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Abstract: Cancer and ionizing radiation exposure are associated with inflammation. To identify
a set of radiation-specific signatures of inflammation-associated genes in the blood of partially
exposed radiotherapy patients, differential expression of 249 inflammatory genes was analyzed in
blood samples from cancer patients and healthy individuals. The gene expression analysis on a
cohort of 63 cancer patients (endometrial, head and neck, and prostate cancer) before and during
radiotherapy (24 h, 48 h, ~1 week, ~4–8 weeks, and 1 month after the last fraction) identified 31 genes
and 15 up- and 16 down-regulated genes. Transcription variability under normal conditions was
determined using blood drawn on three separate occasions from four healthy donors. No difference
in inflammatory expression between healthy donors and cancer patients could be detected prior to
radiotherapy. Remarkably, repeated sampling of healthy donors revealed an individual endogenous
inflammatory signature. Next, the potential confounding effect of concomitant inflammation was
studied in the blood of seven healthy donors taken before and 24 h after a flu vaccine or ex vivo
LPS (lipopolysaccharide) treatment; flu vaccination was not detected at the transcriptional level and
LPS did not have any effect on the radiation-induced signature identified. Finally, we identified a
radiation-specific signature of 31 genes in the blood of radiotherapy patients that were common for
all cancers, regardless of the immune status of patients. Confirmation via MQRT-PCR was obtained
for BCL6, MYD88, MYC, IL7, CCR4 and CCR7. This study offers the foundation for future research
on biomarkers of radiation exposure, radiation sensitivity, and radiation toxicity for personalized
radiotherapy treatment.

Keywords: inflammation; gene expression; biomarkers; human blood; cancer patients; radiotherapy

1. Introduction

The transcriptional response to ionising radiation (IR) exposure has been widely in-
vestigated, mainly in blood, and the gene expression assay has become an established and
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sensitive technique for identifying individuals exposed to IR. Investigation into the tran-
scriptional response to ionising radiation has largely focused on the DNA damage response
and downstream pathways activated by the transcription factor p53 [1,2]. The inflammation
process is crucial for radiation response. RT-elicited inflammation is a decisive factor in a
patient’s response to therapy and has both immunosuppressive and immunostimulatory
effects [3]. It depends on the radiation therapy (RT) dose, the number of fractions, and
the factors which affect immune status (gender, age, accompanying diseases, individual
radiosensitivity of normal tissues, and radioresistance of tumour) [4].

Until recently, studies on the identification of inflammatory biomarkers of radiation
exposure have been limited and focused on in vitro transcriptional changes [5,6]. A pilot
study of in vivo irradiated blood from 20 cancer patients with a range of cancer types
has previously identified inflammatory genes of interest [7]. Another study on 23 cancer
patients identified eight immune and inflammation-related plasma proteins whose secre-
tion levels were altered before and after radiotherapy [8]. Results from small cohorts are
linked to greater statistical uncertainty, which could lead to false negatives, consequently
missing important statistically significant differences. Patients’ samples are very valuable
in research but are also extremely difficult to obtain; therefore, it is not always possible to
recruit the desired number of patients in such studies, leading to a weaker statistical power
of the results. In this study, we gathered existing and newly generated data, including
data from 63 radiotherapy patients to overcome this issue. We focused on investigating the
inflammatory response in a larger cohort of healthy donors and cancer patients (Figure 1)
by building on a study we previously performed [9] and on the whole blood from 10 en-
dometrial and 8 head and neck cancer patients to obtain an inflammation-associated gene
expression signature specific to ionizing radiation exposure and independent of cancer
type. Moreover, we tested the reproducibility of the signature by monitoring the same
healthy donors over three consecutive weeks and addressed potential confounding effects
to demonstrate the specificity of this signature.
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Figure 1. The study design of the 63 cancer patients and 23 healthy donors involved in this study and
the experimental pathway of nCounter analysis, bioinformatic analysis, and MQRT-PCR validation.

2. Results

Transcriptional analysis of inflammatory genes showed variability in blood taken
from healthy donors at three different intervals. This intra-variability, however, was less
than the inter-variability between donors, as illustrated by the histogram clustering in
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Figure 2A. The unsupervised clustering showed that each individual is identifiable via an
inflammatory signature.
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Figure 2. Bioinformatical analysis of health donors’ gene expression profiles. (A) Normal variability of
inflammatory genes. nCounter expression analysis of human inflammation genes in 4 healthy human
blood donors (H20, H61, H64, and H65) repeated 3 times at 3-week intervals. Unsupervised clustering
and Spearman correlation as the distance method were performed on the z-score normalized data, and
a complete hierarchical clustering method was used. The negative row z-score (below −2) is shown
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in dark blue, and the positive row z-score (above +2) is shown in dark red. (B) Scatterplot showing
a comparison of expression changes in the blood from 7 healthy donors treated ex vivo with LPS
(y-axis) and in the blood from 7 healthy donors who received a flu vaccine (x-axis). The thresholds
obtained in the analysis of the Gaussian mixture model are shown in the figure with a dashed line.
Up-regulated genes are shown in light grey, with similar responses shown in dark grey. N represents
the number of genes in each category, and the percentage of all genes in a given group is provided in
parentheses. The uniform dispersion of points suggests no significant difference between expressions
from different samples. (C) UMAP analysis of nCounter inflammatory expression in human healthy
donor controls vs cancer patient samples taken before radiotherapy. The preexposure samples of each
cancer type (10 endometrium, 31 head and neck, and 22 prostate) and control samples from 12 healthy
donors were used. For the collected nCounter data, a batch effect correction was performed. The
first 54 PCA components, which explained about 99% of the observed variance, were selected for
UMAP-based dimensionality reduction. Each point represents a different sample.

Then, we addressed the potentially confounding effect of concomitant infection in vivo
by analysing blood samples from healthy donors before and after flu vaccination or in vitro
before and after exposure to LPS on the transcriptional expression of the inflammation
genes analysed. Signal log ratio analysis identified 27 genes (CCL2, CXCL2, CXCL3, IL6,
MAFF, IL1A, IL12B, CSF3, CXCL9, CCL3, C3, CCL19, CCL20, IL1B, C3AR1, RIPK2, PTGS2,
TNF, IRF1, CD40, IFNG, HLA-DRA, OAS2, CCL4, CCL22, CFB, and CXCL10) that were
significantly up-regulated after exposure to LPS in comparison to normal expression, while
no genes were significantly differentially expressed after flu jabs (Figure 2B). Importantly, a
UMAP-based visualisation of the healthy donor samples in comparison to cancer patient
samples taken before radiotherapy was performed. This analysis reported no difference in
inflammatory expression between the two groups (Figure 2C).

Bioinformatic analysis of cancer patients’ nCounter data was performed by combining
previous historical data of endometrial and head and neck cancer patients with addi-
tional head and neck and IMRT prostate cancer patient samples, and a new bioinformatic
approach was applied. Different treatment times were combined into two groups: preexpo-
sure and 24 h after the last fraction (~5 weeks). A total of 31 genes (Table 1) common across
all cancer types (15 up-regulated and 16 down-regulated genes) were significantly modified.

Table 1. Combined analysis on nCounter data from endometrial, head and neck, and prostate patients
across 2 timepoints (24 h and 5 weeks after 1st fraction) for all cancers identifying 15 significantly up-
and 16 down-regulated genes of interest.

Common across All Cancers
Up-Regulated Down-Regulated

15 16

Genes

ALOX5 NLRP3 CCR4 LTA
BCL6 NOD2 CCR7 LTB

CEBPB TLR1 CD40 MAPKA
CFD TLR4 CD40LG MAPKAPK5

CXCL5 TLR5 ELK1 MYC
LIMK1 TLR8 HMGN1 PRKCA

MAPK14 TYROBP IL23A TCF4
MYD88 IL7 TRADD

IL8

Confirmation via MQRT-PCR was obtained on a limited number of several up- and
downregulated genes (Figure 3) as well as for ARG1 and BCL2L1 genes, which were
identified in a previous study [9]. Significance in gene expression was calculated in compar-
ison to preexposure samples. BCL6 (Figure 3A), MYD88 (Figure 3B), ARG1 (Figure S1A),
and BCL2L1 (Figure S1A) were significantly up-regulated in comparison to preexposure
samples; significance was mainly observed at the last timepoint during treatment (at
~4–8 weeks after the 1st fraction) or 1 month after the end of treatment. MYC (Figure 3C),
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IL7 (Figure 3D), CCR4 (Figure 3E), CCR7 (Figure 3F), CD40 (Figure S2A), ELK1 (Figure S2B),
and PRKCA (Figure S2C) were significantly downregulated in comparison to preexposure
samples. CD40 and ELK1 only had significant early expression after 24 h and 48 h while
CCR4, CCR7, IL7, and PRKCA had significant expression at later time points: ~4–8 weeks
after the 1st fraction or 1 month after the end of treatment.

Int. J. Mol. Sci. 2024, 24, x FOR PEER REVIEW 5 of 15 
 

 

Confirmation via MQRT-PCR was obtained on a limited number of several up- and 

downregulated genes (Figure 3) as well as for ARG1 and BCL2L1 genes, which were iden-

tified in a previous study [9]. Significance in gene expression was calculated in compari-

son to preexposure samples. BCL6 (Figure 3A), MYD88 (Figure 3B), ARG1 (Figure S1A), 

and BCL2L1 (Figure S1A) were significantly up-regulated in comparison to preexposure 

samples; significance was mainly observed at the last timepoint during treatment (at ~4–

8 weeks after the 1st fraction) or 1 month after the end of treatment. MYC (Figure 3C), IL7 

(Figure 3D), CCR4 (Figure 3E), CCR7 (Figure 3F), CD40 (Figure S2A), ELK1 (Figure S2B), 

and PRKCA (Figure S2C) were significantly downregulated in comparison to preexposure 

samples. CD40 and ELK1 only had significant early expression after 24 h and 48 h while 

CCR4, CCR7, IL7, and PRKCA had significant expression at later time points: ~4–8 weeks 

after the 1st fraction or 1 month after the end of treatment.  

 

Figure 3. MQRT-PCR expression of the genes (A) BCL6, (B) MYD88, (C) MYC, (D) IL7, (E) CCR4, 

and (F) CCR7 in the whole blood of endometrial cancer patients (blue), head and neck cancer pa-

tients (orange), and prostate cancer patients (red) preexposure, 24 h after the 1st fraction and 48 h 

after the 1st fraction, 5th/6th fraction (~1 week), and last fraction (4–8 weeks) and 1 month after the 

end of the treatment. The box plot shows expression analysed in 10 endometrial cancer patients, 31 

head and neck cancer patients, and 11 prostate cancer patients treated with IMRT. Expression levels 

Figure 3. MQRT-PCR expression of the genes (A) BCL6, (B) MYD88, (C) MYC, (D) IL7, (E) CCR4, and
(F) CCR7 in the whole blood of endometrial cancer patients (blue), head and neck cancer patients
(orange), and prostate cancer patients (red) preexposure, 24 h after the 1st fraction and 48 h after the
1st fraction, 5th/6th fraction (~1 week), and last fraction (4–8 weeks) and 1 month after the end of
the treatment. The box plot shows expression analysed in 10 endometrial cancer patients, 31 head
and neck cancer patients, and 11 prostate cancer patients treated with IMRT. Expression levels are
normalised to HPRT. Statistical analysis was performed on log-transformed data. * Significantly
different (t-test, p < 0.05).
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Significance in gene expression was also calculated in the prostate subgroups, IMRT
and CK, with a large difference observed in dose (IMRT 2 Gy v CyberKnife 7.25 Gy) and
dose fractions (IMRT 39 fractions v CyberKnife 5 fractions) between groups. A significant
difference was observed after IMRT treatment for genes BCL6 (Figure 4A), IL7 (Figure 4D),
CCR4 (Figure 4E), CCR7 (Figure 4F), ARG1 (Figure S3A), and BCL2L1 (Figure S3B), while
there was no significant difference in gene expression after CK treatment for these genes.
In contrast, only MYD88 (Figure 4B) and CD40 (Figure S4A) had a significant up- and
down-regulation, respectively, in CyberKnife patient samples and no significant change in
expression in IMRT patient samples. ELK1 had no change in expression in both groups
(Figure S4B). Both patient groups had significant downregulation in expression in CCR7
(Figure 4F), MYC (Figure 4C), and PRKCA (Figure S4C) during and after treatment.
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Figure 4. MQRT-PCR expression of the genes (A) BCL6, (B) MYD88, (C) MYC, (D) IL7, (E) CCR4,
and (F) CCR7 in the whole blood of prostate cancer patients undergoing IMRT (pink) and CK (red)
radiotherapy treatment taken preexposure, 24 h after the 1st fraction, 5th/6th fraction (~1 week),
and last fraction (4–8 weeks) and 1 month after the end of treatment. The box plot shows expression
analysed in 11 IMRT and 11 CK prostate cancer patients. Expression levels are normalised to HPRT.
Statistical analysis was performed on log-transformed data. * Significantly different (p < 0.05).
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3. Discussion

In the context of radiotherapy treatment, we identified 15 up-regulated and 16 down-
regulated commonly altered genes, regardless of cancer type, some of which were con-
firmed via MQRT-PCR (BCL6, MYD88, CCR4, CCR7, CD40, ELK1, IL7, MYC, and PRKCA).
These genes are specific to radiation and were not activated in response to LPS or after a
flu vaccination.

BCL6, a multifunctional member of the BTB-zinc finger protein family, regulates
the cell cycle and apoptosis, development, proliferation, and differentiation of B- and
T-lymphocytes and inflammatory signals in macrophages [10,11]. Li et al. found that deple-
tion of BCL6 in Tregs enhances antitumor response and delays tumour progression [12].
This gene was previously identified as radiation-responsive in our previous study in blood
from radiotherapy patients at the end of their treatment, after receiving numerous fractions
reaching cumulative doses of 37.38–57 Gy [7]. A similar response has been observed in this
extended study for all the different cancer types.

As exhibited in different cancer model systems, MYD88 directs innate immune sig-
nalling through the TLR members (except TLR3) and the IL-1 family and can function
doubly in pro- and anti-tumorigenic responses [13]. The Toll-like receptor (TLR) family
of genes, including TLR1, TLR4, TLR5, and TLR8, plays an important role in the human
response to radiation exposure. Specifically, TLR1 and TLR8 are up-regulated in response
to radiation exposure, leading to the production of proinflammatory cytokines, while TLR4
and TLR5 may play radioprotective roles [14–16].

Two genes, CD40 and ELK1, had significant downregulation at the early time points
of 24 h and 48 h. CD40 belongs to the TNF receptor family. It is expressed mostly on
APCs, especially on dendritic cells and is essential for their proliferation and activation.
The ligand for CD40 is CD40 ligand (CD40LG), which is expressed on CD4 T cells, CD8
T cells, B cells, and NK cells; therefore, CD40 mediates the antigen-specific activation of
naive lymphocytes. The CD40/CD40L axis produces the upregulation of co-stimulatory
molecules and the release of proinflammatory cytokines that leads to enhanced antitumor
activity [17]. CD40LG was also identified to be downregulated by radiation in our pre-
liminary studies [7]. The downregulation was observed at the end of the radiotherapy
treatment, after 37.38–57 Gy cumulative doses. ELK1 is a known regulator of the expression
of transcription factors engaged in cell growth, migration, differentiation, and survival.
ERK/ELK1 signalling pathway is involved in immune cell cycle progression, while T-
and B-lymphocytes and natural killer and plasma cells, principal players in anticancer
immunity, strongly require ELK1 for its differentiation programs [18–21]. The significant
downregulation of CD40 and ELK1 after 24 h and 48 h identifies two potential genes of
interest as early biomarkers of treatment progress.

Interestingly, most genes (CCR4, CCR7, IL7, and PRKCA) had significant downreg-
ulation at the later time point of 4–8 weeks. CCR4 and CCR7 are the G protein-coupled
receptor family’s coding genes that recognise CC chemokines. CCR4 is expressed on dif-
ferent immune cells, especially T-helper type 2 cells and T-regs [22]. Tumour cells, as well
as tumour-associated macrophages and dendritic cells, produce high amounts of CCR4
ligands (CCL17 and CCL22) in breast, ovarian, and lung cancer patients [23,24]. High
CCR4 expression in the tumour or its microenvironment is a poor prognostic indicator in
lung adenocarcinoma, renal cell carcinoma, gastric, breast, and oral tongue cancer [25–29].
Meanwhile, other studies indicated that head and neck cancer patients with high CCR4 ex-
pression had a better prognosis [30,31]. Zhong et al. suggested that some of the chemokines,
including CCR4, may be potential therapeutic targets for radiation-induced lung toxic-
ity [32]. It has been suggested that CCR7 plays binary roles in cancer; the overexpression of
the CCR7/CCL21 axis is associated with lymph node metastasis of various cancer types,
and at the same time, CCR7 tends to potentiate immune cell movement to tumours [33,34].

Biomarkers of immune response to radiation have been explored, including circulating
cytokines. Christensen et al. showed that changes in specific cytokines’ levels over baseline
were associated with increased gastrointestinal and genitourinary toxicity in patients under-
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going intensity-modulated radiotherapy (IMRT) for prostate cancer [35]. IL7 is a cytokine
involved in T- and B-cell development. Some studies have suggested that an inadequate
supply of IL-7 in the secondary lymphoid organs might be insufficient to support the
survival of activated T-cells, thereby aggravating cancer immunosuppression [36,37]. Also,
it is necessary to expand our understanding of the grade of neoplastic progression resulting
in differing cytokine expression.

MYC is the only gene that demonstrated significant downregulation at every time
point studied. MYC is required for the activation and cell cycle initiation of T- and B-
lymphocytes and participates in several facets of the inflammatory process as well [38,39].
Activated T-lymphocytes have a constant high rate of MYC degradation; hence, when
T-cell protein synthesis and amino acid uptake are restricted, MYC protein expression
declines [40]. This process may happen under radiation-provoked cellular stress–DNA
damage. Given that protein synthesis is one of the most energy-consuming processes in the
cell, the transitory inhibition of general protein synthesis is a cellular response to stress [41].
MYC has also shown clear responsiveness to radiation in our previous studies in different
cancer-type patients [7,9].

PRKCA is predominantly expressed in T-cells, determining the magnitude of the T-cell
proliferative response upon T-cell activation. It has a broad spectrum of functions in many
tissues, such as physiological cell processes, tumorigenesis, and inflammation. It appears
to be the significant PRKC isoform involved in regulating IL-2 receptor expression [42]. A
specific role of PRKCA in radiotherapy-elicited toxicities was highlighted by the study by
Weigel et al., where protein and mRNA expression data indicated increased expression of
PRKCA in fibroblasts of breast cancer patients developing radiation fibrosis [43].

Lastly, we showed that prostate cancer patients treated with IMRT had significant
changes in the expression of more inflammatory genes in comparison to patients treated
with CyberKnife. This could be because CyberKnife, which uses an approach called stereo-
tactic body radiation therapy (SBRT), allows for more precise targeting of tumours while
minimising damage to surrounding tissue, while there is a larger treatment site and in-
creased dose fractions associated with IMRT. A retrospective study by Yu J. et al. found that
SBRT was associated with slightly higher incidences of gastrointestinal toxicity 6, 12, and
24 months after post-radiotherapy initiation, in comparison to IMRT [44]. Another study
by Pan et al., however, found that the toxicity profiles of SBRT and IMRT were similar [45].
Further research is needed to fully evaluate the long-term effects of both treatments.

Inflammation can be triggered by many diseases, including bacterial or viral infections,
autoimmune conditions, and cancers, leading to a “noisy” background transcriptional
expression of inflammation-related genes. As this could affect the specific response to IR
during radiotherapy treatment, we addressed this potential question by studying intra-
individual fluctuations of expression; remarkably, unsupervised clustering of the four
healthy donors studied suggests that each individual is different enough to be identifiable
via an inflammatory signature, in a presumable “inflammation-free” context. We also
showed that flu jabs do not trigger an inflammation strong enough to be detected, at least
with the tools we used. On the contrary, an LPS exposure ex vivo, mimicking septicaemia,
can trigger an inflammation reaction detected in this study, activating 27 genes. Although
one of the 27 genes, CD40, was common in gene signatures of the LPS and radiotherapy
patient samples, it showed opposite responses, which were an upregulation during LPS
treatment and downregulation after radiation exposure. Therefore, the confounding effects
tested in this study demonstrate that we have identified a radiation-specific signature of
31 genes.

Our study bears some limitations. The health donor control samples used for compari-
son to cancer patients were not similar in age due to the difficulties in obtaining healthy
elderly male blood donors. Care was taken to ensure the healthy controls were recruited
from similar geographic populations with similar male-to-female ratios. Also, there were
no toxicity data for these patient samples to analyse in relation to gene expression. To
obtain a sufficient number of samples for each toxicity grade (grades 1–5), a vastly larger
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study with long-term banking of samples and follow-up for toxicity symptoms would be
required. Linking these data to the toxicity in radiotherapy patients would be extremely
valuable, but this requires a large-scale study to validate these genes.

In summary, we have identified a panel of 31 inflammation-associated genes in ra-
diotherapy patients. Although their usefulness remains to be confirmed, their potential
to inform in ‘real-time’ for treatment monitoring, normal tissue toxicity, and morbidity
prevention is promising.

4. Materials and Methods
4.1. Bioethics

The collection of blood samples from healthy donors was carried out with informed
consent in accordance with the ethical approval of the West Midlands-Solihull Research
Ethics Committee (REC 14/WM/1182) at CRCE, Oxfordshire. The collection of blood sam-
ples from endometrial and head and neck cancer patients was performed at the University
Hospital in Hradec Kralove (Czech Republic). This study was carried out in accordance with
the recommendations of The Code of Ethics of the World Medical Association-Declaration
of Helsinki (approval no: 201401-S15P) with written informed consent from all subjects.
The protocol was approved by the Ethical Committee of the University Hospital in Hradec
Kralove (Czech Republic). The collection of blood samples from prostate and head and
neck cancer patients was carried out in accordance with the Bioethical Committee in
Maria Sklodowska-Curie Institute, Warszaw, with approval number 27/2015 obtained on
18 August 2015. All subjects provided written informed consent in accordance with the
Declaration of Helsinki.

4.2. Blood Collection—Healthy Donors

Blood samples were collected from three groups of healthy individuals for different
purposes: 4 healthy donors (3 females and 1 male, aged 25–54, with codes H20, H61, H64,
and H65) for variability studies, 7 healthy donors (5 females and 1 male, 35 to >54 years
old) for studies on confounding effects by infection by LPS and flu vaccine exposure, and
12 normal healthy donors (5 female, 7 male, aged 25–62) as control samples for cancer
patient data. For variability, LPS, and flu vaccine studies, blood was collected into EDTA
tubes from UKHSA, CRCE, Oxfordshire. For variability studies, blood was collected on
3 separate occasions, each 3 weeks apart, and the blood was mixed with 1 mL of RNAlater
following an incubation time of 24 h at 37 ◦C and stored at −80 ◦C until further processing.

Blood samples from 12 normal healthy individuals, used as controls for cancer patient
samples, were also collected in PAXGene RNA blood collection tubes from the University
Hospital in Hradec Kralove (Czech Republic).

4.3. Blood Collection—Cancer Patients

Blood samples from cancer patients were taken before treatment and at different time
points during treatment into PAXGene blood collection tubes. Details of radiotherapy
dose and patient details are provided in Table 2. The radiotherapy treatment timeline and
blood collection points are collected in Figure 5. This study involved a total of 63 cancer
patients with 3 different cancer types, namely, endometrial cancer, head and neck cancer,
and prostate cancer. Blood samples from 10 endometrial cancer patients (aged 57–79) and
8 head and neck cancer patients (1 female and 7 males, aged 51–81) were collected from the
University Hospital in Hradec Kralove (Czech Republic). Blood samples from 23 head and
neck cancer patients were collected from the Maria Sklodowska-Curie Institute–Oncology
Center in Poland (14 men and 9 women, aged 43–79). Blood samples from 22 prostate
cancer patients were collected from the Maria Sklodowska-Curie Institute–Oncology Center
in Poland. Eleven prostate cancer (aged 62–83) patients were treated with photon intensity-
modulated radiation therapy (IMRT) (volumetric arc therapy—VMAT, energy: 6 MV, and
dose rate: 3 Gy/min) with a daily fraction of 2 Gy at a frequency of five times a week,
according to the conventional irradiation scheme. Blood samples from a further 11 prostate
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cancer patients (aged 52–75) were collected from the Maria Sklodowska-Curie Institute–
Oncology Center in Poland. These eleven prostate cancer patients were treated with SABR
using a CyberKnife (CK) (Accuray Inc., Chesapeake Terrace Sunnyvale, CA, USA) treatment
unit according to the scheme 5 fractions of 7.25 Gy every second day (energy of 6 MV and
dose rate of 9 Gy/min). Due to the different schemes, these CK prostate cancer patients
were not included in the bioinformatic combined analysis for gene identification.

Table 2. Patient radiotherapy dose and fractions.

Cancer Type No. of Patients Total Dose (Gy) Dose per
Fraction (Gy)

Number of
Fractions

Endometrium 10 45 1.8 25

Head and neck 8 * 50–70 2–2.1 25–33

Head and neck 23 51–64.8 1.8–3 17–36

Prostate IMRT 11 78 2 39

Prostate CK 11 36.25 7.25 5
* 3 patients with 3 time point measurements.
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4.4. Blood Stimulated with LPS or Flu Vaccine

Peripheral blood from 7 healthy donors (5 females and 1 male, 35 to >54 years old) was
collected in EDTA-coated tubes and incubated with LPS (500 ng/mL). LPS was prepared in
50% ethanol (stock solution 1 mg/mL) and added to 500 µL of blood. The blood samples
were kept at 37 ◦C in an incubator with 5% CO2 for 24 h after exposure to allow cells
to undergo DNA repair. After the incubation time, the blood was mixed with 1 mL of
RNAlater and stored at −80 ◦C until being processed for RNA extraction. Peripheral blood
samples from the same 7 healthy donors and those with LPS exposure, were collected
before and approximately 24 h after they received a flu vaccine.
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4.5. RNA Extraction

RNA was extracted from the healthy donor blood variability samples, flu vaccine
samples, and LPS exposure samples preserved with RNALater using the Ribopure RNA
extraction kit according to the manufacturer’s instructions. RNA was extracted from the
PAXGene tube samples from cancer patients and the PAXGene tube healthy donor controls
using the PAXGene Blood miRNA Kit (Qiagen, PreAnalytiX GmbH, Hilden, Germany)
according to the manufacturer’s protocol.

4.6. nCounter Analysis

Samples were analysed via the nCounter Analysis System (NanoString Technologies®,
Inc., Seattle, WA, USA) according to the guidelines. The samples were run using 100 ng RNA
per sample on the Human Inflammation V2 panel consisting of 249 inflammatory genes.

4.7. Data Analysis

To study the variability of inflammatory gene expression data in healthy donors, i.e.,
H20, H61, H64, and H65, unsupervised agglomerative hierarchical clustering with complete
linkage and the Spearman rank correlation as the distance measure was performed on
nCounter z-score normalised data from the triplicate blood samples collected at intervals
of 3 weeks apart.

The Gaussian Mixture Model (GMM) classification method was used to determine
the impact of ex vivo LPS treatment and flu vaccination on the response of the panel
of inflammatory genes of interest and to examine the similarity of the responses. The
relative nCounter gene expression values, defined as the signal log ratio (SLR), were cal-
culated for every gene, separately for the healthy donor flu vaccine (log2(Flu-vaccinated/
ControlFlu-vaccinated)) and ex vivo LPS treated samples (log2(LPS/ControlLPS)). Then, to
compare the results between flu-vaccinated and LPS conditions, the cross-condition relative
SLRs defined as log2((LPS/ControlLPS) /(Flu-vaccinated/ControlFlu-vaccinated)) was calcu-
lated for each gene. An empirical probability density function of the cross-condition relative
SLR was then represented by the mixture of normal distributions (GMM). The optimal
number of components was selected based on the Bayesian Information Criterion. The
mixture component with the expected value close to zero represented the subset (cluster)
of genes with similar responses independent of the experimental condition (flu-vaccinated
and LPS-treated), while the remaining components modelled the up- and down-regulated
gene subsets. The maximum posterior conditional probability criterion was used to classify
genes as up-regulated, having a similar response, and down-regulated.

Uniform Manifold Approximation and Projection for Dimension Reduction (UMAP)
technique allowed for dimensionality reduction and spatial visualisation of all samples.
UMAP projection was also used to investigate the heterogeneity of gene expression pat-
terns. The preexposure samples of each cancer type (10 endometrium, 31 head and neck,
22 prostate) and 12 control samples from healthy donors were used. The batch effect
was corrected using the ComBat algorithm. The corrected data were then subjected to
Principal Component Analysis (PCA), and 54 PCA components, explaining 99% of the
variance within the data set, were chosen for the next step. Then, the nonlinear UMAP-
based dimensionality reduction algorithm was applied, providing a final two-dimensional
data representation.

For combined analysis of the nCounter data, only the samples measured at two
common time points (preexposure and 24 h after the last fraction (~5 weeks)) were used.
Historical data of 10 endometrial and 8 head and neck cancer patients were integrated with
23 head and neck and 11 IMRT prostate cancer patient samples. Due to the specific protocol
used in the treatment of CyberKnife (high doses and shorter therapy time of ~1 week),
prostate cancer patients treated via CyberKnife were excluded from the overall analysis.

A paired t-test was performed on 249 genes separately for samples from each treatment
protocol. Together with the p-values, Cohen’s d effect size measures were calculated and
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then qualified as the effect of at least medium or low impact [46]. Significantly up- and
down-regulated genes were integrated across all studied cancer types.

4.8. Gene Expression Analysis

Reverse transcriptase reactions were performed using a High Capacity cDNA Reverse
transcription kit, (Applied Biosystems, FosterCity, CA, USA) according to the manufac-
turer’s protocol with 350 ng of total RNA. MQRT-PCR was performed using Rotor-Gene
Q (Qiagen, Hilden, Germany) on 10 endometrial cancer patients, 31 head and neck can-
cer patients, and 22 prostate cancer patients at all time points. All reactions were run in
triplicate using PerfeCTa® MultiPlex qPCR SuperMix (Quanta Biosciences, Inc. Gaithers-
burg, MD, USA) with primer and probe sets for target genes at 300 nM concentration each.
3′6-Carboxyfuorescein (FAM) and Texas Red (Eurogentec Ltd., Fawley, Hampshire, UK)
were used as fluorochrome reporters for the hydrolysis probes analysed in multiplexed
reactions with 2 genes per run, including the control. The cycling parameters were 2 min
at 95 ◦C, followed by 45 cycles of 10 s at 95 ◦C and 60 s at 60 ◦C. Data were collected
and analyzed using the Rotor-Gene Q Series Software. Gene target Ct (cycle threshold)
values were normalized to a Hypoxanthine-Guanine phosphoribosyltransferase 1 (HPRT1)
internal control. Ct values were converted to transcript quantity using standard curves
obtained by serial dilution of PCR-amplified DNA fragments of each gene. The linear
dynamic range of the standard curves covering six orders of magnitude (serial dilution
from 3.2 × 10−4 to 8.2 × 10−10) provided PCR efficiencies between 93% and 103% for each
gene with R2 > 0.998. Relative gene expression levels after irradiation were determined. A
limited number of genes were selected for validation. Primer designs are listed in Table S1.
Statistical analyses for MQRT-PCR were performed as previously described [47]. Descrip-
tive statistics (mean value and standard deviation, with 95% confidence intervals) were
calculated in Minitab 17. Gene expression data were log2 transformed. Shapiro-Wilk test
was applied to check distribution normality, while the homogeneity of variances across
groups was analysed using the Bartlett’s test. Depending on the parametric tests’ assump-
tion violation, the hypothesis on equality of population mean values was verified by the
parametric t-test or ANOVA with Tukey HSD (Honestly Significant Difference) post hoc
tests for normally distributed homogenous features and nonparametric the Mann–Whitney
test or Kruskal–Wallis ANOVA with Conover post hoc test for each time point indepen-
dently. No correction for multiple testing was applied. Results with p-value < 0.05 were
treated as significant.

Supplementary Materials: The following supporting information can be downloaded at: https://www.
mdpi.com/article/10.3390/ijms25021080/s1, Figure S1. MQRT-PCR expression of the up-regulated
genes (A) ARG1 and (B) BCL2L1 in the whole blood of endometrial cancer patients (grey), head
and neck cancer patients (orange), and prostate cancer patients (red) preexposure, 24 h after the 1st
fraction, 48 h after the 1st fraction, 5th/6th fraction (~1 week), and last fraction (4–8 weeks) and
1 month after the end of treatment. MQRT-PCR ARG1 and BCL2L1 expression of endometrial samples,
which was previously analysed via SYBRGreen analysis in Manning et al. 2017 are labelled in grey.
The box plot shows expression analysed in 10 endometrial cancer patients, 31 head and neck cancer
patients, and 11 prostate cancer patients treated with IMRT. Expression levels are normalised to HPRT.
Statistical analysis was performed on log-transformed data. * Significantly different (t-test, p < 0.05).
Figure S2. MQRT-PCR expression of the up-regulated genes (A) CD40, (B) ELK1, and (C) PRKCA
in the whole blood of endometrial cancer patients (blue), head and neck cancer patients (orange),
and prostate cancer patients (red) preexposure, 24 h after the 1st fraction, 48 h after the 1st fraction,
5th/6th fraction (~1 week), and last fraction (4–8 weeks) and 1 month after the end of treatment.
The box plot shows expression analysed in 10 endometrial cancer patients, 31 head and neck cancer
patients, and 11 prostate cancer patients treated with IMRT. Expression levels are normalised to
HPRT. Statistical analysis was performed on log-transformed data. * Significantly different (t-test,
p < 0.05). Figure S3. MQRT-PCR expression of the genes (A) ARG1 and (B) BCL2L1 in the whole
blood of prostate cancer patients undergoing IMRT (pink) and CK (red) radiotherapy treatment taken
preexposure, 24 h after the 1st fraction, 5th/6th fraction (~1 week), and last fraction (4–8 weeks)

https://www.mdpi.com/article/10.3390/ijms25021080/s1
https://www.mdpi.com/article/10.3390/ijms25021080/s1


Int. J. Mol. Sci. 2024, 25, 1080 13 of 15

and 1 month after the end of treatment. The box plot shows expression analysed in 11 IMRT and
11 CK prostate cancer patients. Expression levels are normalised to HPRT. Statistical analysis was
performed on log-transformed data. * Significantly different (t-test, p < 0.05). Figure S4. MQRT-PCR
expression of the genes (A) CD40, (B) ELK1, and (C) PRKCA in the whole blood of prostate cancer
patients undergoing IMRT (pink) and CK (red) radiotherapy treatment taken preexposure, 24 h after
the 1st fraction, 5th/6th fraction (~1 week), and last fraction (4–8 weeks) and 1 month after the end of
treatment. The box plot shows expression analysed in 11 IMRT and 11 CK prostate cancer patients.
Expression levels are normalised to HPRT. Statistical analysis was performed on log-transformed data.
* Significantly different (t-test, p < 0.05). Table S1. Primer and probe sequences for MQRT-PCR assays.
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