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Abstract: Unlike other coronaviruses, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)
has rapidly infected the global population, with some suffering long-term effects. Thanks to extensive
data on SARS-CoV-2 made available through global, multi-level collaborative research, investigators
are getting closer to understanding the mechanisms of SARS-CoV-2 infection. Here, using publicly
available total and small RNAseq data of Calu3 cell lines, we conducted a comparative analysis of the
changes in tRNA fragments (tRFs; regulatory small noncoding RNAs) in the context of severe acute
respiratory syndrome coronavirus (SARS-CoV) and SARS-CoV-2 infections. We found extensive
upregulation of multiple tRFs in SARS-CoV-2 infection that was not present in SARS-CoV or other
virus infections our group has studied. By comparing the total RNA changes in matching samples,
we identified significant downregulation of TRDMT1 (tRNA methyltransferase), only in SARS-
CoV-2 infection, a potential upstream event. We further found enriched neural functions among
downregulated genes with SARS-CoV-2 infection. Interestingly, theoretically predicted targets of the
upregulated tRFs without considering mRNA expression data are also enriched in neural functions
such as axon guidance. Based on a combination of expression data and theoretical calculations, we
propose potential targets for tRFs. For example, among the mRNAs downregulated with SARS-CoV-2
infection (but not with SARS-CoV infection), SEMA3C is a theoretically calculated target of multiple
upregulated tRFs and a ligand of NRP1, a SARS-CoV-2 receptor. Our analysis suggests that tRFs
contribute to distinct neurological features seen in SARS-CoV-2.

Keywords: COVID-19; NRP1; SEMA3C; tRF5; small ncRNA; SARS-CoV; SARS-CoV-2; SARS; neural
function; long COVID

1. Introduction

Coronaviruses have been responsible for several notable viral outbreaks in the 21st
century, including the severe acute respiratory syndrome (SARS) epidemic between 2002
and 2004, caused by SARS-CoV (CoV), and the coronavirus disease 2019 (COVID-19)
pandemic, caused by SARS-CoV-2 (CoV2), which has persisted over 3 years and is ongoing.
These two viruses, which share 79% of their genome sequences [1,2], primarily affect the
respiratory system and are transmitted via droplets and particles emitted from an infected
person’s nose or mouth. Spike proteins of both viruses bind the ACE2 receptor to enter
human cells. Besides ACE2, the most prominent receptor, other receptors that mediate
CoV2 infection of human cells include neuropilin-1 (NRP1), Eph receptors, transmembrane
serine protease 2 (TMPRSS2), P2X7, and CD147 (BSG) [3,4].

Both CoV and CoV2 are neuroinvasive viruses able to directly enter brain tissue via
olfactory bulb neurons, the blood-brain barrier, and other peripheral neural pathways.
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Neurological symptoms associated with CoV infection include epilepsy, muscle weakness,
and chronic symptoms such as persistent fatigue, diffuse myalgia, depression, and sleep
cycle disruption [5]. CoV2 infection has been linked to acute neurological symptoms
including stroke, encephalopathies, anosmia, and ageusia [6]. Direct viral infection of
neurons or glial and endothelial cells can lead to neuronal cell death while systemic
infection can induce inflammation, vascular damage, and autoimmune responses that
damage neural tissues [7].

Though both viruses can enter neural cells, the nature and timing of COVID-19 and
SARS symptoms differ. While the neurological symptoms of SARS are mostly observed in
the late disease stage, COVID-19 presents unique neurological symptoms such as anosmia
during early CoV2 infection, even preceding respiratory symptoms [6]. Thus, CoV2 prob-
ably has additional ways of effectively interacting with neural cells, including olfactory
receptor cells. Among CoV2 receptors, NRP1 is abundantly expressed in the respiratory
and olfactory epithelium and is upregulated with CoV2 infection [8]. Blocking interactions
between the CoV2 spike protein and NRP1 reduces viral infection [9].

Meanwhile, though sequencing technology advances have helped identify many
types of human non-coding RNAs, functional studies are still in their infancy with regard
to viral infection. Among the small non-coding RNAs, tRNA-derived fragments (tRFs)
have specific functions related to external stresses such as viral infection or toxins. For
example, overexpressed 5′-ends of tRNA-Gln-CTG fragments (tRF5-Gln-CTG) enhance
respiratory syncytial virus replication [10]. Moreover, our group reported that certain tRF5s
are significantly increased in COVID-19 patient nasal samples [11].

In this study, we utilized publicly available RNAseq data of cell lines infected by
either CoV or CoV2 to identify differences in their mechanisms of infection. We found tRF5
expressions to be distinctively upregulated in CoV2-infected cell lines and nervous system-
related KEGG pathways to be enriched among downregulated genes specific to CoV2.
When we computationally predicted potential targets of these upregulated tRF5s with CoV2
infection without considering mRNA expressions, our posited targets showed enriched
neurological functions. Considering the theoretical targets and genes only downregulated
with COV2 infection, we propose an NRP1-CoV2 model which may account for early-onset
neurological symptoms involving CoV2 infection with tRF upregulation. We thus propose
measuring tRFs in long COVID patients to study long-term neurological symptoms.

2. Results
2.1. Uniquely Upregulated tRF5s with CoV2 Infection

To determine the molecular functions of CoV2 infection, we chose well-controlled Calu-
3 (human epithelial cells from lung tissue) cell line data for our analysis. The GSE148729
dataset contains various samples of gene expression profile data, including human cell
lines infected with CoV and CoV2 [12]. Since both small and total RNAseq data from
the same cell lines were obtained for three different infection time points, we found these
data useful in identifying regulatory small RNA functions in CoV2 infection. Though
drawn from only two samples per condition, the time series data exhibits a clear trend. To
reduce other variables, we used Calu-3 cell lines after 4 h of mock infection as a control
with additional validation using 24 h of mock data only for the 24 h infection cases. We
first analyzed small RNAseq data to understand expression changes after CoV2 infection.
Similar to our previous report using patient nasal data [11], here in cell line experimental
data we again found that tRFs, particularly tRF5s, were most distinctively upregulated
with CoV2 among all small RNAs. Figure 1B shows a volcano plot focusing only on tRF5s
after 24 h infection with CoV2, clearly demonstrating the upregulation of many tRF5s not
seen with CoV infection (Figure 1A). Figure 1C,D shows the fold changes at different time
points for tRF5s, with the top 10 most differentially expressed tRF5s (all upregulated and
also found upregulated in patient nasal data) together with tRF5-Glu-CTC (11th, adjusted
p-value < 10−6, upregulated and most abundant) at the 24 h infection time point, these
changes increasing as the infection progressed. Among these upregulated tRF5s with CoV2
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infection, tRF5-Gln-CTG and tRF5-Glu-CTC were selected for qRT-PCR validation and
confirmed as upregulated in nasal samples of COVID-19 patients [11].
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has one more tRF5, Glu-CTC (11th rank), included due to its importance and abundance. 

Figure 1. Differentially expressed tRF5s after SARS virus infection. (A,B) Volcano plots of all small
RNAs with tRF (including all types of tRFs, red), piRNA (orange), snoRNA (light blue), miRNA
(blue) at 24 h of SARS-CoV (A) and SARS-CoV-2 (B) infection in comparison to mock 4 h. Horizontal
line is at p = 0.001. Vertical lines are at log2FC = ±1. (C,D) Volcano plots of only tRF5 species with
read count more than 5 at any samples at 24 h of SARS-CoV (C) and SARS-CoV-2 (D) infection in
comparison to mock 4 h. Colored dots are p < 0.05; red indicates upregulation (log2FC > 1) and blue
downregulation (log2FC < −1). (E,F) Log2FC changes in comparison to mock 4h over time for the
top 10 most significant tRFs for SARS-CoV (E) and SARS-CoV-2 (F) infection at 24 h. SARS-CoV-2 has
one more tRF5, Glu-CTC (11th rank), included due to its importance and abundance.

2.2. More Downregulated Genes with CoV2 Infection Than with CoV Infection

To investigate gene expression changes with CoV and CoV2 infection, we analyzed
total RNAseq data and mapped them against gene-level expression values, combining all
transcripts from the bowtie2 analysis. While more genes are upregulated than downregu-
lated with both virus infections, CoV2 infection led to more genes being downregulated
(Figure 2B) in comparison to CoV infection (Figure 2A). Such ratio differences (more down-
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regulated genes in CoV2 than in CoV) decrease as the cutoff p-value increases, implying that
the greater downregulation is specific to CoV2 infection. For example, with the adjusted
p-value < 0.001 cutoff, 35.7% and 41.7% of differentially expressed genes were downregu-
lated with CoV and CoV2 infection at 24 h, respectively (16.8% more downregulation in
CoV2 infection). With the adjusted p-value < 0.05 cutoff, 45.2% and 48.6% of differentially
expressed genes were downregulated with CoV and CoV2 infection at 24 h, respectively
(7.5% more downregulation in CoV2 infection).
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well known for its wide variety of modifications that respond to cellular environments 
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ANG, ELAC2, and DICER1, enzymes known to be associated with tRF biogenesis. For 
tRNA methyltransferases, we obtained the protein names from UniProt [14] and for tRNA 
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Figure 2. Heatmap of differentially expressed mRNAs (adjusted p-value < 10−5 at 24 h in comparison
to mock 4 h) after SARS-CoV (A) and SARS-CoV-2 (B) infection. From left to right, mock 4 h and
then infection time points at 4 h, 12 h, and 24 h of these gene expression levels are shown for each
replicate A and B. After all SARS-CoV or SARS-CoV-2 infected samples were normalized using
DESeq2, heatmaps were generated with normalized values of corresponding mRNAs using the R
package heatmap with a scale-by-row option.

To shed light on the abundant tRF expressions with CoV2 infection, we compared
expression patterns of genes potentially associated with tRF generation. Since tRNA is
well known for its wide variety of modifications that respond to cellular environments [13]
and tRNA stability is affected by methylation status, we checked tRNA methyltransferase
and tRNA demethylase expression values for both virus infections. We also checked
ANG, ELAC2, and DICER1, enzymes known to be associated with tRF biogenesis. For
tRNA methyltransferases, we obtained the protein names from UniProt [14] and for tRNA
demethylase, we checked ALKBH1, ALKBH3, and FTO gene expressions [15]. Among these,
only differentially expressed genes with either CoV or CoV2 are shown in Table 1. Notably,
while DICER1 expressions were enhanced with both CoV and CoV2 infections, CoV2
infection increased DICER1 expression 48% more than did CoV infection. Among all tRNA
methyltransferases, TRDMT1 (also known as DNMT2) was significantly downregulated
only with CoV2 infection and not with CoV infection (Table 1).
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Table 1. Differentially expressed genes among methyltransferases, demethyltransferases, and ribonu-
cleases at 24 h after infections.

Gene Symbol
SARS-CoV Infection SARS-CoV-2 Infection

Log2FC p-Value Log2FC p-Value

tRNA Methyltransferase

FTSJ1 −0.41 0.058 −0.70 2.3 × 10−4

METTL1 −0.54 0.026 −0.17 0.53

METTL8 −0.53 0.052 −0.81 7.7 × 10−4

THUMPD3 0.24 0.17 0.36 0.022

TRDMT1 −0.30 0.41 −1.43 3.2 × 10−5

TRMT2B −0.57 0.026 −0.37 0.13

TRMT44 0.59 0.036 0.67 0.60

TRMT61A −0.56 0.0039 −0.15 0.49

TRMT9B 0.07 0.89 0.63 0.049

TYW3 −0.22 0.36 −0.42 0.033

Demethylase

ALKBH3 −0.77 0.0022 −0.56 0.019

Ribonuclease 1

DICER1 1.18 3.0 × 10−29 1.75 2.8 × 10−69

1 We checked only ANG, ELAC2, and DICER1, known to be involved in tRF biogenesis.

To compare the functions of these downregulated genes using more comparable num-
bers to reduce statistical bias, we analyzed genes with an adjusted p-value < 0.05. Among
the total 2292 and 2573 genes downregulated with CoV and CoV2 infection at 24 h, re-
spectively, 1608 genes were commonly downregulated. Table 2 shows the enriched KEGG
pathways for (1) commonly downregulated, (2) downregulated only in CoV infection, and
(3) downregulated only in CoV2 infection at 24 h post-infection with adjusted p < 0.05.
Commonly downregulated genes are involved in metabolism, neurodegenerative diseases,
infectious diseases (bacterial), and translation processes. For CoV infection, proteasome
(hsa03050) is the only pathway not found in the enriched pathways from commonly down-
regulated genes. On the other hand, CoV2 infection showed several specific enriched
KEGG pathways, including the nervous system (hsa04723, hsa04728, hsa04730) and sig-
nal transduction (hsa04071, hsa04015), implying that additional molecular functions are
disrupted with CoV2 infection.

Table 2. Enriched KEGG pathways for downregulated genes (adjusted p-value < 0.05) after 24 h
infection with SARS-CoV and SARS-CoV-2 compared to 4 h mock infection.

KEGG ID KEGG Description Observed
Gene Count

Background
Gene Count

False Discovery
Rate

Commonly downregulated genes

hsa03010 Ribosome 83 130 9.43 × 10−36

hsa01100 Metabolic pathways 209 1447 5.57× 10−12

hsa00190 Oxidative phosphorylation 45 130 1.83 × 10−11

hsa04714 Thermogenesis 61 229 1.83 × 10−11

hsa05012 Parkinson disease 57 240 3.47 × 10−9

hsa05014 Amyotrophic lateral sclerosis 68 352 9.68 × 10−8
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Table 2. Cont.

KEGG ID KEGG Description Observed
Gene Count

Background
Gene Count

False Discovery
Rate

hsa05010 Alzheimer disease 68 355 1.12 × 10−7

hsa05016 Huntington disease 60 298 1.75 × 10−7

hsa05020 Prion disease 52 265 3.40 × 10−6

hsa04142 Lysosome 29 126 0.00015

hsa04510 Focal adhesion 36 198 0.0011

hsa01212 Fatty acid metabolism 16 54 0.0015

hsa04932 Non-alcoholic fatty liver disease 29 148 0.0016

hsa03060 Protein export 10 23 0.0026

hsa04260 Cardiac muscle contraction 20 87 0.003

hsa00062 Fatty acid elongation 10 25 0.0039

hsa05110 Vibrio cholerae infection 13 48 0.0105

hsa05100 Bacterial invasion of epithelial cells 16 70 0.012

hsa01200 Carbon metabolism 22 117 0.013

hsa04810 Regulation of actin cytoskeleton 32 209 0.0219

hsa03008 Ribosome biogenesis in eukaryotes 16 77 0.0246

hsa05205 Proteoglycans in cancer 30 196 0.0279

hsa04146 Peroxisome 16 79 0.0282

hsa00010 Glycolysis/Gluconeogenesis 14 65 0.031

hsa04910 Insulin signaling pathway 22 133 0.0415

Downregulated only in SARS-CoV

hsa03010 Ribosome 19 130 0.00021

hsa05012 Parkinson disease 26 240 0.00021

hsa05016 Huntington disease 30 298 0.00021

hsa05020 Prion disease 28 265 0.00021

hsa05014 Amyotrophic lateral sclerosis 30 352 0.0011

hsa01100 Metabolic pathways 81 1447 0.0015

hsa05010 Alzheimer disease 28 355 0.0051

hsa03050 Proteasome 8 43 0.0116

hsa00190 Oxidative phosphorylation 14 130 0.0134

hsa04932 Non-alcoholic fatty liver disease 15 148 0.0137

Downregulated only in SARS-CoV-2

hsa01100 Metabolic pathways 149 1447 4.78 × 10−14

hsa00280 Valine, leucine, and isoleucine degradation 12 46 0.0021

hsa05132 Salmonella infection 27 209 0.0021

hsa00100 Steroid biosynthesis 8 20 0.0025

hsa00640 Propanoate metabolism 9 34 0.0094

hsa01200 Carbon metabolism 17 117 0.0099

hsa04723 Retrograde endocannabinoid signaling 19 145 0.012

hsa05031 Amphetamine addiction 12 66 0.012
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Table 2. Cont.

KEGG ID KEGG Description Observed
Gene Count

Background
Gene Count

False Discovery
Rate

hsa05110 Vibrio cholerae infection 10 48 0.0121

hsa04071 Sphingolipid signaling pathway 16 116 0.0153

hsa00020 Citrate cycle (TCA cycle) 7 29 0.036

hsa00190 Oxidative phosphorylation 16 130 0.036

hsa00340 Histidine metabolism 6 21 0.036

hsa00620 Pyruvate metabolism 8 38 0.036

hsa04728 Dopaminergic synapse 16 128 0.036

hsa04730 Long-term depression 10 59 0.036

hsa00564 Glycerophospholipid metabolism 13 97 0.0375

hsa04015 Rap1 signaling pathway 21 202 0.0375

hsa04962 Vasopressin-regulated water reabsorption 8 44 0.0478

2.3. Enriched Neural Functions of Theoretical Targets of Upregulated tRF5s

Given that many tRFs were uniquely upregulated and the ratio of the downregulated
mRNAs increased with SARS-CoV-2 infection compared to SARS-CoV infection, we utilized
tRF and mRNA expressions to identify tRF5 potential targets. We first performed theoretical
hybridization calculations of uniquely upregulated tRF5s with entire untranslated regions
(UTRs) of all coding transcripts.

Since most tRFs are longer than 30 nt, many mRNA UTRs have potential interaction
sites for tRFs, making genome-wide analysis practically impossible. Furthermore, unlike
the case for miRNA target prediction, there are minimal studies available for tRF target
prediction. While tRF target research is limited, we here implemented two features in
target prediction to reduce the number of potential theoretical interactions. First, we had
previously identified that the 3′-end (not the 5′-end) of tRF5-Glu-CTC is functional in
translational repression through targeting 3′ UTR [16]. Since we found that tRF5-Glu-
CTC was also upregulated with SARS-CoV-2 infection, we used this feature as the first
filter among all potential interactions between tRF5 and 3′ UTRs: 3′ UTR interacting with
the 3′-ends of tRF5s. Second, among these tRF5-target pairs, we further filtered targets
having simultaneous 5′ UTR interacting with the 5′-ends of tRF5s. In our earlier study,
we observed a stronger translation repression when there were simultaneous interaction
sites of miRNA with both the 5′ and 3′ UTR [17]. Since these sites are a subset of the
tRF5s-3′ UTR interaction pairs, our theoretically predicted targets may have certain biology
functions enriched, which would be meaningful in itself.

We then investigated the enriched functions of these theoretically predicted targets.
To reduce redundant target gene lists from similar sequence tRF5s, we chose representative
tRF5s as they were the most abundantly expressed among tRNAs translating the same
amino acids. All enriched functions identified by String-db of the theoretical targets of
these 6 representative tRF5s are shown in Table S1. All 6 tRF5 targets showed enriched
gene ontology (GO) biological processes and 51 GO terms were found to be enriched in
more than three tRF5 targets. Among these terms, we decided to focus on neuro or nerv
terms, since others are general terms like metabolic, localization, signal, development,
modification, and communication. Table 3 shows the enriched GO biological processes
containing neuro or nerv terms among the enriched functions in Table S1. Targets of four
tRF5s (tRF5-Glu-CTC-2-1, tRF5-Gln-CTG-2-1, tRF5-Leu-AAG-3-1, and tRF5-SeC-TCA-2-1)
had enriched neural GO terms. To understand the significance of enriched GO biological
processes, we randomly chose 1000 genes (average target number of the 6 tRFs = 995)
among expressed mRNAs (total number 20,924) in Calu-3 cell lines and checked their
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enriched functions. Among the 10 random 1000-gene sets, five sets showed GO biology
process terms enriched but none had neural functions.

Table 3. Enriched GO biological process terms including neuro or nerv for tRF5-predicted target genes.

Term ID Term Description tRF5 Name

GO:0001764 Neuron migration tRF5-Glu-CTC-2-1

GO:0007399 Nervous system development tRF5-Gln-CTG-2-1
tRF5-Glu-CTC-2-1
tRF5-Leu-AAG-3-1

GO:0007417 Central nervous system development tRF5-Glu-CTC-2-1
tRF5-Leu-AAG-3-1

GO:0010975 Regulation of neuron projection development tRF5-SeC-TCA-2-1

GO:0010976 Positive regulation of neuron projection
development tRF5-Glu-CTC-2-1

GO:0022008 Neurogenesis tRF5-Gln-CTG-2-1
tRF5-Glu-CTC-2-1

GO:0030182 Neuron differentiation tRF5-Gln-CTG-2-1
tRF5-Glu-CTC-2-1
tRF5-Leu-AAG-3-1

GO:0031175 Neuron projection development tRF5-Leu-AAG-3-1

GO:0045664 Regulation of neuron differentiation tRF5-Glu-CTC-2-1
tRF5-SeC-TCA-2-1

GO:0045665 Negative regulation of neuron differentiation tRF5-Glu-CTC-2-1

GO:0045666 Positive regulation of neuron differentiation tRF5-Glu-CTC-2-1

GO:0048666 Neuron development tRF5-Gln-CTG-2-1
tRF5-Glu-CTC-2-1
tRF5-Leu-AAG-3-1

GO:0048699 Generation of neurons tRF5-Gln-CTG-2-1
tRF5-Glu-CTC-2-1
tRF5-Leu-AAG-3-1

GO:0048812 Neuron projection morphogenesis tRF5-Leu-AAG-3-1

GO:0050767 Regulation of neurogenesis tRF5-Glu-CTC-2-1
tRF5-Leu-AAG-3-1

GO:0050769 Positive regulation of neurogenesis tRF5-Glu-CTC-2-1

GO:0051960 Regulation of nervous system development tRF5-Gln-CTG-2-1
tRF5-Glu-CTC-2-1
tRF5-Leu-AAG-3-1

GO:0051962 Positive regulation of nervous system
development tRF5-Glu-CTC-2-1

Interestingly, the remaining two tRF targets are enriched in GO biological terms related
to signal transduction. Among other enriched biological functions, targets of tRF5-Lys-
TTT-5-1 are enriched in the GO component Synaptic vesicle (GO:0008021), and those of
tRF5-Pro-TGG-3-5 are enriched in the KEGG Neurotrophin signaling pathway (hsa04772).
These theoretical targets are general ones not confined to specific cell types.

We then determined which predicted tRF5 targets (having theoretical interaction sites)
were also downregulated in Calu-3 cell lines with CoV2 infection but not with CoV infection.
Among the target genes involved in Table 3 GO terms (thus focused on neural functions),
the predicted targets from two or more of these 4 tRF5s which were also identified as
downregulated only in CoV2 infection (adjusted p < 0.05) were ABAT, BCR, DHFR, DPYSL3,
EEF2K, GLUD1, GRIN2A, HMGB1, MAPT, NDST1, NFIA, RIMS1, SEMA3C, STK25, and
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TACC1. While all other proteins are located mostly in the cell membrane or internal
compartment, SEMA3C is mostly located in the extracellular compartment and is one of
the ligands for NRP1 [18], which CoV2 uses as a receptor [8]. SEMA3C was predicted as a
target of tRF5-Leu-AAG-3-1 and tRF5-SeC-TCA-2-1.

3. Discussion

Our cell line data analysis shows unique upregulation of the tRF5 family with CoV2
infection, not seen in other viral infection studies. Consistent with our nasal sample
data from COVID-19 patients, tRF5-Gln-CTG and tRF5-Glu-CTC were also identified as
upregulated in lung epithelial cell lines (Calu-3). Since cell line data have fewer variables,
we identified additional upregulated tRF5s at 24 h after CoV2 infection. Most of these tRF5s
only increased with CoV2 infection while additional mRNAs were downregulated in CoV2
infection compared with CoV infection, suggesting tRF5 functions merit close scrutiny with
regard to COVID-19 research.

We greatly appreciate this kind of clearly defined paired sequencing data being pub-
licly available so that citizen scientists can do small RNA research to uncover additional
features with validation at each step. The unexpectedly highly upregulated tRF5s with
CoV2 infection aligned well with expression value changes of genes currently known to be
involved in tRF biogenesis. Only CoV2 significantly reduced expressions of TRDMT1, one
of the well-known tRNA methyltransferases blocking tRF generation, while CoV2 increased
expressions of DICER1 more than did CoV, possibly helping tRF generation. Having con-
firmed the close alignment of mRNA data with tRF biogenesis, we further investigated
mRNA expressions with regard to tRF functions to derive useful guidelines in future molec-
ular functional studies of tRFs, as well as to provide insight into COVID-19 symptoms.

Since our study focus is tRF5s, we investigated downregulated mRNAs in more detail.
General trends in mRNA changes due to both SARS virus infections were similar—cellular
responses that help viral replication. Enriched KEGG pathways for commonly downreg-
ulated mRNAs in both CoV and CoV2 included multiple metabolism-related pathways.
They also included functions to reduce various defenses such as lysosomes, peroxisomes,
and thermogenesis. Bacterial invasion of epithelial cells GO-term was also enriched among
these commonly downregulated genes, aligning well with the reduced co-infection among
COVID-19 patients compared with those with influenza [19], presumably due to reduced
competition with other pathogens during early infection. Enriched neurodegenerative
disease pathways among commonly downregulated genes may be related to keeping cells
alive for viral replication. CoV2 was reported to continuously replicate in Calu-3 cells even
72 h post-infection [20] and our analyzed data points were up to 24 h.

The enriched KEGG pathways of downregulated genes from CoV infection alone all
fell under these same categories. However, enriched KEGG pathways of downregulated
genes solely with CoV2 infection departed from these common features in ways such
as including the nervous system and signal transduction, mostly involving neural cells.
These changes were seen as early as 24 h post-infection of lung epithelial cells. While
both CoV and CoV2 infections clearly affect neurological symptoms and we observed
upregulated NRP1 in both CoV and CoV2 infections, the key difference between them is
the vast number of upregulated tRF5s. We propose that these upregulated tRF5s promote
further enhancement of CoV2 interactions with neural cells.

In our earlier study, we detailed the interactions of tRF5-Glu-CTC with target gene
APOER2 and identified the 3′-end of tRF5-Glu-CTC as responsible for protein reduction
through the APOER2 3′ UTR. Because only a few tRF5-target studies are available, we
decided to expand tRF5-Glu-CTC interaction patterns with APOER2 to all other tRF5
target predictions in this study. Additionally, we filtered the predicted targets to include
additional interaction with the 5′ UTR of the same gene. Therefore, our predicted targets
may miss other potential interactions. However, given the excess of possible targets for a
given tRF5, we believe that our filters serve as a good starting point for tRF5 target analysis.
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To our surprise, many target genes of upregulated tRF5 showed enriched functions
related to the nervous system, features that were seen in downregulated mRNAs only
with CoV2 infection. Since NRP1 has multiple functions in the immune system [21], NRP1
expression may increase to enhance CoV2 replication. In addition, given our finding
that the upregulation happens at an early infection time point, other mechanisms such
as compensating for reduced neural functions may also be at play. When we focused on
smaller groups of genes with neural functions, which are potential targets of multiple
upregulated tRF5s and downregulated in infection with CoV2 but not with CoV, we were
intrigued by SEMA3C. When we relaxed the distance criteria described in Methods from
19 nt to 16 nt, tRF5-Pro-AGG-2-6 also could target SEMA3C, which is expressed in most
tissue types.

We therefore suggest a model involving tRF5-SEMA3C-NRP1 with CoV2 infection
centered on neural functions. In Figure 3, the left panel represents the very initial CoV2
interaction, wherein most NRP1 receptors are occupied by other ligands such as SEMA3C
(green squares), reducing the ability of CoV2 to bind to NRP1. The right panel shows
CoV2 infection downregulating SEMA3C expression. With less SEMA3C, more NRP1
receptors are available for CoV2 binding, thus increasing the infection of other NRP1-
presenting cells, including respiratory and olfactory epithelium. This is one example of
highly upregulated tRFs possibly contributing to additional neurological symptoms not
seen in other viral infections.
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Some who recover from COVID-19 can experience long-term health effects (long
COVID). Long COVID includes a variety of ongoing symptoms, lasting months or years
and affecting different organs depending on the individual, and is thus not considered
one illness. There are clearly multiple mechanisms leading to long COVID, including
mitochondrial depletion [22]. Our findings point to a specific mechanism underlying
neurological symptoms associated with long COVID. Recently, disability-adjusted life
years (DALYs) were calculated based on 140,000 people who had COVID-19 compared
with 6 million non-infected controls at the 2-year mark post-COVID. Neurologic DALYs per
1000 persons were found to be the most abundant, followed by cardiovascular cases [23].
While there is no current cure for long COVID, it would be interesting to see whether the
tRF expressions are persistently enhanced in patients who have recovered from COVID-19.

Based on our paired data analysis, we suggest a model based on tRF5 upregulation
specific to CoV2 infection and enriched neural functions both in mRNAs specifically
downregulated in CoV2 and in theoretically predicted target mRNAs of the upregulated
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tRF5s. We have previously identified specific tRF5s upregulated in Alzheimer’s disease [24].
It seems that tRF5 functions are related to both infection and neurodegenerative diseases
and may provide further insight into unique neurological symptoms such as anosmia with
COVID-19.

4. Materials and Methods
4.1. Downloading Fastq Files from a GEO Dataset

We used gene expression omnibus (GEO) dataset GSE148729, which includes data
from bulk and single-cell polyA RNA sequencing, small RNA sequencing, and total RNA
sequencing of different human cell lines infected with CoV or CoV2 viruses. We se-
lected Calu-3 (human epithelial cells from lung tissue) cell line samples of small RNA
(GSM4477932 through GSM4477949) and total RNA sequencing data (GSM4477950 through
GSM4477967). These samples included two replicates per condition at 4, 12, and 24 h, with
appropriate controls at the 4 and 24 h time points. We used the fastq-dump command in
the SRA toolkit [25,26] to download fastq files.

4.2. Aligning Sequencing to Transcripts

We used cutadapt [27] to trim 3′-adaptor sequences and discarded read sequences of size
less than 15. The sequences trimmed from the small RNAseq data were AAAAAAAAAA and
TGGAATTCTCGGGTGCCAAGG, and the sequences trimmed from the total RNAseq data
were AGATCGGAAGAGCACACGTCTGAACTCCAGTCA for pass 1 and AGATCGGAA-
GAGCGTCGTGTAGGGAAAGAGTGT for pass 2, as referenced from Illumina. We used
bowtie2 [28] to align reads to reference sequences, allowing for one nucleotide mismatch
for small RNAseq analysis. The reference for small RNAseq was built from combined
small RNA sequences of (1) downloaded sequences of sno/miRNA tract using the UCSC
Table Browser [29] and (2) prepared tRFs from 33 unique nucleotides of 5′-end of tRNAs
(tRF5) and those of 3′-end (tRF3) as well as upstream pre-tRNA sequences (tRF1) of mature
tRNAs. To build tRF references in more detail, we downloaded all tRNA identified from
UCSC genome browsers and used the tRNA names as their root names. 33 nt is 1-4 nu-
cleotides longer than most tRF5s and, based on years of observation, enough to effectively
identify the tRFs using botwtie2 software (version 2.4.1). 53.5% of tRF5s were identified as
redundant sequences and were thus removed, keeping only representative ones. For tRF3
references, we did not include ACC, the mature tRNA-added sequence, at the 3′-end. To
build the reference for total RNA mapping, we downloaded NCBI RefSeq transcripts using
the UCSC Table Browser. The mapped sequences were then processed using SAMtools [30]
commands view, sort, index, and idxstats to obtain read counts for each transcript. Figure 4
shows the schematics of the process.

4.3. Differential Expression Analysis

We used DESeq2 [31] to identify differentially expressed small RNAs and mRNAs.
Expression data at time points of 4, 12, and 24 h after infection were compared with the
expression data of mock 4 h samples to keep the same reference point due to missing 12 h
mock data. We separately used 24 h mock as a reference for the 24 h infection samples and
compared the results to confirm that the results using the 4 h mock were valid (the top 12
most significantly upregulated tRF5s were the same except for one per each analysis; all
were top-ranking upregulated tRF5s). Normalized expression values were also obtained
using the DESeq2 process to generate heatmaps.

4.4. Involving Student Scientists

We invited high school students who had performed transcriptome analysis for over
a year and reached conclusions on their research to join weekly RNAseq data analysis
sessions with undergraduate mentors. After the students understood the research project,
they divided the samples and performed specific steps of RNAseq data analysis each week,
reporting their progress in a shared document. To ensure the quality of data analysis,
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students compared their results with those of counterparts during the weekly sessions after
independently analyzing data. The results from the students’ individual analyses were
reproduced using shell scripts for validation. All the confirmed results were used here
and those who had processed data following all steps were invited to finalize this research
as authors.
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4.5. tRNA Methyltransferase Collection

We used UniProt [14] to identify tRNA methyltransferase. To specify the search
terms, we used advanced search with function -> Enzyme classification [EC] value of
Methyltransferases [2.1.1.-] and Keyword [KW] of tRNA* for human, yielding these 25 pro-
teins: C14orf172, FTSJ1, H_YH95C04.1, LCMT2, METTL1, METTL2A, METTL2B, METTL6,
METTL8, NSUN2, NSUN3, THUMPD3, TRDMT1, TRMO, TRMT1, TRMT10C, TRMT11,
TRMT13, TRMT1L, TRMT2A, TRMT2B, TRMT44, TRMT5, TRMT61A, TRMT61B, TRMT9B,
and TYW3.

4.6. Candidate Target Prediction

We downloaded 5′ and 3′ UTR of the NCBI RefSeq using the UCSC Table Browser.
We then selected tRF5s differently expressed with SARS-CoV-2 infection and determined
tRF5 sequences from the most abundant sequence reads in the bowtie2 analysis among the
reads mapped to the initial 33-mer tRF5 database. We first used RNAhybrid [32] to identify
all 5′ or 3′ UTR sites interacting with these tRF5 sequences with a hybridization energy
of less than −25 kcal/mol. Next, we selected pairs with consecutive sequence matches
of 8-mer or more. These tRF5-mRNA pairs were further narrowed down in two ways:
(1) 3′-end sides of tRF5s interacting with 3′ UTRs [16] and (2) among these, 5′ UTR of the
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same mRNA interacting with the same tRF5 [17], but from the other side of the tRF5 and
at least 19 nt away the 3′ UTR-interacting 8-mers. Note that our target prediction process
yields a tRF5-target subset of conventional tRF5 interactions with 3′ UTR.

4.7. Enrichment Testing of tRF5 Targets

Since tRNAs carrying the same amino acid can have highly similar sequences, some
tRF5s also have similar sequences, potentially leading to similar predicted targets. To avoid
over-counting enriched functions among these potential targets, we chose representative
tRF5s as they were the most abundantly expressed among tRNAs translating the same
amino acids. We then analyzed enriched functions of these representative tRFs for the top
10 significant tRF5s using String-db [33].
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