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Abstract: Chromatin immunoprecipitation followed by massively parallel DNA sequencing (ChIP-
seq) is a central genome-wide method for in vivo analyses of DNA-protein interactions in various
cellular conditions. Numerous studies have demonstrated the complex contextual organization of
ChIP-seq peak sequences and the presence of binding sites for transcription factors in them. We
assessed the dependence of the ChIP-seq peak score on the presence of different contextual signals in
the peak sequences by analyzing these sequences from several ChIP-seq experiments using our fully
enumerative GPU-based de novo motif discovery method, Argo_CUDA. Analysis revealed sets of
significant IUPAC motifs corresponding to the binding sites of the target and partner transcription
factors. For these ChIP-seq experiments, multiple regression models were constructed, demonstrating
a significant dependence of the peak scores on the presence in the peak sequences of not only highly
significant target motifs but also less significant motifs corresponding to the binding sites of the
partner transcription factors. A significant correlation was shown between the presence of the
target motifs FOXA2 and the partner motifs HNF4G, which found experimental confirmation in the
scientific literature, demonstrating the important contribution of the partner transcription factors to
the binding of the target transcription factor to DNA and, consequently, their important contribution
to the peak score.

Keywords: chromatin immunoprecipitation with massively parallel sequencing; transcription factor
binding sites; IUPAC motifs; co-binding of transcription factors; composite elements; multiple regression

1. Introduction

All functions during the whole life cycle of living beings are controlled at the genetic
level through gene expression. Transcription is the first step in this complex multi-step
process, which determines whether a gene is expressed at a given time. The transcription
level of a particular gene depends on the cell type, tissue and organ and is regulated
depending on the stage of cell differentiation and the stage of organism development [1,2].
Transcription is regulated by a large number of transcriptional regulatory proteins [3,4].
Here, a special role is played by transcription factors (TFs), as they are able to specifically
bind to the regulatory regions of genes, determining the composition of multiprotein
complexes that form the unique transcription machinery of each gene [5,6].

The development of ChIP-seq methods [7–10] using antibodies for transcription fac-
tors has led to the fast-paced accumulation of large bodies of data on the areas where
transcription factor binding sites (TFBSs) localize, and thus substantially increased the
amount of data on gene regulatory regions. The main advantage of any ChIP-seq method
is that it allows the researcher to obtain information on the genome-wide localization of
DNA-TF interaction sites in different tissues [11,12] at different stages of organism de-
velopment [13–15] and under different external influences [16] in in vivo settings. For
any target TF, the genome-wide ChIP-seq analysis normally reveals tens of thousands of
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DNA sequences hundreds of nucleotides in length, corresponding to the genomic DNA
fragments that have bound to the TF.

Raw data coming from ChIP-seq experiments are stored in data repositories such
as GEO [17], ArrayExpress [18], ENA [19] and SRA [20] and are then fed to ChIP-seq
analysis pipelines [7,21,22], utilizing peak callers [23], programs that map sequence reads
onto a reference genome and identify the regions with the highest coverage on it; these
regions being called the “ChIP-seq peaks”. For each ChIP-seq peak, the peak callers
make it possible to evaluate the peak score associated with the significance of this peak.
The raw data accumulated in ChIP-seq data repositories served as the basis for second-
level databases, which contain the results of ChIP-seq experiments classified according to
species of organisms, tissue types and cell lines (CODEX [24], BloodChIP [25], hmChIP [26],
CistromeDB [27], GTRD [28], ChIP-Atlas [29], TFBSbank [30] and Factorbook [31]), they
also generate quality control metrics for the ChIP-seq experiments and have easy-to-use
visual interfaces to analyze the localization of ChIP-seq peaks on genomic sequences.

Unfortunately, the peak sequences obtained from a ChIP-seq experiment are much
longer than the binding site of any TF, which prevents the accurate localization of the
binding site of the target TF and the determination of its size [21,32]. Two classes of
computer methods are used to determine the exact locations of potential transcription
factor binding sites in ChIP-seq peak sequences. One is based on the identification of
ChIP-seq peak sequence regions which are significantly similar to position–weight matrices
(PWMs) that describe the binding sites of known TFs and are stored in databases such
as HOCOMOCO [33], JASPAR [34] and TRANSFAC [35]. To identify potential TFBSs
using position–weight matrices, programs such as HOMER [36], MATCH [37] and MEME
Suite [38] are used. Position–weight matrices do not normally consider interpositional
dependencies [39,40]. It has been shown that considering dinucleotide dependencies [41],
hidden Markov models (HMM) [42,43] and HMM-based TF flexible models (TFFMs) [44]
improves the quality of TFBSs recognition in ChIP-seq peak sequences.

The other approach is based on the de novo detection of significantly overrepresented
contextual signals in the sets of the DNA sequences in question. Once the contextual signals
have been detected, the degree of their similarity with the position–weight matrices of
known TFs stored in the corresponding databases is determined. The use of exhaustive de
novo methods that guarantee finding the global optimum in the big data corresponding
to the most significant DNA motif is time-consuming and expensive. This explains the re-
searchers’ inclination to consider only a small portion of randomly selected sequences [45]
and to use heuristic approaches which can be roughly classified into four types: enu-
merative [46–50], probabilistic [51–56], nature-inspired [57,58] and deep learning [59]. In
ChIP-seq peak sequences, such methods can very efficiently identify highly conserved and
highly represented contextual signals corresponding to the binding sites of the target TF.
At the same time, the efficient identification of more degenerate and poorly represented
contextual signals corresponding to the binding sites of partner transcription factors among
such data remains an unresolved problem.

Despite the existence of a large number of methods for identifying potential TFBSs,
many authors note that the signal of the target factor is not detected in all ChIP-seq
peaks [13,60–62]. This observation could be due to several factors. (1) TFBSs information
stored in the databases is incomplete and the currently available computer-aided methods
for identifying TFBSs in ChIP-seq peak sequences do not perform well enough. (2) The
physical properties and structural features of DNA, such as melting enthalpy of DNA,
DNA bending, groove width, etc., [63–68] are ignored. (3) Most computer-aided methods
used for the identification of TFBSs are blind to the possibility that more than one variant of
the binding site may exist for one transcription factor, which may either be indicative of the
presence of more than one conformation of a DNA-protein complex, which, for example,
is known for the transcription factors from SREBP family [69], or reflect the different
binding preferences of a transcription factor due to post-translational modifications [70–73].
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(4) In some cases, target factors may bind to DNA not directly, but indirectly, through
protein–protein interactions with partner TFs and chromatin proteins [62].

ChIP-seq peak sequences are characterized by a high-level complexity of contextual
organization and may either contain several potential binding sites for target TFs or not
contain them at all. Additionally, they may contain quite a few potential binding sites for
partner TFs. A wealth of experimental data provide evidence that transcription factors reg-
ulate transcription in close cooperation with each other and with other regulatory proteins
(transcriptional co-activators and transcriptional co-repressors) [74,75]. This cooperation
may result in the formation of, for example, the so-called enhanceosome, when several TFs
interacting with a short sequence of a regulatory region form a common surface, which
serves as a signal for recruiting coregulatory proteins [76,77]. In the analysis of regulatory
regions, this situation corresponds to the presence of stable (frequent) combinations of
closely spaced binding sites for transcription factors called the “cis-regulatory modules”
(CRMs) [78] or composite elements (CEs) [79,80]. Examples of pairs of functionally in-
teracting sites were originally presented in the COMPEL database [79,81]. Interactions
between TFs binding to such pairs of sites may give rise to some subtle features of tissue-
and stage-specific gene expression [82,83]. It has been shown that transcription factors can
bind to the regulatory regions of genes in synergy [84,85] or in competition [86]. Some TFs
can facilitate DNA binding to other TFs both by remodeling the nucleosomes and freeing
up the regulatory region of the gene for binding to these TFs (as do pioneer TFs, such as
FOXA2, Sp1, and PU.1 [87–89]), and through direct protein–protein interactions with these
TFs [90,91].

Thus, taking into account pairwise and groupwise interactions between transcrip-
tion factors is necessary for a deeper understanding of gene regulation and for scoring
the observed ChIP-seq peaks. Such potentially interdependent TFs are normally sought
when using computer-aided methods for the identification of significantly co-occurring
contextual motifs corresponding to TFBSs. One group of works addressing this problem
relies on the detection of all possible potential TFBSs in the ChIP-seq peak sequences of a
particular transcription factor using PWMs from the JASPAR [34], HOCOMOCO [33] and
TRANSFAC [35] databases [92–95]. The other group of works relies on the computer-aided
analysis of the whole-genome distribution of ChIP-seq peaks for two TFs from different
experiments on the assessment of non-randomness in the intersection of the peaks of these
TFs, and the subsequent finding of potential TFBSs in the regions of the peak intersections
on the basis of PWMs [96–98]. The main limitation of both approaches is the use of a
limited set of PWMs for the recognition of partner TFBSs in ChIP-seq peaks; in addition, the
second approach requires two independent ChIP-seq experiments under the same cellular
conditions. De novo motif discovery methods make it possible to identify all significant
contextual signals corresponding to the binding sites in ChIP-seq peak sequences, and
target and partner TFs without the need to use PWM databases.

Despite a large number of methods for identifying TFBSs [36–38] and peak callers [23]
for detecting ChIP-seq peaks and evaluating their peak scores, no computer-aided methods
for estimating the dependence of the peak score of ChIP-seq peaks on the presence of
various contextual signals in them are known.

In this work, we have analyzed the contextual organization of ChIP-seq peak sequences
in experiments with 10 TFs belonging to six different superclasses corresponding to the
types of their DNA-binding domains [99]. The analysis was carried out using a modified
version of our original software package Argo_CUDA version 2.0 [100], with which it is
possible to identify sets of significant contextual motifs in the samples of DNA sequences
written in a 15-letter IUPAC code [101]. Analysis of the data obtained from each of the ChIP-
seq experiments revealed the sets of significant IUPAC motifs (target motifs) corresponded
to the binding sites of the target TF studied in each particular experiment and significant
IUPAC motifs corresponding to the binding sites of other partner TFs (partner motifs). The
motifs recognized in all the ChIP-seq experiments formed the basis of multiple regression
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models that demonstrated the significant dependence of peak scores of the ChIP-seq peak
sequences on the presence of IUPAC motifs in these sequences.

2. Results
2.1. Preparing Sets of ChIP-Seq Peak Sequences

In this work, we have analyzed the ChIP-seq peak sequences obtained by different
research groups [11–15,102–106] in experiments conducted to locate the binding regions for
10 transcription factors (Table 1) in genomic DNA from the CistromeDB database [27]. All
ChIP-seq data analyzed in this work were obtained on mouse cells or cell lines. The eighth
column of Table 1 contains information about the cell line or type. ChIP-seq experiments
were carried out on liver cells [11,102,104–106], bone marrow-derived macrophages [12],
embryonic stem cells [13,14], erythroid cells from fetal livers [103] and differentiating
myoblasts C2C12 [15]. For the purpose of analysis, only experiments with the highest
quality scores and containing at least 5000 ChIP-Seq peak sequences were considered. We
considered transcription factors that had PWM models presented in the HOCOMOCO
database [33] and belong to different TF superclasses according to Wingender’s classifica-
tion [99]. Only transcription factors from six TF superclasses met these conditions.

Table 1. Brief description of ChIP-seq data analyzed in this work.

TF 1 ID 2 N 3 NL
4 NC

5 TF Superclass 6 TF Family 7 Cells Type 8 Ref. 9

CEBPA 39908 33,559 5000 28,559 1. Basic domains 1.1.8. CEBP-related Mouse liver cells [11]

CEBPB 72841 13,374 5000 8374 1. Basic domains 1.1.8. CEBP-related Mouse liver cells [102]

NFE2L2 70563 27,065 5000 22,065 1. Basic domains 1.1.1. Jun-related
Mouse bone

marrow-derived
macrophages

[12]

SP1 47755 24,404 5000 19,404 2. Zinc-coordinating
DNA-binding domains

2.3.1. Three-zinc
finger

Krüppel-related

Mouse embryonic
stem cells [13]

GATA1 46419 7534 5000 2534 2. Zinc-coordinating
DNA-binding domains

2.2.1.
C4-GATA-related

Mouse erythroid
cells of fetal liver [103]

FOXA2 3266 25,191 5000 20,191 3. Helix-turn-helix
domains 3.3.1. FOX Mouse liver cells [104]

FOXO1 92461 11,433 5000 6433 3. Helix-turn-helix
domains 3.3.1. FOX Mouse liver cells [105]

NFYA 48618 5975 5000 975 4. Other all-alpha-helical
DNA-binding domains

4.2.1. Heteromeric
CCAAT-binding

Mouse embryonic
stem cells [14]

MEF2D 38097 34,789 5000 29,789 5. Alpha-Helices exposed
by beta-structures

5.1.1. Regulators of
differentiation

Mouse
differentiating

myoblasts C2C12
[15]

STAT5B 5839 18,510 5000 13,510 6. Immunoglobulin fold 6.2.1. STAT Mouse liver cells [106]
1 Name of the transcription factor; 2 ID of ChIP-seq experiment in the CistromeDB database [27]; 3 Total number of
peaks identified in the ChIP-seq experiment and checked for the absence of non-canonical symbols; 4 Number of
ChIP-seq peak DNA sequences included in the training set; 5 Number of ChIP-seq peak DNA sequences included
in the control set; 6 Number and name of the superclass to which the TF belongs according to Wingender’s
classification [99]; 7 Number and name of the family to which the TF belongs according to Wingender’s classifica-
tion [99]; 8 Organism and cell type used in the ChIP-seq experiment; 9 Link to relevant publication.

The transcription factors we have chosen regulate the vital functions of cells, including
growth, division and differentiation. The transcription factors CEBPA and CEBPB from the
C/EBP family are involved in the regulation of the cell cycle and differentiation of various
cell types, including blood, liver and adipose tissue cells [107]. The transcription factor
NFE2L2/NRF2 is activated in response to inflammation and cell damage, and regulates the
expression of antioxidant defense genes [108]. NFE2L2 KO mouse experiments showed
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that this TF controls the development of the small intestine [109]. SP1 is a ubiquitously
expressed transcription factor involved in the control of erythroid cell specification [13].
GATA1 is known to regulate erythropoiesis [110]. FOXA2 is known to be a transcription
factor with pioneering functions and is involved in the regulation of morphogenesis [111].
FOXO1, known to be a regulator of the cell cycle, apoptosis and oxidative stress, is involved
in the regulation of placental and cardiovascular morphogenesis [112,113]. NFYA controls
the expression of multiple genes involved in cell cycle regulation and steps down as a
regulator of the stemness and proliferation of mouse embryonic stem cells (mESCs) and
human hematopoietic stem cells (hHSCs) [114]. MEF2D is involved in the differentiation of
muscle cells [15]. STAT5B is involved in the regulation of the differentiation of osteoblasts,
adipocytes and neuronal cells [115–117].

Based on the results of each ChIP-seq experiment, DNA sequences were obtained in
the [−100;+100] region relative to the maxima of the ChIP-seq peaks. Next, the ChIP-seq
peaks were ranked according to the peak scores (PSs), which reflect the enrichment of the
peaks. Larger numbers of peak scores represent more confident peak calls.

To ensure that the comparative characteristics of IUPAC motifs recognized do not
depend on the size of the training sets, we selected 5000 peak sequences considering the
maximum peak scores for each of the 10 ChIP-seq experiments. From these sequences,
training sets were compiled. The remaining sequences were included in the control sets
for each ChIP-seq experiment. DNA sequences corresponding to ChIP-seq peaks were
extracted from the GRCm38_97 mouse genomic assembly available in the EMBL database
according to CistromeDB annotation [118].

As can be seen from Table 1, the numbers of entries in the control sets of ChIP-seq
peak sequences ranged from 975 for NFYA to 29,789 for MEF2D.

2.2. Identification of Significant Oligonucleotide Motifs in the ChIP-Seq Sequences

In the training data sets created for each of the ChIP-seq experiments and consisting
of 5000 DNA sequences located in the [−100;+100] regions relative to the ChIP-seq peaks,
we de novo identified sets of significant degenerate motifs written in the 15-letter IUPAC
code (A,T,G,C, R = G/A, Y = T/C, M = A/C, K = G/T, W = A /T, S = G/C, B = T/G/C,
V = A/G/C, H = A/T/C, D = A/T/G, N = A/T/G/C). The identification of signifi-
cant IUPAC motifs was carried out using our original de novo motif discovery system
Argo_CUDA [100] with some improvements (see Section 4). Unlike heuristic methods, the
de novo motif discovery GPU-based Argo_CUDA assesses the significance of all possible
IUPAC motifs of a given length, which guarantees that a global optimum will be found. At
the same time, IUPAC motifs were considered to be significant if they were significantly
overrepresented in the set of sequences being analyzed compared to the values of abun-
dance expected to have been observed for random reasons. A detailed description of the
significance criterion (1) and the boundary values used are also provided in the Section 4.

As a result of the analysis, sets of significant IUPAC motifs were identified in each of
the ten training sets corresponding to ChIP-seq experiments with different transcription
factors (see Table 2).

Table 2 shows that although the number of DNA sequences in the sets of the results of
different ChIP-seq experiments was the same (N = 5000), and the same boundary values
were used for the significance criterion (1), the number of motifs identified in each ChIP-seq
experiment and their maximum significance vary strongly. Thus, there was an ~1.8-fold
variation in the number of all motifs identified (at PBonf (n,N) < p0 = 10−2) in these ChIP-seq
experiments. The largest number of significant motifs (270) was found for NFYA, and the
least one (151) was found for CEBPA. An average of 206 IUPAC motifs were identified in all
10 ChIP-seq data sets. The highest maximum significance of the motifs was observed in the
ChIP-seq experiment with FOXA2 (PBonf (n,N) = 10−1462), and the lowest, with FOXO1 (PBonf

(n,N) = 10−447). As can be noted, fewer significant motifs were in the training set FOXA2L
(202) than in the training set FOXO1L (220). On the whole, there was a negative correlation
(r = −0.39) between the number of motifs detected and their maximum significance. For
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each of the sets, we inferred the number of the most significant (PBonf (n,N) < p0 = 10−30)
motifs detected and its ~2.6-fold variation. The maximal number of the most significant
motifs (81) was found for NFYA, and the minimum number (31) was found for for GATA1.
An average of 54 most-significant IUPAC motifs were detected in all 10 ChIP-seq datasets.
As can be noted, the number of the most significant motifs detected in each ChIP-seq
experiment strongly correlates with the total number of all motifs detected in it (r = 0.95)
and negatively correlates with the maximum significance of the motifs detected (r = −0.31).

Table 2. Characteristics of significant IUPAC motifs identified in the ChIP-seq peak DNA sequences
for ten target transcription factors. Information is provided both on all motifs detected in each IUPAC
motif set (p0 = 10−2) and on the most significant of them (p0 = 10−30).

Transcription Factor Maximum Significance of the
Motifs, −log10(PBonf (n,N))

Number of Motifs Identified
at PBonf (n,N) < p0 = 10−2

Number of Motifs Identified
at PBonf (n,N) < p0 = 10−30

CEBPA 1585 151 36
CEBPB 1028 164 39
NFE2L2 880 239 71

SP1 520 243 80
GATA1 932 168 31
FOXA2 1462 202 50
FOXO1 447 220 51
NFYA 1134 270 81

MEF2D 749 219 57
STAT5B 744 181 44

The dependence of the number of IUPAC motifs detected in each of the sequence sets
on the motif significance is shown in Figure 1.
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Figure 1. Dependence of the number of IUPAC motifs (y-axis) detected in ChIP-seq experiments with
10 transcription factors on the significance of these motifs (x-axis).

As can be noted, all the sets of motifs we obtained had a similar distribution pattern:
the region corresponding to the probability of observing them for random reasons PBonf

(n,N) ϵ [10−30; 10−2] has a pronounced peak in the number of the motifs detected, which
further turns into a very long tail.

Table 3 shows examples and characteristics of the most significant (PBonf (n,N) < 10−30)
IUPAC motifs detected in the training set FOXA2L for ChIP-seq peak sequences in the
FOXA2 experiment (ID 3266 in CistromeDB). FOXA2, known as hepatocyte nuclear factor
3-beta (HNF-3B), belongs to the FOXA subfamily. This subfamily, in turn, belongs to the
FOX family, whose proteins contain a relatively conserved DNA binding domain known as
the winged-helix or forkhead domain.
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Table 3. Examples and characteristics of the most significant (PBonf (n,N) < 10−30) IUPAC motifs
detected with Argo_CUDA in the training set of ChIP-seq peak sequences in the experiment involving
the transcription factor FOXA2.

Motif Actual Abundance 1, F Expected Abundance 2, Q Significance 3,
−log10(PBonf (n,N))

TRTWKACH 0.67 0.15 1462
RTTKACHY 0.54 0.20 620
TMAAYANS 0.54 0.26 395

TWKACHYW 0.55 0.27 367
TTKRTYTW 0.30 0.14 172
TKAHYTWK 0.46 0.27 157
TRTTKRTY 0.30 0.15 139

RAAYHAAY 0.31 0.17 128
TTRNGHAA 0.29 0.16 116
KACDTWGN 0.30 0.17 103
TAAHYABW 0.32 0.19 91
ARMYAAGV 0.30 0.18 81
TGYGTACH 0.09 0.03 77
TRTWTGCW 0.15 0.07 69
AAAMAAAR 0.13 0.06 60
ATMMAYAN 0.28 0.18 55
WTRTTTGY 0.19 0.11 54
TCRAYADW 0.19 0.11 52
GTACRCAH 0.06 0.02 46
TTYGCTYW 0.12 0.06 45
TNGCTHWG 0.24 0.16 40
TNACYMWG 0.30 0.22 31

1 F is the proportion of sequences observed to contain at least one IUPAC motif; 2 Q is the proportion of sequences
expected to contain the IUPAC motif for random reasons; 3 −log10(PBonf (n,N)) is the Bonferroni-corrected binomial
probability of observing motifs for random reasons (see Section 4).

For example, the most significant motif TRTWKACH = (T)(A/G)(T)(A/T)(G/T)(A)(C)
(A/T/C) detected in FOXA2L was present in n = 3345 out of N = 5000 sequences (F ~ 0.67),
the expectation to observe it for random reasons was 764 sequences (Q ~ 0.15), and the
Bonferroni-corrected binomial probability of observing it in at least 3345 out of 5000 sequences
for random reasons was PBonf (3345, 5000) = 10−1462.3.

2.3. Multiple Regression Model-Based Assessment of the Dependence of ChIP-Seq Peak Scores on
the Presence of Significant IUPAC Motifs in Them

To assess the relationship between the presence of motifs in a ChIP-seq peak sequence
and the natural logarithm of their peak scores (ln(PS)), multiple regression models were
built (see Section 4) on the training sets for each ChIP-seq experiment using STATISTICA
(StatSoftTM, Tulsa, OK, USA). The regression coefficients obtained were then used to assess
the correlation between the peak scores predicted by the multiple regression models and the
peak scores that were actually observed in the training and control sets for each ChIP-seq
experiment. The results of the analysis and the correlation coefficients obtained for the
training and control sets are shown in Table 4.
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Table 4. The results of assessing the dependence of the natural logarithm of peak scores (ln(PS)) on
the presence of significant (p < 10−2) IUPAC motifs in the DNA sequences of the training and control
sets for ChIP-seq experiments with 10 transcription factors. The multiple regression coefficients for
the training sets were calculated using STATISTICA (StatSoftTM, Tulsa, OK, USA).

Training Set Control Set

Transcription
Factor

Number of
Significant

Motifs

Number of
Sequences in

the Set, N

Correlation
Coefficient, r Max ln(PS)

Number of
Sequences in

the Set, N

Correlation
Coefficient, r Max ln(PS)

CEBPA 151 5000 0.38 5.29 28,559 0.11 3.6
CEBPB 164 5000 0.37 5.53 8374 0.13 2.74
NFE2L2 239 5000 0.33 5.54 22,065 0.01 * 3.17

SP1 243 5000 0.57 5.69 19,404 0.06 3.5
GATA1 168 5000 0.3 5.45 2534 −0.03 * 2.42
FOXA2 202 5000 0.33 5.4 20,191 0.09 3.49
FOXO1 220 5000 0.32 5.68 6433 0.08 2.45
NFYA 270 5000 0.53 5.46 975 0.07 1.88

MEF2D 219 5000 0.36 5.41 29,789 0.07 2.93
STAT5B 181 5000 0.32 5.2 13,510 0.09 3.1

* Non-significant (p > 0.05) correlation coefficients r in assessing the relationship between the predicted and
observed values of peak scores, with the Bonferroni correction [119] taken into account.

2.3.1. Assessment of the Dependence of Peak Scores on the Presence of Significant IUPAC
Motifs in ChIP-Seq Peaks in the Experiment with the Transcription Factor FOXA2

Let us consider in detail the construction of a multiple regression model, using the
analysis of ChIP-seq data from the FOXA2 experiment as an example. For each of the
5000 DNA sequences of the ChIP-seq peaks in the [−100;100] region relative to its maximum
value in the training set FOXA2L, the abundance of each of the 202 motifs previously
detected in this IUPAC motif set was assessed. The abundance of a motif in a sequence
means the number of observations of the given motif along the entire length of the DNA
sequence in both of its strands. The abundance vectors, obtained in this way for all motifs
considered, served as independent variables. The dependent variable was information
about the natural logarithm of the peak scores of the sequences in the training set. To assess
the dependence of peak scores on the abundance of IUPAC motifs in these ChIP-seq peaks,
a multiple regression model was built using STATISTICA (StatSoftTM, Tulsa, OK, USA).
Table 5 shows examples of independent variables with significant (p < 0.05) regression
coefficients and their characteristics. A complete table of the regression coefficients for all
IUPAC motifs considered is provided in “Supplementary Materials”, Table S1.

Table 5. Examples of independent variables with significant (p < 0.05) regression coefficients obtained
when constructing a multiple regression model to assess the dependence of the ln(PS) value in the
ChIP-seq experiment with the transcription factor FOXA2 on the presence of IUPAC motifs in these peaks.
Multiple regression coefficients were calculated using STATISTICA (StatSoftTM, Tulsa, OK, USA).

Independent Variable Regression Coefficient p-Value

TRTWKACH 0.064945 0.000003
RTTKACHY 0.027893 0.039629
TMAAYANS 0.057817 0.0000001

TWKACHYW 0.027454 0.006242
TTRNGHAA 0.024021 0.031108
KACDTWGN 0.028459 0.011256
TAAHYABW −0.027147 0.006997
CCRCCCCB −0.081117 0.000936
CGBTCGVN 0.118823 0.006146
TTSGYWRN 0.018182 0.040455
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Table 5. Cont.

Independent Variable Regression Coefficient p-Value

AACAWGVV 0.032637 0.004226
TRATTRRY 0.037430 0.032885
TTNRTTCW −0.035167 0.016293

GGWGRVHG 0.024464 0.008203
WSCSTRKS 0.018255 0.033926
HCGBTCGV −0.113689 0.043413
GGCRGGAV 0.046776 0.009803
TTKACWRA 0.033587 0.035103
GGHNGAGH 0.021662 0.040533
KRAGCBAN 0.026475 0.009812
ACVCWRMS 0.023771 0.010771
WCCCCVVC 0.04015 0.01686
AMVCAYAG 0.03683 0.00944
CGNMYCGG 0.08602 0.008174
CKTCCGKN 0.0739 0.044389
CCTSGRMK 0.036704 0.015545
TGTGGACW 0.103851 0.000909
GSARHGGR −0.023597 0.040487
WGCGGYSG 0.084659 0.021616
TWWKTAAY −0.053886 0.001453

Of the total number of independent variables considered that corresponded to the
abundance of 202 significant IUPAC motifs, only 30 (15%) had significant (p < 0.05) regres-
sion coefficients.

Figure 2a shows the dependence of the observed value of ln(PS)Obs for the ChIP-
seq peak sequences in the training set FOXA2L on the expected value of their ln(PS)Exp
calculated with the multiple regression model using all 202 independent variables. The
observed ln(PS)Obs and expected ln(PS)Exp values were significantly (p < 10−5) correlated
(r = 0.33).
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Figure 2. Dependence of the observed value of ln(PS)Obs for ChIP-seq peak sequences in the training 
(a) and control (b) FOXA2 sets on the expected value. The expected value of ln(PS)Exp for the peaks 
was predicted using the multiple regression model on the presence of 202 significant IUPAC motifs 
previously detected in the training set FOXA2L. Solid and dashed lines represent the regression line 
and the bounds of its 95% confidence interval as calculated using STATISTICA (StatSoftTM, Tulsa, 
OK, USA). r is the linear correlation coefficient and p is its statistical significance. 
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values, a significant (p < 10−5) correlation was also observed (r = 0.09). 
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in the FOXA2 experiment allows conclusions to be drawn about the peak score values for 
the ChIP-seq peaks of FOXA2, which had not previously been used for detecting 
significant IUPAC motifs or for constructing multiple regression models.  
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Similarly, multiple regression models were built on the training sets of the remaining 
nine transcription factors. These models were used to predict the peak score of ChIP-seq 
peak sequences in the training and control sets (Table 4, “Supplementary Materials”, 
Figure S1). The analysis performed showed that the correlation coefficients r in 
predicting the observed values of peak scores were significant for all ten training sets. 
They ranged from r = 0.3 for the GATA1L set to r = 0.57 for the SP1L set. On average, the 
training sets were characterized by r = 0.38. The r value for each of the training sets 
correlated non-significantly (p > 0.05) with the number of previously detected significant 
IUPAC motifs in it (r = 0.58).  

The vast majority (8 out of 10) of the control sets had significant correlation 
coefficients in predicting the observed values of peak scores. At the same time, it was not 
possible to build a reliable prediction model for the NFE2L2C and GATA1C sets. On 
average, significant correlation coefficients were r = 0.09 and ranged from r = 0.06 for the 
SP1C set to r = 0.13 for the CEBPBC set. A comparison of the correlation coefficients r for 
the training and control sets shows that the values were significantly lower for the latter. 
The analysis performed did not reveal significant (p < 0.05) dependencies of the r values 
for the control sets on the size of these sets or on the r values for the corresponding 
training sets or on the maximum peak score in the sets.  

Figure 2. Dependence of the observed value of ln(PS)Obs for ChIP-seq peak sequences in the training
(a) and control (b) FOXA2 sets on the expected value. The expected value of ln(PS)Exp for the peaks
was predicted using the multiple regression model on the presence of 202 significant IUPAC motifs
previously detected in the training set FOXA2L. Solid and dashed lines represent the regression line
and the bounds of its 95% confidence interval as calculated using STATISTICA (StatSoftTM, Tulsa,
OK, USA). r is the linear correlation coefficient and p is its statistical significance.

This regression model was used to predict the expected ln(PS)Exp values for ChIP-
seq peak sequences in the control set FOXA2C. Figure 2b shows the plotted relationship
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between the observed ln(PS)Obs and the expected ln(PS)Exp values predicted. For these
values, a significant (p < 10−5) correlation was also observed (r = 0.09).

Thus, the information about the presence of ChIP-seq peaks in the DNA sequences in
the FOXA2 experiment allows conclusions to be drawn about the peak score values for the
ChIP-seq peaks of FOXA2, which had not previously been used for detecting significant
IUPAC motifs or for constructing multiple regression models.

2.3.2. Assessment of the Dependence of Peak Scores in Experiments with Nine
Transcription Factors on the Presence of Significant IUPAC Motifs in Their ChIP-Seq Peaks

Similarly, multiple regression models were built on the training sets of the remaining
nine transcription factors. These models were used to predict the peak score of ChIP-
seq peak sequences in the training and control sets (Table 4, “Supplementary Materials”,
Figure S1). The analysis performed showed that the correlation coefficients r in predicting
the observed values of peak scores were significant for all ten training sets. They ranged
from r = 0.3 for the GATA1L set to r = 0.57 for the SP1L set. On average, the training
sets were characterized by r = 0.38. The r value for each of the training sets correlated
non-significantly (p > 0.05) with the number of previously detected significant IUPAC
motifs in it (r = 0.58).

The vast majority (8 out of 10) of the control sets had significant correlation coefficients
in predicting the observed values of peak scores. At the same time, it was not possible
to build a reliable prediction model for the NFE2L2C and GATA1C sets. On average,
significant correlation coefficients were r = 0.09 and ranged from r = 0.06 for the SP1C set to
r = 0.13 for the CEBPBC set. A comparison of the correlation coefficients r for the training
and control sets shows that the values were significantly lower for the latter. The analysis
performed did not reveal significant (p < 0.05) dependencies of the r values for the control
sets on the size of these sets or on the r values for the corresponding training sets or on the
maximum peak score in the sets.

Thus, it can be hypothesized that the DNA sequences in the ChIP-seq peaks with the
highest peak scores are consistent with a model of context organization which is different
to that for ChIP-seq peaks with low peak scores.

3. Discussion
3.1. Assessment of the Contribution of the Most Significant IUPAC Motifs to the Prediction of the
Peak Scores

As noted previously in the analysis of Figure 1, all of the significant IUPAC motifs
detected in each training set were divided into two groups: (1) the largest group, consisting
of IUPAC motifs whose probability of being observed was PBonf (n,N) ϵ [10−30; 10−2] and
(2) the most significant motifs (PBonf (n,N) < 10−30) in the tail of the distribution. It can be
assumed that taking the presence of only the most significant IUPAC motifs in the DNA
sequence of a ChIP-seq peak into account will be sufficient to predict its peak score. In
order to assess how strongly the peak score of a ChIP-seq peak sequence depends on the
presence of only the most significant IUPAC motifs in it, we built a multiple regression
model for predicting the peak score based on IUPAC motifs only from the group with PBonf

(n,N) < 10−30. The model was built for the sets with ChIP-seq peak sequences obtained in
the experiments with FOXA2 and SP1.

3.1.1. Assessment of the Dependence of the Peak Scores in the Experiment with the
Transcription Factor FOXA2 on the Presence of Only the Most Significant IUPAC Motifs in
the Peaks

A multiple regression model was built for the FOXA2L training set with STATISTICA
(StatSoftTM, Tulsa, OK, USA) using only the 50 most significant (PBonf (n,N) < 10−30) IUPAC
motifs detected in it (the motifs are listed in the “Supplementary Data”). Table 6 shows
examples of independent variables with significant (p < 0.05) regression coefficients and
their characteristics. A complete table of the regression coefficients for all IUPAC motifs
considered is provided in the Supplementary Materials, Table S2.
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Table 6. Examples of independent variables with significant (p < 0.05) regression coefficients ob-
tained when constructing a multiple regression model to assess the dependence of the ln(PS) value
in the ChIP-seq experiment with the transcription factor FOXA2 on the abundance of the most
significant (PBonf (n,N) < 10−30) IUPAC motifs. Multiple regression coefficients were calculated using
STATISTICA (StatSoftTM, Tulsa, OK, USA).

Independent Variable Regression Coefficient p-Value

TRTWKACH 0.066537 0.000001
TMAAYANS 0.051297 0.0000001

TWKACHYW 0.021614 0.028887
KACDTWGN 0.025535 0.015482
TAAHYABW −0.033779 0.000422
ARMYAAGV 0.02232 0.020651
CCRCCCCB −0.056879 0.017154
CGSCBBCG 0.040932 0.014188

GCGYKCGN 0.115472 0.009763
CGMRCGCV −0.131678 0.009819
ANCRAHGV 0.018453 0.040805

As can be seen from Table 6, of all the independent variables corresponding to the
abundance of the 50 most significant IUPAC motifs, only 11 (22%) had significant (p < 0.05)
regression coefficients.

With the multiple regression model constructed, peak scores were predicted for the
sequences in the training set FOXA2L and the control set FOXA2C. Figure 3 shows the
dependencies of the observed ln(PS)Obs values for the ChIP-seq peak sequences of the
training set FOXA2L (Figure 3a) and the control set FOXA2C (Figure 3b) on their expected
ln(PS)Exp values calculated with the multiple regression model constructed, using all
50 independent variables.
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Figure 3. Dependence of the observed values of ln(PS)Obs for ChIP-seq peak sequences from (a) the 
training set FOXA2L and (b) the control set FOXA2C on their expected values. The expected value of 
ln(PS)Exp for the ChIP-seq peaks was predicted using a multiple regression model for the presence 
of the most significant (PBonf (n,N) < 10−30) IUPAC motifs previously detected in the training set 
FOXA2L. Solid and dashed lines represent the regression line and the bounds of its 95% confidence 
interval as calculated using STATISTICA (StatSoftTM, Tulsa, OK, USA). r is the linear correlation 
coefficient and p is its statistical significance. 
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predicting the peak score values with the greatest accuracy in all cases.  

3.1.2. Assessment of the Dependence of Peak Scores for Peak Sequences in the  
Experiment with the Transcription Factor SP1 on the Presence of Only the Most  
Significant IUPAC Motifs in Them 

A multiple regression model was built for the training set SP1L with STATISTICA 
(StatSoftTM, Tulsa, OK, USA) using only the 80 most significant (PBonf (n,N) < 10−30) IUPAC 
motifs detected in it (the motifs are listed in the “Supplementary Data”). Table 7 shows 
examples of independent variables with significant (p < 0.05) regression coefficients and 
their characteristics. A complete table of the regression coefficients for all IUPAC motifs 
considered is provided in the Supplementary Materials, Table S3. 

Table 7. Examples of independent variables with significant (p < 0.05) regression coefficients 
obtained when constructing a multiple regression model to assess the dependence of the ln(PS) 
value in the ChIP-seq experiment with the transcription factor SP1 on the abundance of the most 
significant (PBonf (n,N) < 10−30) IUPAC motifs. Multiple regression coefficients were calculated using 
STATISTICA (StatSoftTM, Tulsa, OK, USA). 

Independent Variable Regression Coefficient p-Value 

Figure 3. Dependence of the observed values of ln(PS)Obs for ChIP-seq peak sequences from (a) the
training set FOXA2L and (b) the control set FOXA2C on their expected values. The expected value of
ln(PS)Exp for the ChIP-seq peaks was predicted using a multiple regression model for the presence
of the most significant (PBonf (n,N) < 10−30) IUPAC motifs previously detected in the training set
FOXA2L. Solid and dashed lines represent the regression line and the bounds of its 95% confidence
interval as calculated using STATISTICA (StatSoftTM, Tulsa, OK, USA). r is the linear correlation
coefficient and p is its statistical significance.

For both sets, the observed ln(PS)Obs and expected ln(PS)Exp values were significantly
(p < 10−5) correlated. At the same time, for the training set FOXA2L, the use of only the
most significant (PBonf (n,N) < 10−30) IUPAC motifs led to a lower correlation (r = 0.24)
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than the use of all 202 significant motifs (PBonf (n,N) < 10−2), r = 0.33. On the other hand,
taking into account the localization of only the most significant (PBonf (n,N) < 10−30) IUPAC
motifs for the control set FOXA2C allowed us to obtain a slightly higher correlation (r = 0.1)
than was obtained using all 202 significant IUPAC motifs (r = 0.09). On the whole, we can
conclude that using information about localization in the ChIP-seq sequences of only the
most significant motifs without taking into account other motifs does not allow predicting
the peak score values with the greatest accuracy in all cases.

3.1.2. Assessment of the Dependence of Peak Scores for Peak Sequences in the Experiment
with the Transcription Factor SP1 on the Presence of Only the Most Significant IUPAC
Motifs in Them

A multiple regression model was built for the training set SP1L with STATISTICA
(StatSoftTM, Tulsa, OK, USA) using only the 80 most significant (PBonf (n,N) < 10−30) IUPAC
motifs detected in it (the motifs are listed in the “Supplementary Data”). Table 7 shows
examples of independent variables with significant (p < 0.05) regression coefficients and
their characteristics. A complete table of the regression coefficients for all IUPAC motifs
considered is provided in the Supplementary Materials, Table S3.

Table 7. Examples of independent variables with significant (p < 0.05) regression coefficients obtained
when constructing a multiple regression model to assess the dependence of the ln(PS) value in the
ChIP-seq experiment with the transcription factor SP1 on the abundance of the most significant (PBonf

(n,N) < 10−30) IUPAC motifs. Multiple regression coefficients were calculated using STATISTICA
(StatSoftTM, Tulsa, OK, USA).

Independent Variable Regression Coefficient p-Value

ATTSGHYR 0.06863 0.009941
RRCSAATS −0.074581 0.021391
TGTAGTYY 0.25583 0.0000001
CSAATSRV 0.141722 0.0000001

TACAWNTC −0.103949 0.031145
ANWTGTAG 0.155459 0.000388
TBYBATTG 0.05046 0.00207

GGGANWTG 0.147136 0.0000001
WGGGYGGG 0.042234 0.038834
TKCYGGGW 0.051412 0.00338
CTTCCKGB −0.046938 0.011891

RGGCGGGH 0.050394 0.001738
ATTSGYYY 0.076936 0.00512
TATTGGHY 0.172836 0.000022

GGGHSGWG −0.025723 0.047439
CGGKRCBD 0.029378 0.019498
RABBGACR 0.075836 0.0000001
TTGGTCNR 0.079731 0.000773
TAGTYYWH 0.050178 0.015284
TTTRHWTW −0.037338 0.037889
WKCAAAKN −0.043257 0.004714
GTCAYGTG −0.098339 0.001426
TGANTGAC 0.134395 0.000061
AVHGAYAR −0.043841 0.001981
AYGATTSG 0.242444 0.0000001
GGATTSGH 0.121602 0.000005
ACGSAHGY 0.053019 0.026689
GVATKCTG 0.058493 0.038876
AGATAAGV −0.129716 0.000021
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As can be seen from Table 7, of the 80 independent variables considered, 29 had
significant (p < 0.05) regression coefficients (36%).

With the multiple regression model constructed, peak scores were predicted for the
sequences of the training set SP1L and the control set SP1C. Figure 4 shows the dependen-
cies of the observed ln(PS)Obs values for the ChIP-seq peak sequences of the training set
SP1L (Figure 4a) and the control set SP1C (Figure 4b) on their expected ln(PS)Exp value
calculated with the multiple regression model constructed, using all independent variables
corresponding to the abundances of the 80 most significant IUPAC motifs.
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Figure 4. Dependence of the observed values of ln(PS)Obs for ChIP-seq peak sequences from (a) the 
training set SP1L and (b) the control set SP1C on their expected values. The expected value of 
ln(PS)Exp for the ChIP-seq peaks was predicted using a multiple regression model for the presence 
of the most significant (PBonf (n,N) < 10−30) IUPAC motifs previously detected in the training set SP1L. 
Solid and dashed lines represent the regression line and the bounds of its 95% confidence interval 
as calculated using STATISTICA (StatSoftTM, Tulsa, OK, USA). r is the linear correlation coefficient 
and p is its statistical significance. 
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information about the localization of only the 80 most significant (PBonf (n,N) < 10−30) 
IUPAC motifs also led to a somewhat lower correlation (r = 0.05) than the use of all 243 
significant IUPAC motifs (PBonf (n,N) < 10−2), r = 0.06 (Figure S1, Supplementary Materials, 
Table 4).  

Thus, the analysis of data on the ChIP-seq experiments with two TFs allows us to 
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Figure 5 shows a heat map of the pairwise correlations obtained (built with the 
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Figure 4. Dependence of the observed values of ln(PS)Obs for ChIP-seq peak sequences from
(a) the training set SP1L and (b) the control set SP1C on their expected values. The expected value of
ln(PS)Exp for the ChIP-seq peaks was predicted using a multiple regression model for the presence of
the most significant (PBonf (n,N) < 10−30) IUPAC motifs previously detected in the training set SP1L.
Solid and dashed lines represent the regression line and the bounds of its 95% confidence interval as
calculated using STATISTICA (StatSoftTM, Tulsa, OK, USA). r is the linear correlation coefficient and
p is its statistical significance.

For both sets, the observed ln(PS)Obs and expected ln(PS)Exp values were significantly
(p < 10−5) correlated. In the case of the training set SP1L, the use of only the 80 most
significant (PBonf (n,N) < 10−30) IUPAC motifs led to a somewhat lower correlation (r = 0.53)
than the use of all 243 significant IUPAC motifs (PBonf (n,N) < 10−2), r = 0.57 (Figure S1,
Supplementary Materials, Table 4). In the case of the control set SP1C, the use of information
about the localization of only the 80 most significant (PBonf (n,N) < 10−30) IUPAC motifs
also led to a somewhat lower correlation (r = 0.05) than the use of all 243 significant IUPAC
motifs (PBonf (n,N) < 10−2), r = 0.06 (Figure S1, Supplementary Materials, Table 4).

Thus, the analysis of data on the ChIP-seq experiments with two TFs allows us to
conclude that, to predict the peak scores of ChIP-seq peak sequences, it is necessary to use
information about the localization of both the most significant motifs and other IUPAC
motifs in them.

3.2. Assessment of the Correlations between the Presence of the Target IUPAC Motifs and Partner
IUPAC Motifs in the Peak Sequences in the Experiment with Transcription Factor FOXA2

While we were building multiple regression models for all of the transcription factors
considered, the analysis of the regression coefficients (Tables 5–7) suggested that only
a small fraction of them were significant (p < 0.05). One of the reasons for this may be
the internal interdependencies of the presence of different IUPAC motifs in the ChIP-seq
peak sequences.
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3.2.1. Assessment of the Correlations between the Co-Occurrences of the Most Significant
(PBonf (n,N) < 10−30) IUPAC Motifs in the Peak Sequences

To test the proposed assumption, we assessed the correlations between the co-occurrences
of the most significant (p < 10−30) motifs in the ChIP-seq peak sequences from the FOXA2L
set using the phi-coefficient [120] to assess paired correlations. Each IUPAC motif from the
pair of motifs considered was assumed to be located in the ChIP-seq peak sequence if it
had been found at least once in either of the DNA strands. Figure 5 shows a heat map of
the pairwise correlations obtained (built with the Heatmapper tool [121] (see Section 4)).
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the 50 most significant (p < 10−30) IUPAC motifs found in [−100;+100] DNA sequences relative to
the ChIP-seq FOXA2 peak maximum. Blue, a negative correlation; yellow, a positive correlation;
white, a neutral situation when the correlation between the co-occurring IUPAC motifs failed to
reach significance. Clustering was carried out according to the degree of their similarity using the
Kullback–Leibler distance in the web system STAMP [122].

Figure 5 shows that the motifs have very highly significant (p < 0.05) correlations
between the co-occurrences of IUPAC motifs in the ChIP-seq peak sequences. Moreover,
both significant positive and negative correlations are observed for their co-localization
with each other. Clustering according to the degree of similarity in the IUPAC motifs using
Kullback–Leibler distance in the web system STAMP [120] showed that all the motifs fall
into two large classes. Annotation (see Section 4) of IUPAC motifs using the web resource
Tomtom [123] showed that the vast majority of the motifs in Group 1 had a significant
similarity with known PWMs for the binding sites of the transcription factor FOXA2. The
vast majority of the motifs in Group 2 had a significant similarity with the PWMs of the
binding sites for partner transcription factors. As can be seen from the heat map, Group
2 motifs have a subgroup of significantly often co-occurring motifs, but the correlations
of their co-occurrence with the motifs of the FOXA2 binding sites are negative. Tomtom
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annotation showed that these motifs may significantly (p < 0.001) correspond to the binding
sites of the transcription factor SP1.

Analysis of pairwise correlations of the co-localization of IUPAC motifs from Group 1
demonstrates a substantial prevalence of positive correlations. At the same time, a small
number of negative correlations are also observed.

All this points to complex relationships between TFs in the regulatory regions of genes
and a high heterogeneity of data being analyzed. In addition, it was shown that the IUPAC
motifs (partner motifs) corresponding to the binding sites of the partner TFs can both
positively and negatively correlate with IUPAC motifs (target motifs) corresponding to the
binding sites of the target TF FOXA2.

3.2.2. Assessment of the Dependence of the Peak Scores of Peak Sequences on the Presence
of Only the Most Significant (PBonf (n,N) < 10−30) Target Motifs in Them

To assess the contribution of the target motifs to the efficiency of peak score pre-
diction, we built a multiple regression model with the use of only the most significant
(PBonf (n,N) < 10−30) target motifs corresponding to the binding sites of the target transcrip-
tion factor FOXA2. To this end, the annotation of the most significant (p < 10−30) IUPAC
motifs obtained from analysis of ChIP-seq peak sequences in the experiment with FOXA2
was carried out using the web system Tomtom [123] (Section 4), and the motifs that had a
significant similarity (p < 0.001) with the FOXA2 binding sites PWM were identified. As
was found, out of the 50 IUPAC motifs considered, only 22 (44%) were the target motifs.
Information about the localization of these motifs in the ChIP-seq peak sequences of the
training set FOXA2L was used to build a multiple regression model predicting the peak
scores of these sequences. Table 8 shows examples of independent variables with significant
(p < 0.05) regression coefficients and their characteristics. A complete table of the regression
coefficients for all IUPAC motifs considered is provided in the Supplementary Materials,
Table S4.

Table 8. Examples of independent variables with significant (p < 0.05) regression coefficients obtained
when constructing a multiple regression model to assess the dependence of the ln(PS) value in the
ChIP-seq experiment with the transcription factor FOXA2 on the presence of the most significant
(PBonf (n,N) < 10−30) target IUPAC motifs. Multiple regression coefficients were calculated using
STATISTICA (StatSoftTM, Tulsa, OK, USA).

Independent Variable Regression Coefficient p-Value

TRTWKACH 0.055717 0.000001
RTTKACHY 0.027913 0.02056
TMAAYANS 0.047318 0.000001

TWKACHYW 0.019684 0.04549
TTKRTYTW −0.02034 0.046044

KACDTWGN 0.020031 0.035274
TAAHYABW −0.036249 0.000121
ARMYAAGV 0.019283 0.037902
AAAMAAAR −0.009348 0.024866

Table 8 shows that nine (41%) of the twenty-two independent variables considered
had significant (p < 0.05) regression coefficients.

This multiple regression model was used to predict the peak scores of the sequences
for the training set FOXA2L and the control set FOXA2C. Figure 6 shows the observed
ln(PS)Obs value for the ChIP-seq peak sequences of the training set FOXA2L (Figure 6a)
and the control set FOXA2C (Figure 6b) versus their expected ln(PS)Exp values calculated
with the multiple regression model using information about the localization of the 22 most
significant (PBonf (n,N) < 10−30) target motifs.
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as calculated using STATISTICA (StatSoftTM, Tulsa, OK, USA). r is the linear correlation coefficient 
and p is its statistical significance. 
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most effective in predicting the peak scores of ChIP-seq peak sequences in the training 
sets. Only using information about the presence of the most significant target motifs 
makes it possible to slightly improve the quality of peak score prediction for ChIP-seq 
peak sequences in the control sets.  

  

Figure 6. Dependence of the observed values of ln(PS)Obs for ChIP-seq peak sequences from (a) the
training set FOXA2L and (b) the control set FOXA2C on their expected values. The expected value of
ln(PS)Exp for ChIP-seq peaks was predicted using a multiple regression model for the presence of the
most significant (PBonf (n,N) < 10−30) target motifs previously detected in the training set FOXA2L.
Solid and dashed lines represent the regression line and the bounds of its 95% confidence interval as
calculated using STATISTICA (StatSoftTM, Tulsa, OK, USA). r is the linear correlation coefficient and
p is its statistical significance.

For both sets, the observed ln(PS)Obs and expected ln(PS)Exp values were significantly
(p < 10−5) correlated. In the case of the training set FOXA2L, the use of only the 22 most
significant (PBonf (n,N) < 10−30) target motifs led to a slightly lower correlation (r= 0.22)
than the use of all 50 of the most significant IUPAC motifs, r = 0.24 (Figure 3a). In the
case of the control set FOXA2C, the use of information about the localization of only the
22 most significant (PBonf (n,N) < 10−30) target motifs led to a slightly increased correlation
coefficient (r = 0.11) compared to that obtained from using all 50 of the most significant
motifs (r = 0.1) (Figure 3b).

Thus, it can be concluded that the use of complete information about the localization
of peaks in ChIP-seq sequences of all previously identified significant IUPAC motifs is most
effective in predicting the peak scores of ChIP-seq peak sequences in the training sets. Only
using information about the presence of the most significant target motifs makes it possible
to slightly improve the quality of peak score prediction for ChIP-seq peak sequences in the
control sets.

3.2.3. Analysis of the Correlations between the Presence of Target Motifs and the Motifs of
the Partner Transcription Factors in the ChIP-Seq Peak Sequences

As can be seen from the analysis of the results obtained, the target motifs make a
significant contribution to the prediction of ChIP-seq peak scores; however, sole reliance on
target motifs leads to a decrease in prediction quality for ChIP-seq peak sequences that have
the highest peak scores and are included in the training sets. To identify transcription factors
that can be partners to the target transcription factor FOXA2 in this set and contribute to its
functioning when it interacts with the ChIP-seq peak sequences in FOXA2L, we performed
a functional annotation of 28 most significant (PBonf (n,N) < 10−30) IUPAC motifs previously
detected in this set and not targeted. The annotation was carried out using the web system
Tomtom [123] as described in the Section 4. The results of the annotation are shown in
Table 9.
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Table 9. Results of the annotation of partner motifs detected in the ChIP-seq peak sequences from the
FOXA2L set.

Partner TF 1 Number of
Motifs 2 TF Family 3 TF Subfamily 4

HNF4G 6 2.1.3. RXR-related receptors (NR2) 2.1.3.2. HNF-4 (NR2A)
SP1 6 2.3.1. Three-zinc finger Krüppel-related factors 2.3.1.1. SP1-like factors

FOXO3 2 3.3.1. Forkhead box (FOX) factors 3.3.1.15. FOXO
POU5F1 2 3.1.10. POU domain factors 3.1.10.5. POU5 (OCT-3/4-like factors)
NR2F1 1 2.1.3. RXR-related receptors (NR2) 2.1.3.5. COUP-like receptors (NR2F)
ZNF148 1 2.3.3. More than 3 adjacent zinc finger factors 2.3.3.13. ZNF148-like factors

EGR1 1 2.3.1. Three-zinc finger Krüppel-related factors 2.3.1.3. EGR factors
NFYC 1 4.2.1. Heteromeric CCAAT-binding factors 4.2.1.0.3. NF-YC
SOX2 1 4.1.1. SOX-related factors 4.1.1.2. Group B

ZBTB14 1 2.3.3. More than 3 adjacent zinc finger factors 2.3.3.0. unclassified
MAFG 1 1.1.3. MAF-related factors 1.1.3.2. Small Maf factors

1 Name of the partner transcription factor; 2 Number of motifs significantly (p < 0.001) similar to the position–weight
matrix of the transcription factor in the JASPAR and HOCOMOCO databases, according to the Tomtom [123]
annotation; 3 Number and name of the family to which the TF belongs, according to Wingender’s classification [99];
4 Number and name of the subfamily to which the TF belongs, according to Wingender’s classification [99].

We assessed how the motifs corresponding to the binding sites of the partner TF
and the motifs corresponding to the binding sites of the target TF FOXA2 co-occur in the
FOXA2L ChIP-seq peak sequences. Here, in our opinion, the ChIP-seq peak sequence con-
tains the binding site for the TF considered if at least one of the motifs that are significantly
similar to the position–weight matrix of this TF is located in this sequence. Consequently,
the ChIP-seq peak sequence does not contain a TF binding site if none of the motifs which
are significantly similar to the position–weight matrix of this TF are located in the sequence.
To exclude from consideration the correlations accounted for by the heterogeneity of the
FOXA2L set and the peculiarities of its nucleotide context, we assessed the significance of
the IUPAC motifs detected and the correlations calculated on their basis using the shuffling
procedure (see the Section 4). Table 10 shows the correlation coefficients obtained using the
phi-coefficient between the motifs of the partner TF and the motifs of the target TF for the
given FOXA2 set.

Table 10. Correlation coefficients obtained using the phi-coefficient to assess the interdependencies of
the localization of the motifs corresponding to the binding sites of the partner transcription factors
and the motifs corresponding to the binding sites of the target TF FOXA2 on the training set FOXA2L

of ChIP-seq peak sequences. Significant (p < 0.05) correlation coefficients are asterisked.

Partner TF Correlation Coefficient, r

HNF4G 0.116739 *
SP1 −0.12075

FOXO3 0.106967
POU5F1 0.076699
NR2F1 −0.02758
ZNF148 −0.06076
MAFG 0.106967 *

* Significant (p < 0.05) correlation coefficients.

As was found, only two partner transcription factors, HNF4G and MAFG, were
characterized by a significant (p < 10−5) correlation of the co-occurrence of their potential
binding sites with the potential binding sites for FOXA2. Thus, these TFs can potentially
interact with FOXA2 in the regions of ChIP-seq peaks and function synergistically with it.
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3.2.4. Experimental Data Confirming the Functional Relevance of the Associations
Revealed between the Target and Partner Motifs

We wanted to assess the extent to which the information on the co-occurrence of poten-
tial binding sites for partner TFs obtained using our proposed approaches is consistent with
the experimental data obtained previously and described in the literature. To this end, we
analyzed scientific publications describing experimental studies of synergistic interactions
with FOXA2. The analysis revealed a number of reports providing experimental evidence
for the significant associations that we have found between the target motifs of FOXA2 and
the partner motifs of HNF4G in the ChIP-seq peak sequences (Table 11).

Table 11. Experimental evidence for functional interactions between FOXA2 and other partner
transcription factors.

Partner TF Gene or Genomic Regions Summary Reference

HNF4 subfamily Human APOB enhancer
Cooperative interaction between
FOXA2 and HNF4 in mediating

enhancer function
[124]

HNF4 subfamily (HNF4A) DNA regions from HepG2 ChIP-seq
for FOXA2 and HNF4A

ChIP-sequencing revealed that
FOXA2 peaks were co-localizing with

HNF4A peaks
[125]

HNF4 subfamily (HNF4A)
DNA regions from adult mouse
liver or embryonic hepatoblasts

ChIP-seq for FOXA2 and HNF4A

ChIP-sequencing revealed that
FOXA2 peaks were co-localizing with

HNF4A peaks
[126]

HNF4 subfamily (HNF4A) Human F2 enhancer FOXA2 and HNF4A were found to be
bound to the enhancer of this gene [127]

HNF4 subfamily (HNF4A)
DNA regions from adult mouse
liver ChIP-seq for FOXA2 and

HNF4A

ChIP-sequencing revealed that
FOXA2 peaks were co-localizing with

HNF4A peaks
[128]

In particular, there is evidence of molecular interactions between FOXA2 and fac-
tors from the HNF4 subfamily at human and mouse regulatory DNA elements: (1) co-
transfection experiments with the expression vectors for HNF3beta and HNF4 revealed that
these factors may bind to the enhancer of the human gene APOB and act synergistically to
enhance the intestinal expression of APOB [124]; (2) analyzing DNA regions from ChIP-seq
experiments both for FOXA2 and for HNF4a, Wallerman co-workers found that almost half
of the FOXA2 peaks were co-localizing with HNF4A peaks, often at a very close distance
and with both motifs present [125]; (3) using RNA-seq and ChIP-seq libraries generated
from embryonic hepatoblasts and adult mice liver, Alder co-workers showed that the key
hepatic TFs HNF4A and FOXA2 occupy enhancers and control target gene expression
in a differentiation-dependent manner [126]; (4) in addition, Ceelie co-workers showed
that the co-binding of FOXA2 and HNF4A, as well as SP1, with the human prothrombin
(F2) enhancer is necessary to ensure an appropriate level of prothrombin expression [127];
(5) analyzing DNA regions from ChIP-seq experiments for FOXA2 and HNF4A in the
adult mouse liver, Hoffman co-workers demonstrated FOXA2 and HNF4A collaborations
in maintaining the expression of genes that were initially co-expressed in the developing
pancreas and liver. They identified 3236 loci in the liver that were co-bound by FOXA2 and
HNF4A [128].

Unfortunately, we have not yet found scientific publications that experimentally
confirm the synergistic interactions between MAFG and FOXA2. Thus, MAFG may be used
as a target for the experimental study of its possible synergistic interactions with FOXA2.
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4. Methods and Materials
4.1. Brief Description of the De Novo Motif Discovery System Argo_CUDA
4.1.1. Description of the Criterion Used for the Significance of IUPAC Motifs Detected
by Argo_CUDA

The purpose of Argo_CUDA is to iteratively identify significant IUPAC motifs of a
fixed length k = 8 bp in a Pos set consisting of N sequences of interest of length L. A specific
IUPAC motif is considered significant if it is overrepresented in the given set of sequences
in Pos, its expected presence in Pos for random reasons is low, and the probability of its
observation in Pos for random reasons is significantly low; that is, condition (1) is satisfied.

• F > f 0
• Q < q0
• PBonf (n,N) < p0

(1)

Here F = n/N is the abundance of the motif in Pos; that is, the proportion of Pos
sequences in which the motif occurs at least once; n is the number of Pos sequences in
which the motif occurs at least once; Q is the expected abundance of the motif in Pos; that
is, the proportion of Pos sequences in which the motif is expected to appear at least once
for random reasons; the binomial probability PBonf(n,N) of observing a motif in at least n
of N sequences of the given set Pos for random reasons. PBonf(n,N) is calculated taking
into account the Bonferroni correction (see Supplementary Materials). f 0, q0 and p0 are
user-selectable limit values.

4.1.2. Brief Description of the Argo_CUDA Algorithm

Figure 7 shows a block diagram for our proposed algorithm. This de novo motif
discovery algorithm is exhaustive and estimates the significance of the abundance of all 15k

possible IUPAC motifs of fixed length k in the given set Pos. Unlike the enumeration and
probabilistic approaches, Argo_CUDA can reliably find the global optimum and identify
the most significant motif.

In step (1), the given set Pos containing the nucleotide sequences of ChIP-seq peaks is
fed to Argo_CUDA. In step (2), the frequency characteristics of the set Pos are estimated
taking into account the Markov level (up to the 2nd order). At the request of the user, the
Bernoulli model with a Markov level of 0 and equal frequencies of nucleotides can be used
(PA = PT = PG = PC = 0.25). In step (3), Argo_CUDA converts the Pos sequences into an
array of hashes corresponding to oligonucleotides of length 8 (Table 12). For example, the
oligonucleotide atataaaa can be represented as a 4-byte binary hash 0001 0010 0001 0010
0001 0001 0001 0001. Thus, each nucleotide sequence of length L is converted into an array
of 4-byte hashes of length L − k + 1, where k is the length of the oligonucleotide motif.

In step (4), for each of the possible 15k IUPAC motifs, an estimate is made of its
expected occurrence Q in Pos for random reasons (see Supplementary Materials). It should
be noted that a large proportion of all possible motifs may be irrelevant from a biological
point of view due to their excessive degeneration (for example, NNNNNNNN). There
is no need to waste program execution time in assessing the abundance of such motifs
in the Pos set of DNA sequences, and so such motifs can be eliminated immediately and
not considered further. Thus, if for the given motif Q > q0, then according to criterion
(1), the motif is excluded from consideration, since it occurs by chance too often. This
step significantly narrows the number of possible motifs and substantially speeds up the
program. Figure S2 (Supplementary Materials) shows that, for example, at q0 = 30% in the
set of randomly generated sequences, the number of motifs being considered decreases
from 158 ~ 2.6 × 109 to ~8.6 × 108, which amounts to about a three-fold decrease. In
stage (5), the abundance F = n/N and statistical significance PBonf(n,N) are calculated for
the motifs remaining after filtering. Here, the estimation, n, of the number of Pos sequences
containing the motif of interest is made using the GPU. In order to substantially accelerate the
comparison of the correspondence between DNA regions and IUPAC motifs, we used binary
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representations of both motifs and oligonucleotides of DNA sets (Figure 8). A comparison
of a motif of length 8 with a DNA region of the same length is performed in one bitwise
“AND” operation and one comparison operation instead of eight operations for assessing
the correspondence between a nucleotide and a letter of the IUPAC code, which significantly
reduces the program runtime: boolean match = (oligo_hash & motif_hash) = = oligo_hash.
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Figure 7. Block diagram for Argo_CUDA, a motif discovery algorithm.

Table 12. Binary representation and hash-coding (hashing) of the 15-letter IUPAC code.

IUPAC
Letter A T G C R Y M K W S B H V D N

Nucl.
Variants A T G C G/A T/C A/C G/T A/T C/G Not A Not G Not T Not C N

A 1 0 0 0 1 0 1 0 1 0 0 1 1 1 1
T 0 1 0 0 0 1 0 1 1 0 1 1 0 1 1
G 0 0 1 0 1 0 0 1 0 1 1 0 1 1 1
C 0 0 0 1 0 1 1 0 0 1 1 1 1 0 1

Hash 0001 0010 0100 1000 0101 1010 1001 0110 0011 1100 1110 1011 1101 0111 1111
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if any single position of the motif does not match the oligonucleotide, the result of the bitwise “AND”
operation is zero.
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The proposed optimization methods can substantially speed up the algorithm; how-
ever, it will still require a huge amount of computing power. That is why we used high-
performance graphics accelerators (GPUs) to explore motif abundance. GPUs are especially
powerful for deep parallelization tasks, especially when the data are independent. In step
(6), the most significant motif with the smallest PBonf(n,N) that satisfies the significance
criterion (1) is selected. This motif is retained, and all the oligonucleotide hashes that
correspond to it are removed from Pos. Steps 5 and 6 are repeated to identify the next
most significant IUPAC motif. After it became impossible to identify any IUPAC motif that
satisfies the significance criterion (1) in Pos, all previously detected significant motifs at
stage (7) are saved to a file and Argo_CUDA stops.

4.1.3. Parameter Values Used to Identify Significant IUPAC Motifs in ChIP-Seq
Peak Sequences

Our original development Argo_CUDA was used to identify conserved motifs in the
sets of peak sequences obtained from ChIP-seq experiments with ten transcription factors
(Table 1). Any motif detected was considered to meet the significance criterion (1) if:

(1) It was located in at least f 0 = 1% of the ChIP-seq peak sequences;
(2) Its expected abundance for random reasons was not more than q0 = 30%. The expected

abundance was calculated taking into account the 3rd order Markov level.
(3) The Bonferroni-corrected binomial probability of observing the motif for random

reasons was not more than p0 = 0.01.

Both DNA strands were examined.

4.2. Building a Multiple Regression Model

The general purpose of a multiple regression approach is to analyze the relationship
between several independent variables (also called predictors) and a dependent variable.
The objective of a multiple regression analysis is to use independent variables to predict
the value of a single dependent variable. The value of each predictor is weighted, and the
resulting weights reflect the contribution of each predictor to the overall prediction.

The multiple linear regression equation is

Y = B0 + B1X1 + B2X2 + · · ·+ BnXn + e.

Here, Y is the dependent variable, X1,. . .,Xn are n independent variables, B0 is the Y-
intercept (the value of Y when all other parameters are set to 0), B1,. . .,Bn are the regression
coefficients of the independent variables X1,. . .,Xn and e is the model error. In calculating
B0,. . .,Bn, the regression analysis ensures the maximal prediction of the dependent variable
from the set of independent variables and the smallest overall model error e. This calculation
is performed using the least squares method.

The construction of a multiple regression model to assess the dependence of peak
scores on the presence of significant IUPAC motifs in them for all ten ChIP-seq experiments
was carried out using STATISTICA (StatSoftTM, Tulsa, OK, USA) with the “Multiple
regression” option.

In this case, the value of the natural logarithm of ChIP-seq peak significance (ln(PS))
was considered as the predicted dependent variable Y, and information about the presence
or absence of the corresponding n IUPAC motifs in a particular sequence was considered
as the predictors X1,...,Xn. If the i-th motif was present in a particular peak sequence, then
Xi = 1, otherwise Xi = 0. For example, for n = 3 motifs, of which only the first and third
motifs are present in the j-th sequence of the set-in question, the predicted value is

ln(PS)j = yj= B0 + B1 × 1 + B2 × 0 + B3 × 1 = B0 + B1 + B3.

For each of the training sets (Table 4) obtained in 10 ChIP-seq experiments, multiple
regression models were built on the basis of information about the presence in the peak
sequences of this set of n significant IUPAC motifs previously revealed in this set. For each
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of the 10 regression models obtained in this way, their predictive power was assessed both
on the training sets of peak sequences and on the corresponding control sets (Table 4), by
calculating the r values of the correlation between the predicted values of ln(PS) and those
observed during the ChIP-seq experiment.

It can be noted that this approach is quite universal, and not only data on the pres-
ence/absence of n motifs in sequences but also other information can be used as predictors.
Using data from a number of ChIP-seq experiments, we, in particular, assessed the effec-
tiveness of using information about the quantitative representation of each of the motifs, as
well as the magnitude of their significance, as predictors. It turned out that these predictors
were characterized by slightly worse prediction quality and lower correlation values r on
the training and control sets.

4.3. Construction of a Tree of Contextual Similarity of Motifs

A contextual similarity tree of the most significant IUPAC motifs detected in ChIP-seq
peak sequences coming from the experiment with the transcription factor FOXA2 was
constructed using the web system STAMP [122]. The Kullback–Leibler distance (the “KL”
option) was used as a distance measure. The tree was visualized using the MEGA-X
system [129].

4.4. Building a Heat Map for the Correlations of the Co-Occurrence of the Motifs

The heat map for the correlations of the co-occurrence of the most significant IUPAC
motifs in the ChIP-seq peak sequences obtained from the experiment with the transcription
factor FOXA2 was visualized using the web service Heatmapper [121]. Different shades of
yellow correspond to different levels of positive correlation; blue, negative correlation; and
white, non-significant correlation.

4.5. Functional Annotation of the Motifs

Functional annotation of the most significant IUPAC motifs detected in the ChIP-seq
peak sequences coming from the experiment with the target transcription factor FOXA2
was performed using the Tomtom system from the MEME Suite web package [38]. The
motifs detected were compared with the PWMs contained in the JASPAR [34] and HOCO-
MOCO [33] databases with standard parameters. In the first stage of this procedure, the
motifs that had significant similarity (p < 0.001) with the PWMs of the target transcription
factor FOXA2 contained in either of the JASPAR [34] or HOCOMOCO [33] were identified.
The IUPAC motifs thus obtained were considered target motifs. The remaining motifs did
not have significant similarity with the PWMs of the target TF and were considered partner
motifs. For all partner motifs, their similarity with the position–weight matrices of all
known TFs contained in the JASPAR [34] and HOCOMOCO [33] databases was assessed.
A partner motif was considered to be significantly similar to the transcription factor’s
position–weight matrix if it had a significant (p < 0.001) similarity with the position–weight
matrices of this TF in both databases, JASPAR [34] and HOCOMOCO [33].

4.6. Shuffling in Assessing the Significance of the Correlation between the Motifs Corresponding to
the Binding Sites of the Target Motifs and the Motifs Corresponding to the Binding Sites of the
Partner Transcription Factors

The assessment of the statistical significance of the correlations between the target
motifs and partner motifs was carried out using the shuffling procedure. During this
procedure, 10,000 random sets were generated by shuffling the nucleotides within each
sequence of the given set of ChIP-seq peak sequences. For each generated set of sequences,
the abundance, F, of each of the motifs considered was assessed. Next, the motifs, whose
abundance F in the set of real ChIP-seq peak sequences exceeded their abundance in 95% of
sets of randomly generated sequences, were selected. With the remaining significant IUPAC
motifs for each generated random set, the correlation coefficient of the co-occurrence of the
motifs corresponding to the binding sites of the target TF and the motifs corresponding to
the binding sites of the partner TFs was assessed using the phi-coefficient [120]. Finally,
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the proportion of the correlation coefficients that were obtained from random sets and
exceeded the absolute value of the correlation coefficient r calculated for the real set of
ChIP-seq peak sequences was estimated and taken as the p-value.

5. Conclusions

In the present work, we analyzed the contextual organization of ChIP-seq peak se-
quences in experiments with 10 TFs belonging to the six different superclasses categorized
according to the types of their DNA-binding domains [99]. Using the original de novo motif
discovery method Argo_CUDA [100], we identified both sets of significant IUPAC motifs
corresponding to the target TF binding sites studied in each experiment and specific sets of
motifs corresponding to the binding sites of the partner TFs in the peak DNA sequences
revealed in each ChIP-seq experiment. Unlike heuristic methods, Argo_CUDA evaluates
the significance of all possible IUPAC motifs of a given length, which guarantees finding a
global optimum. Our analysis of the ChIP-seq data from the experiment with TF FOXA2
revealed a significant correlation between the presence of the target motifs corresponding
to the binding sites for TF FOXA2 and the partner motifs corresponding to the binding sites
for TF HNF4G. In the scientific literature, we found experimental evidence for a synergistic
interaction between FOXA2 and transcription factors from the HNF4 family, which can
explain this correlation. For all the ChIP-seq experiments considered, multiple regression
models were constructed, demonstrating a significant dependence of the ChIP-seq peak
sequence scores on the presence of sets of specific IUPAC motifs in these sequences. It
has been shown that the most significant target motifs make a substantial contribution
to the observed dependence. At the same time, the prediction quality can be improved
through the use of less significant motifs as well as partner motifs. The contextual features
of the ChIP-seq peaks that we have identified can be used to set up experiments aimed at
testing potential partner interactions of TFs, the motifs of which are reliably co-represented
in the sequences of ChIP-Seq peaks and also help in building potential regulatory gene
networks involved in subtle developmental processes and tissue-specific gene expression.
In addition, the significant IUPAC motifs we identified can be used to develop new methods
for predicting the localization of potential TFBSs in genomic sequences. Unfortunately,
despite the fact that we showed a highly reliable dependence of the peak score values
on the presence of IUPAC motifs in ChIP-seq sequences, the correlation coefficient r we
obtained did not exceed 0.57. This suggests that, to more effectively predict the peak score
value, it will be necessary to use additional information, for example, about the relative
position of motifs and their orientation in the sequences [130].
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