severity of bradykinesia/hypokinesia that would be expected from severe TH protein
and nigrostriatal neuron loss.

10. Upstream Regulators of DA Signaling: The Role of GDNF Signaling in SN

There has been a great need to find treatment for PD that is disease modifying, in
addition to a therapeutic approach that can reduce the amount of L-DOPA needed to
maintain mobility without debilitating side effects such as L-DOPA-induced dyskinesia. In
the 1990s, glial-cell-line-derived neurotrophic factor (GDNF) emerged as a top candidate for
treatment of motor impairment in PD based upon encouraging pre-clinical studies in rodent
and non-human primates [56–59]. Notably, GDNF had the rather remarkable attribute of
long-term impact on constituents of DA signaling (such as increased DA tissue content and
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ser31 TH phosphorylation), particularly in the SN, after a single delivery [56–58,61,62,183].
These long-term effects of GDNF were eventually revealed in clinical trials, wherein motor
benefits to patients endured for up to a year following discontinuation [184,185] and motor
benefits were realized while receiving GDNF [55,186]. In pre-clinical rat PD models, this
long-term effect of GDNF may be driven by increased expression of its receptor, GFR-α1,
specifically in the SN [53,54,187]. Notably, GFR-α1 itself alleviates TH and DA loss after
6-OHDA lesions in the SN, but not striatum [187], and can increase TH and DA levels,
selectively in the SN, with increased locomotor activity, in aged rats [54].

More recent clinical trials with GDNF reported failure to reach the primary end
point of improvement in motor scores in GDNF recipients relative to placebo control
groups [60,64], leading the field to reconsider its therapeutic potential for treating the
motor impairments of PD [188]. It should be briefly noted that in the failed trials there
was evidence of increased DA signaling in the putamen [60,64]; an outcome representing
more evidence of the ambiguity between striatal DA signaling and locomotor function.
Retrograde transport of GDNF from striatum to the SN has been a well-documented
physiological event [62,189–191]. Given the impact of GDNF or GFR-α1 in the SN on DA
signaling and strong association with improved locomotor activity, it is likely that the
trophic action of GDNF depends upon there being sufficient GFR-α1 levels in both striatum
(for retrograde transport) and in the SN wherein the stimulating effects on DA signaling
can occur [53,54,58,61,192]. The lack of GFR-α1 has been recently identified as a potential
major challenge, as GFR-α1 expression progressively decreases in DA neurons as neuronal
loss proceeds [63].

11. Conclusions

We have known for nearly 50 years that DA is released from the somatodendritic region
of nigrostriatal neurons in the SN [193,194] and that the five steps of DA neurotransmission
that comprise DA signaling (biosynthesis, storage, release, uptake, and post-synaptic
receptor activation) in striatum are also present, functional, and targetable in the SN.
Moreover, substantial evidence shows that DA signaling is autonomously regulated in
SN from striatum. Thus, it cannot be assumed that changes in DA signaling in one
compartment are also occurring in the other compartment. Therefore, under physiological
conditions, despite that DA release occurs in both striatum and SN during neuron activation,
modulation at specific steps of DA neurotransmission in one of these two regions can alter
the magnitude of DA release capacity or post-synaptic function in only one region. Given
the multiple examples of studies that have shown incongruity between components of
striatal DA signaling and locomotor function, it stands to reason that changes in DA
signaling in the SN in these studies could have been the culpable mechanism.

As a final point of consideration, one aspect of this review that bears mentioning
is that the focus has been on protein expression and the respective functions at the five
steps of neurotransmission. Governing the expression and function of proteins at these
steps is nigrostriatal neuronal integrity. The numbers of DA terminals and somatodendritic
components undoubtedly have significant, and ultimate, influence on synaptic function and,
indeed, motor function [35,66,69,93,135,160,162]. Neuron viability is moderately affected
in aging [160–163] with markers of DA function largely intact [164–166]. However, this
stands in contrast to PD, wherein terminal functions are drastically reduced and eventually
eliminated by 5 years after diagnosis [20]. From the perspective of whether DA terminals or
evidence of DA function in striatum are required for adequate, or at least improved, motor
function, the answer is, perhaps, no [22,55,57,58,60,64,65]. Noting the remarkable plasticity
of DA function during nigrostriatal neuron loss [18,22,24,26,39,85,143,174–176], it should
be clear by now that investigations of the source of motor impairment (or improvements)
should extend well beyond the status of terminal field status and neuronal viability.

Given the autonomy of DA regulation between striatum and SN, changes in nigral DA
signaling alone theoretically could influence locomotor function, and the evidence for this
continues to increase. Indeed, although there is a substantially smaller number of studies of
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interrogating nigral DA signaling, and an even smaller number of studies that also measure
locomotor activity against it, there is congruity with the direction of change in nigral DA
modulation and locomotor activity in a number of studies [44,54,71,78–80,148,149,151,155,156].
These results are also consistent with studies reporting changes in basal ganglia output from
the SN as a result of modulating DA signaling specifically in the SN [30,47,195–198]. These
results are applicable in PD and aging, as the autonomy of DA signaling and components of DA
neurotransmission exist at multiple levels [18–20,22,35,36,66–69,84,149–151,155–158,167,168].
This has direct implications when identifying whether the striatum or SN is the source of
DA signaling deficits that drive locomotor impairment and its severity in both aging and
PD [199].

12. Future Directions

The loss of nigrostriatal neurons in PD has paved the way in our understanding how
DA loss affects motor function and, in general, how changes in DA signaling components
affect locomotor function. However, it is past time to consider that the continuing loss
of DA signaling components remaining in the SN only a few years after diagnosis may
well be driving the worsening locomotor impairment in PD patients. Moreover, molecular
changes in DA signaling in SN may be particularly viable therapeutic targets to delay
motor impairment in the prodromal phase of PD [22,52,200–202]. Therefore, a collective
consensus in recognizing the role of nigral DA signaling in locomotor function will expand
our understanding of the mechanisms, including those upstream of DA (such as GDNF
signaling), that contribute to locomotor impairment and its restoration. For example, with
evidence for DA compensation occurring in the SN to mitigate the severity of locomotor
decline, the inherent mechanisms driving it may represent targets to maintain locomotor
function when TH protein loss is too great. It will also be important to delve further into
understanding what striatal DA signaling is doing for maintaining locomotor function. For
example, tremor at rest is a cardinal sign in PD. However, in aging-related parkinsonism,
the evidence for its presence is scarce; notably, TH and DA loss are nowhere near the
severity that occurs in PD. Therefore, DA deficits in striatum may reach a level of severity
that promotes this involuntary movement only in PD. Finally, it should be a priority to
determine what compartment of the nigrostriatal pathway should be targeted to maximize
the efficacy of potential treatments, such as GDNF, on locomotor recovery. The potential
for increased nigral DA signaling as a mechanism for locomotor recovery should stand as a
priority comparable to the attention that the striatum has garnered.
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