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Abstract: Control theory, a well-established discipline in engineering and mathematics, has found
novel applications in systems biology. This interdisciplinary approach leverages the principles of
feedback control and regulation to gain insights into the complex dynamics of cellular and molecular
networks underlying chronic diseases, including neurodegeneration. By modeling and analyzing
these intricate systems, control theory provides a framework to understand the pathophysiology and
identify potential therapeutic targets. Therefore, this review examines the most widely used control
methods in conjunction with genomic-scale metabolic models in the steady state of the multi-omics
type. According to our research, this approach involves integrating experimental data, mathematical
modeling, and computational analyses to simulate and control complex biological systems. In this
review, we find that the most significant application of this methodology is associated with cancer,
leaving a lack of knowledge in neurodegenerative models. However, this methodology, mainly
associated with the Minimal Dominant Set (MDS), has provided a starting point for identifying
therapeutic targets for drug development and personalized treatment strategies, paving the way for
more effective therapies.

Keywords: control theory; systems biology; neurodegenerative diseases; genome-scale metabolic
networks

1. Introduction

Over the years, the growing knowledge on the key molecular and cellular mechanisms
of many diseases has led to the transformation of medicine into a proactive discipline that
is focused on being predictive, personalized, preventive, and participatory, which is known
as P4 medicine. This approach aims to achieve the early diagnosis of human diseases
and to reduce costs in the health sectors [1]. However, for most pathologies, the currently
used therapies have been developed based on experimental trials somehow limited by
a traditional reductionist approach and clinical trials involving large cohorts, where it is
usually assumed that participants will all respond similarly to the same environmental or
molecular perturbation. In most cases, this approach does not take into consideration that,
for instance, genetic diversity and environmental factors can trigger differential responses
among individuals [2]; this situation could cause difficulties in the successful identification
of treatments, which also depends on the complexity of the disease itself. Therefore, there is
an increasing need for the identification of reliable targets that will enhance our predictive
power [3,4].
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Complex diseases such as neurodegenerative diseases (NDs) lack therapies to stop
their progression, as they involve multiple pathogenic determinants, where genetic, envi-
ronmental, and behavioral factors contribute to the progressive cellular death and loss of
neurons in the brain [5,6]. This is of course the case for the major NDs studied so far, in-
cluding Alzheimer’s disease (AD), amyotrophic lateral sclerosis (ALS), Parkinson’s disease
(PD), and Huntington’s disease (HD) [7–9]. In general, traditional studies have determined
that these diseases share some characteristics [6]. Therefore, experimental analyses and
studies have been focused mainly on some of those few well-known key elements; this
type of approach has been derived from our partial understanding of the mechanisms and
pathways associated with these types of pathologies [10]. The above means that therapies
currently intend to reduce or lessen the severity of ND diseases; however, they do not
target the causal elements of the pathologies but rather those merely related to, for instance,
their symptoms. However, an optimistic future for revealing causative pathogenic events
relies nowadays on the integration of highly multidimensional omics (i.e., genomic, tran-
scriptomic, and proteomic data) coupled with modern computational approaches, such
as systems biology approaches, capable of handling large biological datasets and finding
subtle networked relationships between heterogeneous information [6].

Neurodegenerative diseases present a high heterogeneity, which means that there
is a high burden in their progression, pathology, and clinical presentation [11–13]. The
heterogeneity observed in neurodegenerative diseases is due to their multifactorial causes,
such as genetic factors, lifestyle, and even environmental factors [13]. Multiple studies
have determined that this heterogeneity is a confounding factor for understanding these
diseases, and, consequently, the development of treatment has been a great challenge to
date [11–14].

In this sense, due to the complexity of NDs and their heterogeneity, the advent of omics,
the increasing availability of omics data, and the widespread plethora of computational
tools in databases have allowed systemic studies to better understand the mechanisms
associated with the biological response to diseases [15–17]; this has enabled the develop-
ment of a comprehensive vision of complex phenotypes, exemplified by computational
representations of whole cellular metabolism, such as in the case of genome-scale metabolic
networks (GEMs) [18–21]. These GEMs, which are mathematical representations describing
a complex set of mass stoichiometrically balanced metabolic reactions of an organism or cell,
have been established as one of the main modeling approaches for systemic studies [22,23].
In addition, this approach also permits the use of annotation associations that serve as
the basis for the integration of omics data [24] and make use of linear optimization tech-
niques to integrate models and therefore predict cellular behaviors, as well as underlying
biochemical mechanisms of disease [25].

There are different approaches to perform GEMs. Conventional methods used to
integrate them have shown to provide a biased view of a phenotype, since they restrict
the solution space to a reference state, which limits the impartial understanding of the
dynamics and regulatory mechanisms of biological systems [26,27]. Some authors have
illustrated the selection bias of COBRA methods, including methods such as flow balance
analysis (FBA), which require the selection and optimization of a function to identify the
metabolic phenotype [28,29]. FBA is the most basic biased method used for simulating
metabolism [30], since it optimizes via linear programming, finding a solution in the
solution space of a single possible metabolic phenotype [21]. However, in some cases, the
metabolic phenotype identified may not reflect the reality of the metabolic network [28,30].

To overcome this limitation, a methodology is required that can take into consideration
the state variables of a high-dimensional system, such as a complex biological network.
Furthermore, it is important that such a methodology can identify the groups of minimal
controlling reactions that directly or indirectly control the cell system behavior without
prior knowledge of cell targets. This goal can be achieved through the application of control
theory [31–35]. In this context, control theory methods provide an ideal framework for
analyzing the ability of complex networks to intervene in the biological system through
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appropriate control signals [35]. However, few studies have used these control methods
on multi-omics GEMs to predict controller reactions and their possible implications as
therapeutic targets for the diagnosis, prevention, and treatment of chronic diseases [26,36].

Considering the above, this review examines the most widely used control methods
in conjunction with genomic-scale metabolic models in the steady state of the multi-omics
type. In addition, this work provides an overview of their applications in human chronic
diseases, and its possible extrapolation in processes of cognitive deterioration is proposed.

2. Results and Discussion
2.1. Systems Biology, Genome-Scale Metabolic Models (GEMs), and Omics

Systems biology aims to describe and analyze the emergent properties that arise from
complex interactions in a biological system [37]. From an interdisciplinary perspective,
systems biology has been driven by computational advances that use mathematical models
to perform quantitative molecular measurements and predictions [20,38]. Although sys-
tems biology is still considered a recent approach for the study of biological complexity,
it has provided a powerful means for obtaining a holistic understanding of biological
systems, including cells, organisms, and even communities [39,40]. This has led to a shift
in the scientific approach in which the contextualization of computational modeling with
omics data (transcriptome, proteome, and genome data, among others) offers a better
understanding of cell growth, adaptation, development, and even disease progression [41].

The advent of omics through technological advances such as transcriptome sequenc-
ing (RNA-seq) [42], SNP-chip profiling [43], and whole-genome or meta-genome next-
generation sequencing [44,45], among others, has largely ensured a more approximate
description of biological reality [38]. Nevertheless, given the large amount of data typically
generated by these methodologies, as well as their heterogenous nature, there is a lack of
approaches that allow for the integration of this information into a complete and holistic
view of the biological system under study, which remains a significant challenge that
represents a bottleneck for all multi-omics studies.

To date, perhaps one of the most reliable approaches being widely implemented
for such data integration into a holistic view of the metabolic phenotype is GEMs [20].
GEMs are mathematical representations of cellular metabolism that not only encompass
our understanding of the physicochemical states of cells but also have the capability to
incorporate dynamic/kinetic information. Depending on the specific case, these models
can be solved using systems of equations (differential or partial) [31,40,46], or they can be
steady-state models that are based on the principle of mass balance and do not require
kinetics information [47,48]. Regardless of the type of modeling, the biological system
is represented as a set of metabolic reactions and extensive data related to associated
cellular behavior rules that facilitate predictions of genotype–phenotype relationships
(Figure 1) [40,49,50].

The most well-known association rules in GEMs are the gene–protein–reaction (GPR)
rules that, in general, describe the set of gene expression dependencies necessary for
a biochemical reaction to take place inside a cell. In these GPR rules, each reaction is
associated with one or more enzymes that are, in turn, encoded by a specific gene or a
set of genes, depending on whether the reaction-catalyzing enzyme is coded for by one,
two, or more genes. Overall, these sets of rules are the bases for the integration of different
omics data into GEMs [51,52], since it is possible to translate transcriptomic, proteomic, or
even metabolomic data into different gene state rules. This approach has been widely used
in the clinical field, where studies have focused on identifying biomarkers and predictive
targets, as seen in the diagnosis of congenital errors [53], neuropsychiatric diseases [54], or
markers of hypoxia in erythrocytes [55,56], among others. However, there are still many
challenges for system modeling and omics integration [40], mainly because this integration
into GEMs (especially dynamic ones) is typically limited to well-defined systems.
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Therefore, the use of steady-state models has shown to be a good approximation
strategy to estimate the study of the metabolic phenotypes of cells or organisms according
to their environmental and intrinsic conditions [57,58], and, hence, these models can be
integrated by the same means. This integration is generally performed by means of a linear
optimization approach [59]. In this regard, one of the most widely used methods to integrate
these models is FBA (Figure 2A) [60,61]; this method assesses intracellular fluxes to predict
cellular metabolic changes under thermodynamically feasible states, considering specific
environmental conditions, which help constrain the optimization solution space [4,59,62,63],
and, thus, it better reflects the biological conditions of the system. Overall, these conditions
aim to optimize the biologically relevant objective function for the cellular metabolism
under study [40].

While GEMs have traditionally been restricted to the study of metabolic changes for
single-cell simulations, at least from 2013 [64], several research efforts have been made
to extend this approach not only to the study of whole cellular communities but also to
the incorporation of several layers of biological information into a single modeling frame-
work. This has inspired the use of a wide variety of complementary analyses, including
functional enrichment [65], protein–protein interaction [66], and gene regulatory network
analyses [67], among others. The systems biology approach has played a pivotal role in
laying the groundwork for the development of multilayer networks, which have led to
the prediction of, for example, dietary supplements for Crohn’s disease with metagenomic
data [68], the modeling of the effect of drugs available on the market in human metabolism
and their multitarget effects on diseases of interest [4], and studies of the human intesti-
nal microbiome and its relationship with specific effects on multiple organs and chronic
diseases [69].

The preceding provides an insight into the usefulness of the systems biology approach
and GEMs to (1) integrate regulatory information, as well as other types of biological
information, into a single computational framework and (2) transform this information into
regulatory and biological rules that better reflect multiple cellular processes at different
time and spatial scales.

These characteristics of GEMs have allowed them to become integration tools for
constantly improving omics data and cellular behavior prediction, expanding not only the
field of bacterial biotechnology applications but also the field of personalized and precision
medicine in more complex organisms, such as humans.
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Figure 2. Flow balance analysis (FBA) scheme and representation of the flow coupling graph. (A) The
metabolic network consists of a list of stoichiometrically balanced biochemical reactions (R1, R2,
R3, Rn). This type of reconstruction can be represented mathematically by a stoichiometric matrix
(S) of size m × n composed of its reactions and metabolites. The steady-state flow distribution is
defined by the equation S*v = 0, where v is a flow vector. According to the objective function of
interest, maximization or minimization is performed; optimization allows for the finding of the
flux distribution that enables the optimal solution for this objective function while observing the
restrictions given the principle of mass balance and the limits of reaction [21]. (B) The application of
control theory starts from the use of matrix S. The vertices represent reactions, and the labeled edges
represent the five coupling relationships (represented by different colors; see legend). The steady-state
principle implies that some reactions operate in a concentrated manner, leading to reaction coupling
relationships. Reaction i is directionally coupled with j if σj v = 0 implies σi v = 0. Partial coupling is a
particular case of directional and full coupling: two reactions, i and j, are partially coupled if they
have the same state. If one of the two reactions is inactive, then a steady-state flux is only possible
if the other reaction has a non-zero flux, which would define two anti-coupled reactions. Finally,
reaction i couples inhibition with reaction j if the maximum flux of reaction i implies that j is inactive.
The above can be summarized as follows: (1) the directional and total (or active) flow of R1 leads to
the activation of R2 and R3 and the inactivation of R4 and R5; (2) the inactive flow of R1 leads to the
deactivation of R2 and the activation of R4 and R5; (3) the inactive flow of R1 leads to the activation
of R2 and the deactivation of R4. Taken and modified from [29].

2.2. Key Steps for Performing a Reconstruction of Genomic-Scale Metabolic Models (GEMs)

The reconstruction of genome-scale metabolic models (GEMs) is a systematic process
involving several key steps. The process is divided into (a) genome annotation, (b) envi-
ronment specification, (c) biomass formulation, and (d) model curation (the elimination
of leakage metabolites and the checking of gaps, among others) [25,70]. GEMs provide a
framework for mapping species-specific knowledge and complex omics data to metabolic
networks, and when combined with constraint-based reconstruction and analysis (COBRA)
methods, such as flux balance analysis (FBA), they facilitate the translation of hypotheses
into algorithms that can be used to generate testable predictions of metabolic pheno-
types [21,25]. These algorithms allow for the generation of testable predictions of metabolic
phenotypes, such as growth rates or responses to environmental conditions. The ability
to experimentally validate these predictions reinforces the utility of GEMs in biological
research, providing powerful tools to explore systems biology, formulate new hypotheses,
and advance practical applications in biotechnology and medicine [4,20].
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2.2.1. Inference of Enzymes, Reaction Directionality, and Compartments

As mentioned above, the first stage in building a genome-scale model involves an-
notating the genome to generate an initial list of functions or reactions. In this process,
open reading frame regions are searched for and identified in the genome of the sequenced
organism, which is linked to the relevant gene–protein–reaction rules (GPRs). These GPRs
are associated with specific enzymatic behaviors in a substrate, which can generate key
metabolites [21,63].

According to Pitkanen and collaborators [71], an essential part of the specification
of a metabolic model intended for computational analysis involves the determination
of the reversible and irreversible transport reactions, the corresponding compartments,
and connectivity, that is, the metabolic pathways that the model must contain. Two ap-
proaches related to enzyme prediction and compartmentalization stand out: automatic
prediction and transfer annotation, which are derived from the reconstruction approach
using comparative or exploratory methods [20,71].

The comparative method is used to predict metabolic pathways based on a previously
functionally annotated genome or an existing model of a standard organism. This technique
uses enzyme hierarchies (ECs), gene names, and generated products as input, followed by
preliminary curation, which involves comparing information in databases from various
species [72,73].

The selection of reference pathways is driven by the Bayesian probability of occurrence.
This decision considers the pathways’ availability in databases and their suitability for the
model. Despite its merits, this method can introduce information gaps stemming from the
absence of reactions or enzymes unique to the target model. To address this, the Bayesian
probability model incorporates additional information, such as BLAST scores, genomic
context, and functional data [74,75].

Functioning as an annotation-by-reference framework, this approach involves anno-
tating and curating the target genome in comparison to a reference genome. Furthermore,
an alternative methodology, rooted in the comparative method, has been proposed. This
method leverages orthologous associations between the genome of the standard organ-
ism and that of the target organism. This innovative approach enables the inference of a
new model for a closely related or phylogenetically linked species. It capitalizes on the
correspondence between organisms to establish connections between metabolites across
compartments through gene associations and reversible enzymatic reactions, as outlined in
prior studies [76,77].

Therefore, it is important to define the biomass objective function. The biomass
objective function is a mathematical representation of the growth requirements of a cell that
describes the rate at which all of the biomass precursors are made in the correct proportions.
It is used to computationally predict cell growth [20].

The growth rate can be obtained from the biomass flux by using the biomass yield
coefficient (Yx/s), which is the ratio of the biomass produced to the substrate consumed.
The growth rate (µ) is equal to the biomass flux (v) divided by the biomass yield coefficient:

Y
x
s

, or µ = v/Yx/s (1)

Therefore, predicting the flux rate of organisms involves the simulation of metabolic
fluxes in the system, an essential process that directly influences growth rate predic-
tions [78]. Predicting the flux rate of organisms involves sophisticated methods, such
as metagenomic growth estimators, which, together with genome-scale models, represent
essential approaches for understanding microbial dynamics in diverse ecosystems [78,79].
Metagenomic growth estimators have been designed to estimate the growth rates of mi-
croorganisms using the intrinsic characteristics of microbial genomes and discrete metage-
nomic samples, allowing for non-invasive assessments of microbial expansion in natural
environments [80,81].
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The estimation of specific growth rates involves kinetic models based on cellular
growth kinetics, enabling the prediction of growth rates across various organisms and
conditions. Gene expression signatures enhance prediction accuracy by assessing the
expression of a specific gene set [82,83]. Optimal growth temperature prediction utilizes
genomic sequences to predict growth temperatures in prokaryotes, leveraging genomic
adaptations to their environment [30,84]. Additionally, machine learning techniques, such
as k-nearest neighbors’ regression, facilitate the construction of predictive models for
growth rates using gene expression data [83]. These diverse methods, ranging from genomic
data-driven approaches to machine learning approaches, showcase the precision and
versatility of contemporary strategies for predicting flux rates in diverse biological contexts.

2.2.2. Tools for Genomic-Scale Metabolic Model Reconstruction

In the process of reconstructing genome-scale metabolic models (GEMs), both auto-
matic and semi-automatic tools are used. These tools play a crucial role in automating
and facilitating the compilation of information necessary to build detailed models of the
metabolic networks of organisms [25,63,85]. Automatic tools perform reconstruction tasks
fully automatically, while semi-automatic tools provide an interactive interface that allows
user intervention in specific steps of the process. This combination of automated and
semi-automated approaches streamlines GEM reconstruction, enabling more efficient and
accurate analyses of complex metabolic interactions at the genomic level [86,87].

The tools employed for reconstruction encompass a variety of widely used methods,
as illustrated in Figure 3.

Figure 3. A simplified representation of the steps required in the construction of a GEM. This process
involves the use of various databases, including but not limited to KEGG and UniProt, and it may
involve a reference model.

1. RAVEN Toolbox (Version 2.8.6.0) (Reconstruction, Analysis, and Visualization of
Metabolic Networks): RAVEN, a MATLAB-based tool, is critical in enabling constraint-
based metabolic modeling. It facilitates the semi-automatic reconstruction of prelimi-
nary de novo models for specific organisms from the genomic sequence. RAVEN offers
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two distinct approaches to initiate GEM reconstruction: based on protein homology
to an existing template model or de novo using reaction databases [88].

2. GPRuler (Version 3.7): An open-source framework, GPRuler (Version 3.7) efficiently
automates any living organism’s GPR rule reconstruction process. This framework
has been validated in various case studies, demonstrating its ability to reproduce
original GPR rules with high accuracy. The applicability and accuracy of GPRuler
make it a valuable tool for generating accurate models [89].

3. Methods for the automated reconstruction of genome-scale metabolic models: These
methods, addressed in a review, discusses various tools and algorithms for the rapid
reconstruction and analysis of metabolic models at the genomic scale. They highlight
the importance of GEM reconstruction in supporting predictive analysis and the
characterization of genomes based on sequence data. These reviewed and critical
approaches provide a comprehensive view of the current state of available tools [90].

The reconstruction of genomic-scale metabolic models (GEMs) utilizes automatic
and semi-automatic tools, with the COBRA Toolbox (Version 2.8.6.0) being a prominent
choice. This MATLAB-based toolbox, representing constraint-based analysis and recon-
struction, offers specific functions for modeling and simulating biological systems. Func-
tions like flux balance analysis (FBA) and other constraint-based methods are available
within the COBRA Toolbox, empowering researchers to efficiently reconstruct and analyze
metabolic networks [25]. These streamlined tools enhance the reconstruction process, pro-
viding researchers with accessible and powerful resources for understanding genomic-scale
metabolic systems.

2.3. Classification of Genome-Scale Models: Steady-State and Dynamic Models

Throughout this review, we highlight significant advances in understanding the inter-
actions between molecular components in an organism. Currently, it is possible to infer, to
some extent, the topology of a metabolic network, although the parameter dependence and
dynamics of such networks still generate ongoing debates [78]. Nevertheless, the connec-
tion of observations has been achievable, such as the flux rate, control mechanisms, and
heterogeneity in genetic expression, through a mathematical description. This goes beyond
optimal metabolic fluxes, addressing the joint distribution of metabolic fluxes [78]. Conse-
quently, the modeling of metabolic networks can be approached in two ways depending
on the amount of experimental information available: through static or dynamic models.

2.3.1. Steady-State Metabolic Models

Although the study of static models and their response to stimuli presents challenges,
this approach helps simulate the perturbation of a system in a stable or homeostatic
state [91,92]. Formulating static models in a system can be achieved in two ways. In the
first, enzymatic reaction rates equal to zero are assumed, which describe, for example,
thermodynamic cycles in equilibrium. According to their functional annotation, this
approach is known as the null space to the right of the stoichiometric matrix containing the
flux distributions of enzymatic reactions [78].

As detailed later, the stoichiometric matrix, S, represents a linear transformation of a
flux vector to a time vector, t, derived from a concentration vector that is equal to zero, thus
defining the null space [21,93]:

Sv = 0 (2)

Then, in the steady state, all flow distributions reside in the null space, defined
with a dimension of n-r. In this model, there is no accumulation or depletion of mass,
meaning that the production rate is equal to the consumption rate in the metabolic network.
This balance is expressed by Equation (2) [22,93]. The numerical integration of the mass
balance (stoichiometry) allows for the specificity of the stimulus to be analytically analyzed
according to the study’s objectives.
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Mass balance models are based on identifying a subset of elements and evaluating
them as variables that can be expressed as linear equations [91,92]. These equations span
an infinite number of bases for a linear space, and methodologies such as Singular Value
Decomposition (SVD), which provides unbiased information about all subspecies of the
stoichiometric matrix (S), can be used (Figure 4).
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Figure 4. Matrix S of size 5 × 7 illustrates the proportionality of the chemical species at a given time,
multiplied by the flux vector. This flow vector is the set of paths participating in the objective solution.
The result is the calculation of a vector of zeros, which allows us to assume an equilibrium state of
the model where there is flow in the system. However, there are no changes in the concentration of
the metabolites.

Static network modeling aims to predict interactions between drug molecules and
target proteins through shared components, facilitating information transmission across
network layers. For instance, diseases can be linked via shared genetic associations, gene-
disease interactions, and disease mechanisms. This approach establishes connections
between diseases through shared genes, enabling drug repurposing opportunities [94]. In
the study in [95], a static network model predicted the phenotypic effects of perturbations
in biological networks, focusing on gene, protein, and drug interactions. The model
utilized three networks: EGFR/MAPK and PI3K/AKT from an experimental study, the
TNF regulatory network from the STRING database, and a comprehensive NCI-selected
pathway network from the interaction database proteins. The algorithm, based solely
on the static network structure, predicted the regulatory effects on proteins/genes when
perturbed (e.g., by inhibiting a drug). Despite its simplicity and lack of temporal dynamics,
the algorithm demonstrated surprising effectiveness, accurately predicting protein/gene
upregulation or downregulation in up to 82% of cases [95].

However, a potential limitation of static network modeling is that dynamic metabolic
behaviors in patients may lead to changes in gene expression levels, which may invalidate
interactomics in static modeling [20]. This limitation underscores the need for dynamic
models to map regulatory relationships between molecules, especially in the context of
changes in gene expression levels.

2.3.2. Dynamic Models: A Comprehensive View

For the most part, the set of reactions in a metabolic model is described by differential
equations, allowing for the dynamics of the model processes to be inferred. Biological
networks, rich in feedback, facilitate the development of dynamic models (Equation (2)).
These models are based on reaction rate equations, which describe the temporal change
in molecular populations in the system [23,78]. The rate equations follow the rule that
reactions that affect the concentration of a species are reflected as source terms. In [96],
the equivalence of deterministic and stochastic methods and the importance of stochastic
fluctuations were demonstrated, especially in small systems.

dx
dt

= S × v (3)
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Computational advances like the Monte Carlo dynamic probability method and tau-
leaping algorithms have improved modeling and analysis. These models allow for the
construction of multiscale representations of biological networks, integrating knowledge
of specific static and dynamic component functions [97]. Dynamic models are helpful in
various protein analyses, such as understanding crop growth and considering plant carbon
accumulation and carbon source utilization models. However, we will not go into them
in detail.

Applying algorithms and dynamic models in biology provides dynamic information,
such as gene expression in different pathways. It extends to fields such as the study of
crop growth, highlighting their essential role in the understanding of complex biologi-
cal processes.

2.4. Topological Parameters for Identifying Drug Targets in an Enzyme-Centric Network

In systems biology, the study of molecular interactions often involves the analysis
of topological parameters such as motifs and groups within biological networks. Motifs,
recurring patterns in these networks, and clusters, groups of densely connected nodes,
offer insights into functional relationships [98,99].

Analyzing topological parameters, such as centrality, motifs, and clusters, and iden-
tifying drug targets in enzyme-centric networks have been revealed as crucial tools for
anticipating targets in biological systems. These parameters include global properties
that identify significant nodes, such as centers and clusters, and groups of nodes that
appear more frequently (motifs) and are more closely connected (clusters). Representing
drug–target interactions in a network improves the understanding of complex relation-
ships, and applied topological methods leverage theories of brain self-organization [98].
Studying perturbation patterns in biochemical networks provides opportunities for drug
development, and combining algorithms using ensemble approaches improves prediction.
Integrating multiple topological methods is a promising strategy to advance drug target
prediction, underscoring the importance of holistic approaches in future research [99,100].

In a study on cancer metabolic networks, drug targets were identified using an enzyme-
focused network clustering analysis. The results showed that the drug targets gathered in
a specific group of an enzyme-centered network of cancer cells. However, authors such
as [99,101] recently used topological methods to predict drug targets by taking advantage
of a brain network self-organization theory. The authors demonstrated the application of
topological methods to predict drug targets by leveraging a brain network self-organization
theory, highlighting a network representation of drug–target interactions in a biosystem to
improve the understanding of the multifaceted modes of action of drugs and to suggest
a therapeutic change for approved drugs. The results showed that the topology ade-
quately exploited by the local community paradigm (LCP) theory, initially detected in the
topological self-organization of the brain network and generalized to any complex net-
work, can suggest highly reliable predictions, comparable to the state-of-the-art supervised
methods [101].

The above underlines the potential of topological methods, particularly LCP theory, to
predict drug targets within biological networks and demonstrates the relevance of such
approaches in systems biology and drug discovery. These methods can reduce reliance
on labor-intensive experimental approaches and provide a more complete understand-
ing of drug mechanisms of action. However, limited search results specifically address
the combination of topological parameters, enzyme-centric networks, drug targets, and
the brain.

2.5. Genome-Scale Metabolic Models (GEMs) and System Controllability

Control theory is a multidisciplinary framework that combines engineering and math-
ematics to describe the behavior of dynamic systems [102,103]. In the mathematical branch,
control theory provides a basis for understanding how systems respond to inputs and
how to manipulate those inputs to achieve specific outcomes [104,105]. In biology, living
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organisms are complex systems that exhibit intricate control mechanisms to carry out phys-
iological functions, respond to stimuli, and maintain homeostasis. Therefore, this theory
offers a way of analyzing a metabolic system in terms of metabolic pathway signaling and
genetic interactions—either from the internal state of the system or under environmental
perturbations [106].

In the 1970s, research groups led by Michael Savageau and Henrik Kacser elucidated
methods for analyzing the control of metabolic fluxes and enzyme activities using a local
parametric sensitivity analysis [106]. However, it was the group of Henrik and Burns that
applied a standard linearization technique to address the field of steady-state models, which
is called metabolic control analysis (MCA) or metabolic control theory (MCT) [106–108].

In 2009, ref. [109] established a connection between metabolic control analysis and
control theory. In this pioneering work, the researchers explained how the overall theory
aimed to link steady-state changes in individual pathway components to steady-state
changes in the systematic behavior of the network through a methodology called metabolic
control analysis (MCA). The theory was motivated by the rationalization that metabolic
flux is not controlled by one rate-limiting enzyme, but rather the control is shared by
all, or perhaps a significant subset, of the enzymes in the network. MCA quantitatively
rationalizes the underlying mechanisms by which an enzyme exerts a degree of control
over the concentration of a metabolite shared between metabolic pathways [107]. This is
determined by flow and concentration control coefficients [106,110,111]. Therefore, we can
define MCA as a tool whose central concept is the notion of control coefficients (coefficients
that quantify the sensitivity of a particular variable, for example, the concentration of a
metabolite or a flow rate). Since then, MCA has become a powerful tool in systems biology,
applied to understand various biological processes, including cellular metabolism.

2.6. MCA Can Be Applied to Both Dynamic and Steady-State Genome-Scale Metabolic Models

Numerous investigations in metabolic engineering have focused their efforts on un-
derstanding dynamic control, guiding the options for the possible functioning of various
metabolic systems [109,112,113]. In general, dynamic metabolic control offers advantages
over other control strategies, which is why it has been a widely used approach [109]. There
are multiple perspectives of dynamic control, such as open-loop control, which involves
predetermined metabolic control actions that are not necessarily feedback-based [114].
Moreover, authors such as [113] have established a two-step methodology involving multi-
ple stages of regulation. This methodology determines homeostatic cell patterns induced
(under conditions of interest) to activate production pathways that would otherwise retard
growth [115].

Regardless of the type of dynamic control approach, multiple authors have noted that
dynamic control offers advantages over static control by allowing real-time adjustments
and the optimization of metabolic fluxes in order for systems to adapt to variable conditions,
to optimize productivity more effectively, and to improve the robustness and stability of
metabolic pathways [109,115]. Furthermore, the advantages of using dynamic models
are associated with the depth perspective of cellular processes and their responses to
disturbances [116]. Likewise, the combination and integration of omics data help to unravel
cellular processes and to obtain detailed information of the process, enabling computational
simulation experiments to be carried out and addressing biological questions in a controlled
and reproducible manner [112].

In 2021, ref. [117] described in detail that dynamic metabolic control can be ap-
plied to a diverse set of metabolic pathways that regulate metabolite concentrations over
time [109,118]. This involves conservation relationships and external parameters, among
others, leading to the characterization of control and connectivity matrices that can be used
to model the enzymatic kinetic uncertainty of biological models [119].

Examples of biological processes that have been better understood through dynamic
modeling include metabolic pathways and regulation, providing insights into the dynamics
of metabolic fluxes and their coordination [116,120]; transitions between different phases of
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the cell cycle [112]; the dynamics of the immune response (including interactions between
immune cells, cytokine signaling, and the regulation of immune system activation) [118];
and brain electrical activity models, where information has been obtained through the
complex patterns of neuronal activity [103,121,122].

Dynamic metabolic models have their own limitations when applying control theory.
First, the computational complexity, particularly given by ordinary differential equations
(ODE), demands substantial time and computing power [106,123,124]. Second, parameter
estimation requires well-curated estimates of kinetic parameters, which can be challenging
due to the lack of available information to date, introducing additional uncertainty [106].

However, recently, researchers have opted to use steady-state metabolic models. The
advantages of working with steady-state models and control theory lie in their “simplicity”
since it is assumed that the system has established an equilibrium, simplifying the mathe-
matical representation and reducing computational power [125]; computational efficiency
implies a reduction in time and computational resources compared to dynamic models.
Additionally, steady-state models can predict flux distributions in the metabolic network
under steady-state conditions with high statistical confidence [123].

Steady-state models at the genome scale can be analyzed using control theory. MCA
provides tools and techniques for understanding biological control strategies to regulate
metabolic fluxes and optimize system performance [105,124]. In recent decades, methods
have been developed to determine the control elements of a system in a stationary state.
Recently, authors such as [29,32] have used approaches that involve flow coupling between
reactions, where the activity of one reaction is controlled by directly manipulating another
coupled reaction.

Constraint-based modeling provides a framework to investigate metabolic states and
define metabolic phenotypes through multi-omics data integration; it imposes known
biological constraints to limit the solution space. This provides a powerful tool that allows
for inferences about biological reality and makes it a good strategy for understanding
the control mechanisms of biological systems. However, few studies have implemented
control theory with steady-state models. Therefore, in the next sections, we show the ele-
ments associated with control theory, its methodologies, and its applications, emphasizing
genomic-scale models in the steady state.

2.7. Control Theory Elements and Classification of Nodes in Complex Networks

In the context of genome-scale metabolic models and control theory, several elements
and types of nodes are relevant. For instance, nodes can be classified into two broad cate-
gories based on their properties and functions in the metabolic model [32,126,127]. As we
discuss later, these categories are determined through methodology and data analysis. First,
“driven nodes” are those that are influenced or controlled by other nodes but do not directly
control any other node, and, second, “controller nodes” are sites that exert control over
other nodes [128]. Control sites are reactions whose contribution is quantified in the model
of interest in the distribution of metabolic fluxes (Figure 2B) [129]. Authors such as [33,129]
have noted that the manipulation of control sites may potentially have a distributed action
in several reactions that will lead to a potential effect on metabolic function.

In most studies, the number of controller nodes in a genomic-scale model is usually
considerably less than the number of driven or controlled nodes [32,114,128]. This observa-
tion is valid for several biological networks, being one of the bases for the development of
analytical methodologies that allow it (such as the minimal set dominate methodology).

However, control coefficients are a fundamental concept in metabolic control method-
ology [130,131]. Control coefficients measure the relative change in metabolic flux in
steady-state models [120,131]. To date, two main types of control coefficients have been
proposed: the concentration control coefficient, which measures the relative change in
metabolite concentrations in response to a change, and the flux control coefficient, which
measures the relative change in the flow of matter in a metabolic pathway according to
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an evaluated scenario [131]. However, later, we show some of the most used examples of
control coefficients.

This information provides insight into the dynamics and regulation of control in
biological systems, offering the researcher inferences about the functioning and dynamics
of the network.

Due to the heterogeneity of chronic diseases, the development and optimization of
control theory have offered (provided) a robust mathematical framework for understanding
(comprehending) various biological systems. The control methods for identifying the mini-
mum set of controller nodes can be divided mainly into two categories (Table 1) [33,132,133].
According to [132], one category is associated with non-symmetric networks, and the
other focuses on non-directed (or symmetric) networks. Depending on the type of model
(dynamic or steady state), methodologies such as the Minimal Dominant Set (MDS) or
Feedback Vertex Set (FVS) can be applied [26]. It should be noted that all the methods start
from the stoichiometric matrix (S) as a common element.

Table 1. Description of the theory methods used to identify controlling reactions in systems biology.

Methods Authors Network Styles Dynamics Input Principle Optimization

MDS [29,134] Undirected
networks Nonlinear Adjacency matrix/

stoichiometric matrix

Optimization based on KNN
and K-means using Euclidean

distances and Bootstrap.

Linear
discrete

Probabilistic
controllability

approach
[32] Undirected

networks Nonlinear Adjacency matrix/
stoichiometric matrix

Optimization based on the
shortest path between nodes
based on an index built using

the correlation
between reactions.

Linear
continuous

DFVS [135,136] Directed
networks Nonlinear Adjacency matrix/

stoichiometric matrix

Optimization based on
nonlinear functions in a

system of ODE that define the
structure of the graph.

Nonlinear
continuous/

discrete

Ref. [137] states that, regardless of the selected methodology, system controllability
can provide results associated with the identification of chronic disease nodes and drug
targets. In addition, ref. [33] highlights the utility of these methodologies in identifying
viral proteins. At present, there are few approaches to investigate the controllability of
systems and methodologies such as MDS that require high costs and, in some cases, may
underestimate the structural capacity of the models [132].

Regarding cancer, ref. [138] explained that driver nodes can help identify driver genes
but that it cannot be applied directly to the identification driver genes in a personalized
manner for individual patients, creating a gap in personalized medicine. However, the
classification and identification of driver nodes can be directly applied for the detection of
driver metabolites in human liver models [139] and signaling pathways [140], as well as
the identification of critical regulatory genes in cancer signaling networks [102]. Similarly,
control methodologies have facilitated the analysis of biological models so that their struc-
tural controllability can be directly resolved; however, control methodologies need to be
made more efficient and optimized. This adds to the challenge of assessing the validity of a
network model due to its diverse objectives and applications.

In neurosciences, although there are few studies associated with the application,
authors such as [141] have described the importance of computational methods that can
infer the deregulation of key metabolites associated with neurons and microglia and that, in
turn, can determine the potential basis for the development of diseases such as Alzheimer’s
disease. Nevertheless, neuroscience and neuroengineering still face unique challenges due
to the multiple interacting components that produce emergent behaviors [138]. In addition,
to date, the approaches associated with control theory have been used to model high-
level neurocognitive processes, that is, individual differences in creativity and intelligence,
examining how the brain’s structural connectivity controls dynamic processes [142]. The
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controllability of the systems is a challenging issue, with the potential to describe the
characteristics of omics data in neurodegeneration accurately and cellular influence on its
progression [26,135,136]. Thus, applying these methods at the cellular level is necessary to
recognize the dynamic characteristics of a biological system, such as neurons and astrocytes.

To make it easier to understand control methods, we provide an intuitive explanation
of the two most used methods. Therefore, we summarize some key elements below.

2.7.1. Control Coefficients and the Power Decay Law

Control coefficients are an important concept in metabolic control theory [128,143].
Control coefficients play an important role in the robustness analysis of metabolic net-
works [144]. According to [143], control coefficients help to quantify the robustness of
metabolic pathways, since, in addition to determining controller nodes, they also allow for
the evaluation of the sensitivity of the system to changes in enzymatic activities.

A general property of biological systems is the biostability capability, which assumes
that bistable switches filter out slight and transient changes in the input signal that may
even be typical in a homeostatic state [114,145]. This is important because this information,
along with control theory, explores positive feedback architectures to generate uptake and
repression rates.

Regardless of the model, like all in silico methodologies, the control structure must
be taken carefully and evaluated according to the robustness criteria that allow it be com-
pared with biological reality [146]. Among the parameters are (1) flow control coefficients,
(2) elasticity coefficient (associated with the relative change in the activity of an enzyme),
(3) concentration control coefficients, and (4) power decay law [29,147,148]. Since the elas-
ticity and concentration coefficients are mostly associated with dynamic models, we focus
more on the flow control coefficient and the power decay law in steady-state models.

The flow control coefficient is the degree of control pattern (a) of the activity that an
enzyme (i) exerts on the flow in a pathway (J).

C J
ai =

% change in f lux
% change in activity o f enzyme i

(4)

According to the authors of [145], the control coefficient is calculated from the slope
of the tangent at the reference point. At the experimental level, it is calculated from the
titration of two enzymes until a change in their activity is observed. Reactions that favor
flow at the metabolic level tend to have a positive flow control coefficient value, while those
that are not favored or are part of leak reactions have negative values [145]. The sum of all
the values calculated for each reaction has a value of 1:

∑ C J
ai = 1 (5)

However, one of the most studied parameters is the power decay law. In [29], the
power decay law is considered according to the fraction of coupled reactions to quantify
the predictive power of control theory in metabolic models at the genomic scale. This
is because the systems’ complexity and metabolism depend on the degree of coupling,
especially the reactions associated with central metabolism. However, the complexity of the
controllability of systems is mainly independent of the number of couplings in networks
that have few controlling reactions [26].

As an example, ref. [29] used the power decay law for 23 metabolic models (eukaryotic
and prokaryotic), showing that the fraction of reactions decays logarithmically. The above
indicates that reactions that do not affect other reactions (non-controlling) can be eliminated
without directly affecting the optimization. As the authors show, the decay law allows
the logarithmic curve to stabilize, indicating the number of minimum reactions for cell
maintenance, making it a robust method.

The parameter of power decay law is associated with the activity pattern sampling
methodology, meaning that the flow coupling analysis is not significantly altered by elimi-
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nating reactions. On the contrary, traditional methods such as FBA, sensitive to missing
reactions [149], generate significant alterations in the metabolic phenotype, and, thus, they
distance the results from biological reality. Nevertheless, it must be remembered that
together these tests give analytical robustness, demonstrating the power of these types of
methodologies to make predictions from incomplete network reconstructions [26,29].

2.7.2. Feedback Vertex Set (FVS), a Dynamic Approach

Control theory methods associated with systems biology are based on the principle of
intervention and the control of dynamic networks. Authors such as [135,136] note that they
use a system of nonlinear functions where the ordinary differential equations (ODEs) give
a directed graph.

.
zk = Fk

(
t, zk, zIk

)
(6)

where F defines a nonlinear function, k = 1, . . . , N, and Ik ⊆ {1, . . . , N} are given subsets.
However, the function does not necessarily have to be dependent on time. In fact, due to
the nature of this ODE system, the solution of δ

δt zk enters into a Euclidean ball around the
origin of a sufficiently large fixed C, where solutions exist globally in forward time [150,151].
Nevertheless, an assumption is that the global model has a decay condition; this means that
function F has the condition that δ1F

(
zk, zIk

)
< 0, and the previous condition is necessary to

find a set of determining nodes that will be given when the difference in the two solutions
of the nonautonomous ODE systems tend to zero and when t tends to infinity [135].

The previous means that, given two solutions of the ODE system, zk(t) and z′k(t), the
determining nodes will be defined when the difference tends to zero and when the time
tends to infinity; this means that

zk(t)− z′k(t) →
t → ∞

0 (7)

From the above, it is possible to find a convergence over the system to identify deter-
mining nodes that are sufficient to determine large-time dynamics. In addition, the dynamic
approach enables the detection of steady-state, periodic, and quasi-periodic solutions.

2.7.3. Minimal Dominant Set (MDS) and Probabilistic Blocking of Metabolic
Fluxes Approach

The previous methods depend on a solution of nonlinear characteristics, such as the
calculation of the coefficients of elasticity associated with kinetic models of metabolic
pathways [135,136]. However, due to the lack of information about dynamic models over
time, an approach associated with the types of flow couplings between reactions in steady-
state models was recently developed [32]. Ref. [134] proposed this method to analyze and
identify metabolic switches to modulate complex diseases. The method called Minimal
Dominant Set (MDS) assumes the controllability of a system from a small set of reactions
(or nodes) that must be controlled indirectly to control the activity of all reactions in the
system [26,29,134].

According to authors such as [32], analyses based on stoichiometric and thermo-
dynamic restrictions could limit the response range of a metabolic model. The above,
according to [70], gives rise to the formation of the solution space as described in the
following equation:

F{v ∈ Rn| S v = 0, lb ≤ v ≤ ub, ∃i ϵ E : vi ̸= 0 } (8)

where S is the stoichiometric matrix of size m ∗ n, with m being the metabolites and n being
the reactions; ub and lb are the upper and lower limits; v is the flux vector; and E is the
set of exchange reactions. Also, Rev = {1,. . ., n}\Irr is the set of reversible reactions, and
Irr ⊆ {1,. . ., n } is the set of irreversible reactions.

In control theory, optimization methods allow for the calculation of coupling rela-
tionships, unlike FBA, which determines only the metabolic phenotype of a biological
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model according to its objective function [21,59,152]. One of the most used methods is flow
coupling analysis (FCA), which allows for the calculation of the possible flow distributions
and the coupling relationships between reactions [153]. Recently, authors such as [70]
proposed the fast flow coupling calculator (F2C2) to determine the coupling between reac-
tions. These methods are based on linear programming problems, where feasibility rules
eliminate trivially uncoupled reactions [70,154,155]. However, authors such as [154] also
use optimization methods such as the Mixed-Integer Linear Program (MILP) to determine
the type of coupling between reactions.

Regarding the coupling profiles of a genomic-scale model obtained in the vector
ϕ ∈ Rn, these profiles are grouped in pairs considering the average Euclidean distances
between each flow coupling profile, as described in the following equation:

∑ n
i=1

(xi − µx)
(
yi − µy

)
√

varx
√

vary
=

Cov (x, y)√
varx

√
vary

(9)

The above describes the possible relationship between the couplings, which allows
for the application of grouping algorithms, such as k-means and k-medoids; that is, to
build the relationship between the reactions, an approximation via K-means or K-medoids
is used. The authors of [29] also highlight the utility of performing metabolic network
randomizations to analyze whether the coupling profiles reflect functionally relevant
features of metabolism using z-scores:

zi =

(
xi − y

i

)
σi

(10)

where xi is the relative frequency of coupling in S, and y
i

is the average frequency of type
i coupling.

These randomizations also allow for the random sampling of the flow distributions
of a model in the steady state, eliminating the bias of the use of an objective function and
enabling the observation of all the possible scenarios and the importance of each reaction
in the model, which allows the patterns of activity of each reaction to be obtained.

The above can be synthesized in a control graph such as the following [29]:

1. σi = σj = 1 and L(i, j) ∈ { f ull, partial, directional}, or
2. σi = 0, σj = 1 and L(i, j) = anti, or
3. σi = 1, σj = 0 and L(i, j) ∈ {inhibiive}, or
4. σi = σj = 0 and L(i, j) ∈ { f ull, partial}, or
5. σi = σj = 0 and L(i, j) = directional,

and Mi,j = 0 otherwise.

Here, the state or pattern of reaction activity σ is given by the generated flux vector v.
However, authors such as [32] have determined that MDS uses a discrete definition to

identify the coupling between reactions when performing randomizations for grouping
activity patterns. Therefore, these authors propose the use of the angles formed between the
product of the transposed matrix K (or Kernel) and S, obtaining in terms of squared cosine
the Pearson correlation between reaction flows ij or correlation coefficient θij, which allows
the use of these measures of a linear relationship between variables to define the relationship
between reactions. This methodology was proposed by [156], coupled with a probabilistic
control model. Therefore, the value of the correlation coefficient is comprised of values
between 0 and 1, where 1 is a high correlation indicating a strong connection between the
two reactions. In contrast, a value close to zero indicates that there is no relationship, and,
therefore, the connection between reactions is low or nil. However, the authors define
the probability of failure between two reactions as ρij = 1 − abs

(
θij

)
and integrate this
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into a probabilistic minimum dominant model (PMSD) using the probabilistic blocking of
metabolic fluxes approach [32]. The above can be described using the following equation:(

1 − ∏ i ϵ S ρij

)
≥ Θ ó ∑ iϵ S−ln

(
ρij

)
≥ −ln (1 − Θ) (11)

Here, ρij defines the probability of failure between reactions i and j. According to the
above, the solution to a linear problem is established where the minimization of

∑ i∈V xi; con xi ∈ {0, 1}subjectto, (12)

xj ≥ 1, ∀j ∈ V such that degree (j) = 0,

−ln(1 − Θ)xj + ∑ i,j∈E
(
−ln

(
ρij

)
xi
)
≥− ln(1 − Θ), ∀ i ∈ V such that degree(j) = 0 (13)

The authors describe the above in such a way that this methodology seeks to find the
shortest path between the reactions (i, j), where they have a greater probability of coupling
if the linear relationship between them is close to 1 [32]. It is important to highlight that
this methodology of probabilistic blocking of metabolic flows is similar to the traditional
MDS approach, since both use an LP approach to optimize and find the possible types of
coupling. Both methodologies allow for defining a distance measure between nodes to
find a relationship between them. It should be noted that these methodologies have been
widely used for the construction of control models in cancer to identify controller nodes
and possible biomarkers [19,32,103,129,157,158].

3. Machine Learning (ML) and GEM Approaches to Determine Metabolic Markers

GEMs provide a quantitative tool to establish the relationship between genotype and
phenotype by contextualizing various types of Big Data, such as genomic, metabolomic, and
transcriptomic data. The simulation of metabolic fluxes, crucial in flux rate prediction, is
effectively executed through GEMs [86,87]. GEM reconstruction and analysis have proven
fundamental for a deeper understanding of metabolism in diverse organisms, including
bacteria, archaea, and eukaryotes [23,86]. The versatility of GEMs is reflected in their
application to a wide range of species. Furthermore, integrating omics data into these
models is essential for standard GEM analysis, improving flux predictions and allowing
for a more accurate interpretation of multi-omics data.

In the 1950s, Alan Turing laid the foundation for machine learning in artificial in-
telligence with his article “Computing Machinery and Intelligence” [159], despite the
computational limitations at the time. With the increase in datasets and computational
power, significant advances have been made in addressing challenges such as managing
large amounts of data [160]. In this context, the machine learning (ML) field has seen
notable progress in recent years. ML involves using algorithms to handle large volumes
of data and answer research questions, identifying patterns, trends, or anomalies [161]
using classification or regression algorithms. Various strategies are used depending on the
research objective, such as unsupervised learning, which discovers patterns in unlabeled
data, and supervised learning, which uses labeled examples to make predictions for new
data [162,163].

ML has been used in biology to generate models that extract information from complex
and voluminous datasets. In the context of genome-scale metabolic models (GEMs), various
strategies have been explored in applying ML to improve the understanding of patterns
and characteristics in complex biological data. For a few years now, approaches to the use
of ML with GEMs have been made under three strategies: (1) fluxomics, (2) multimodal
analysis, and (3) the generation of models based on constraints together with fluxomic
data [164,165].

Fluxomics, a term coined in the last two decades, refers to studying metabolic fluxes
in cells, tissues, or organisms [166,167]. The intersection between fluxomics, genome-
scale metabolic models (GEMs), and machine learning (ML) is a constantly growing field,
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providing a deeper understanding of the interactions between metabolism and genetics
and facilitating prediction, analysis, and metabolic pathway engineering [168].

The application of ML in conjunction with fluxomics and GEMs has significantly
improved predictive performance and data coverage. Fluxomics is a rapidly growing field
applied in various research areas, including biotechnology, pharmacology, and metabolic en-
gineering. A notable example of the application of fluxomics is in the study of [169], where
a computational procedure was proposed to translate metabolite profiles (metabolome)
into metabolic fluxes (fluxome). This method uses computational models integrated with
linear optimization, dynamic and continuation analyses, and metabolic control. Tests
were performed on metabolite profiles obtained from ex vivo mouse Langendorff heart
preparations perfused with glucose to validate the procedure.

Another relevant example in fluxomics is the study in [170], where FASIMU (ver-
sion 2.3.4), flexible software for flux equilibrium calculation series in large metabolic
networks, was developed. This software was used to analyze the metabolic network of
Escherichia coli, and the results demonstrated that FASIMU is effective in simulating the
metabolic behavior of large-scale metabolic networks.

Furthermore, fluxomics has been instrumental in drug discovery, as illustrated by the
study in [171]. These researchers used fluxomics to target bacterial metabolic pathways
distinct from human ones. The approach consisted of identifying the metabolic pathways
essential for the survival and growth of bacteria using fluxomics and then developing
therapeutic strategies based on the selective inhibition of these pathways with antibiotics.

When analyzing multiple omics data, such as transcriptomic, proteomic, or metabolomic
data, processing is performed to synchronize and obtain fluxomic information from a
model restricted to a specific condition [162]. Despite its benefits, the use of ML presents
challenges. The reproducibility of the models is essential, requiring the creation of well-
defined reference points and references for their use in the scientific community [172].
Building ML models requires the careful selection of data and the features or patterns of
interest, model construction, validation, and the consideration of limitations and biases for
an accurate interpretation of results [163].

Although ML has been applied in various areas, its integration with genomic-scale
metabolic models to identify biomarkers in neurodegenerative diseases has yet to be
carried out. This integration could accelerate research, save time and resources, and avoid
ethical issues when operating in silico, opening opportunities for system-based therapeutic
interventions to address simulated neurodegenerative mechanisms.

4. Overview of Systems Biology Applications with Control Theory in Chronic Diseases

Although most studies have focused on employing systems biology in unicellular
organisms, in recent decades, an increasing number of works have implemented this
methodology in human cells to understand their functions [4,173]. Moreover, the evolution
of this approach has allowed for the implementation of other methods, such as control
theory, in the construction of GEMs and networks in various research fields, including
cancer and neurosciences (Table 2).

In the field of cancer research, it is noteworthy that control theory has been imple-
mented more than in neuroscience or other areas of research, and it has even been applied
for drug target searching. Several studies have corroborated that this is a powerful tool
to identify driver reactions that control a system [29]. For example, in 2013, Asgari and
collaborators performed one of the first works employing control theory; they analyzed
15 GEMs from normal and cancer tissues to identify drug targets. In this work, a centrality
analysis was used to evaluate whether known drug targets are highly connected nodes
in the network, and they employed topological parameters to find driver nodes; both ap-
proaches were proposed considering the MDS concept. The centrality analysis did not show
drug targets as driver nodes controlling the systems. However, by applying topological
parameters, such as motifs and clusters, the authors found that drug targets belong to a
specific cluster of an enzyme-centric network. Based on these results, the authors suggested
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that more complex metrics could be relevant for assessing controllability [101]. Another
study in 2016 analyzed four cancer networks by applying the flux coupling method. The
authors found that, by clustering the flux coupling profile of cancer networks, healthy
tissue can be discriminated from cancer samples. Moreover, they found that the identified
driver reactions are associated with genes that cause cancer. Hence, Basler and collabora-
tors highlighted the relevance and usefulness of this method, since previous works only
assessed the absence or presence of reactions in cancer versus healthy samples without
identifying the reactions driving disease development [29].

Table 2. Applications of systems biology with control theory.

Author Outcome Sample Type Omics Data Type Main Outcome
or Application Method

[34]
Human astrocytes

stimulated with
palmitic acid

Cultured cells Transcriptomic and proteomic Identification of
metabolic switches FBA, FVA, MDS

[174] Breast cancer Cancer and
normal samples

Based on previous
GEMs [175]

Transcriptomic and proteomic

Identification of
drug targets

Topological
properties and

power-law degree

[32] Healthy and
cancer states Tissues

Based on previous GEMs
(Basler et al. [29] and

Gatto et al. [175])

Differences in
metabolic flux PMDS

[176] Hepatocellular
carcinoma patients

Cancerous liver
samples and

non-affected tissue
Transcriptomic Detection of

tumor subtypes

FBA, minimum
driver node
sets—MDS

[29] Breast, lung, renal, and
urothelial cancers

4 cancer and healthy
sample networks

Based on previous
GEMs [175]

Transcriptomic and proteomic

Reactions leading
to cancer Flux coupling

[101] 15 cancer types
Normal and

corresponding
cancer cells

Transcriptomic Identification of drug
targets as driver nodes MDS

However, another analysis was conducted using the same GEMs used by Basler and
cols. Ref. [29] in order to observe the metabolic implication of the transition from a healthy
state to a pathological state using the probabilistic minimum dominating set (PMDS).
Interestingly, differences between cancer and heathy networks were not observed using
topological analyses; however, a lower rate of driver nodes was detected in cancer than
in healthy cells using PMDS, indicating that it is easier to control metabolic networks. In
this case, the authors used two approaches, control theory and flux correlation. These
results underscore the ability of control theory to detect differences between healthy and
disease states in comparison with other methods [32]. A noteworthy finding is that affected
cells had lower driver nodes; the same observation was made in a study that assessed the
interactome of cells infected with a HIV virus [33], which could indicate that pathological
states are triggered by reducing the complexity to control a system.

Furthermore, it is important to highlight that, in a study about breast cancer, the power
law degree was employed to identify high-degree nodes in GEMs; high-degree nodes are
nodes that dominate and play vital roles in the network. In this research, after identifying
the hub nodes, the authors applied additional statistical methods; these methods were
correlation and principal component analyses, which led to the identification of five top
drug targets [174].

There are many challenges in characterizing and stratifying different types of tumors,
along with identifying effective cancer treatments. In this context, in 2018, Bidkhori and
colleagues [176] performed two research works focusing on hepatocellular carcinoma. In
the first work, a GEM was constructed considering the transcriptomic data of cancerous
liver samples and non-affected tissue. Subsequently, the authors applied a controllability
approach to identify exclusive controlling genes in cancer tissue and non-affected tissue.
Moreover, discrimination of different subtypes of hepatocellular carcinoma was carried



Int. J. Mol. Sci. 2024, 25, 365 20 of 29

out by identifying controller genes in the metabolic networks, which might be crucial
for identifying therapeutic targets. Two aspects stand out in this study; the use of both
objective-dependent and objective-independent methods, and the use of GEMs to generate
a functional gene–gene network for identifying candidate targets using the control theory
approach [176]. In the second work focused on hepatocellular carcinoma, the authors
aimed to identify and prioritize anticancer targets using the same strategy of combining
two methods. They initially constructed GEMs using expression data to obtain person-
alized metabolites and reaction networks; then, they applied a controllability analysis to
determine driver nodes. In the first step, they identified 374 antimetabolites that were
reduced to 142 controlling metabolites in the second analysis, allowing for the final selection
of 74 anticancer controlling metabolites. These results suggest that the combination of
objective-dependent and -independent methods allows for the identification of suitable
therapeutic targets. This prioritization was important, because the authors found that a
large number of nodes with high centrality can either result in the lethality of both healthy
and tumoral tissues or not result in lethality, indicating that a great amount of data can
sometimes generate undesirable information that can lead to misinterpretation [176,177].
Therefore, it is relevant to consider the valuable results derived from control theory in
comparison with other methods, as this might provide more precise data.

As previously shown, systems biology is now very useful in identifying and distin-
guishing the metabolic characteristics in normal and affected tissues or in patients with a
disease and healthy subjects, which can be relevant to find biomarkers or effective drug
targets. In addition, control theory can also be applied to investigate the metabolism of a
particular organ or system. For instance, Liu and Pan (2014) [139] used the controllability
analysis in a GEM of liver that was built based on knowledge from the literature and
transcriptomic, proteomic, metabolomic, and phenotypic data. In this work, they classified
36 critical driver metabolites and 27 essential metabolites; the driver metabolites were all
associated with transport reactions in the extracellular compartment.

Control theory has been used sparingly in studies of systems biology in neuroscience;
however, it is important to highlight the need to implement this approach, especially for
studying neurodegenerative disorders like Alzheimer’s disease, one of the most prevalent
diseases in older people, generating a significant disease burden [178]. This implementation
could be highly valuable considering that there are many challenges in finding effective
treatments and biomarkers for neurodegenerative diseases, and huge efforts have been
made to obtain biological insights that allow for early diagnosis in order to prevent or delay
disease progression; however, the mechanisms are still not well known [179,180]. It is rele-
vant to mention that systems biology and GEMs have been implemented in different works
in neurosciences [181]. Classical methods like FVA have been very useful in integrating
data from transcriptomic analysis to identify reactions altered in three psychiatric diseases
(schizophrenia, bipolar disorder, and major depressive disorder) compared to controls,
suggesting potential candidate biomarkers [54]. Nevertheless, the classical methods have
some limitations and criticisms, which include the lack of dynamic and regulatory aspects
in the models [106].

Control theory has been used in various works in neuroscience, primarily focusing
on brain connectivity; these works have used this approach to study metabolic brain net-
works by means of positron emission tomography in humans, for example, in people with
subjective cognitive decline [182] and in schizophrenia patients using functional magnetic
resonance imaging [121]. However, only one study has implemented this approach in
genome-scale models; that work was carried out considering the integration of transcrip-
tomic and proteomic data from an in vitro model of astrocytes [34]. Similar to other studies,
this work used a combination of methods, including FBA, FVA, and MDS analyses, which
reveled metabolic changes induced by a palmitic acid stimulus, identifying perturbation
of the folate cycle, fatty acid β-oxidation, and 25 other metabolic switches [34]. The iden-
tification of these metabolic switches (driver nodes) could be very useful for identifying
drug targets and potential therapies for diseases triggered by inflammatory factors, such
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as neurodegenerative diseases. Moreover, this study introduced a novel application of
control theory to integrate data from in vitro models, offering an excellent opportunity to
understand cellular function and responses to different challenges. In addition, it might be
the basis for understanding interactions among brain cells [181].

Although control theory has not been widely used, these examples offer a new per-
spective about its further applications. Moreover, it is worth noting that this method
might be helpful in scenarios where sample size limitations could impact the statistical
analysis [26], and it may even be valuable in developing therapeutic strategies tailored to
specific patients [122].

5. Potential Applications in Neurodegenerative Disorders: A Focus on
Alzheimer’s Disease

As we can see above, control theory has mainly been applied in studies on pathologies
like cancer, but in neurodegenerative diseases, it has not been explored. However, it is
worth mentioning that many efforts have been made to analyze multi-omics data derived
from samples of patients with Alzheimer’s disease. For instance, a metabolic network was
obtained with a constraint-based model using differential gene expression data derived
from the postmortem tissue of 1708 samples. In this study, the authors noted that the
metabolic flux differs mainly between AD and mild cognitive impairment but not with
control samples using the FVA analysis. Specifically, these differences were observed for
three enzymes in the dorsolateral prefrontal cortex, the serine palmitoyltransferase (SPT),
sphingomyelin synthase (SMS), and ceramide kinase (CERK) [183]. This finding could
be a key element for identifying the characteristics that determine the progression of a
phenotype to the development of a disease, with this being quite relevant for cases of mild
cognitive impairment, which is a cognitive disturbance that leads to AD in about 15% of
cases [184]. In this context, although control theory has not yet been explored, this example
highlights the potential application of systems biology in the identification of mechanisms
associated with the early stages of AD [185].

6. Future Directions

In summary, all the above illustrates the power of control theory for studying many
aspects of human systems, such as exploring biological functions in cell-type-specific
ways and examining metabolic perturbations under challenging conditions or pathologies.
Furthermore, regarding human diseases, studies have shown that systems biology coupled
with control theory is highly useful for the identification of biomarkers and drug targets
and for classifying different disease states or tumor subtypes in patient samples (Figure 5A).
Interestingly, there is also evidence of the ability to detect responses to treatments, which
could be of great relevance for personalized medicine. Moreover, this approach opens new
possibilities to analyze and interpret the vast amount of data derived from high-throughput
techniques, which has presented a great challenge in most recent years.

A relevant aspect evidenced in studies applying control theory is that the most reliable
and significant findings can be obtained by combining different methods, which involve
the classical tools for GEM reconstructions followed by the implementation of control
theory, topological properties, and statistical analyses (such as correlation and principal
component analyses), among others (Figure 5B).

Finally, while the implementation of this method has been mainly performed in the
cancer research field, preliminary studies in neurosciences suggest that implementing this
tool will be useful in identifying biological and metabolic markers in the early and prodro-
mal stages of pathologies such as neurodegenerative diseases, where an early diagnosis
is required because their symptoms are highly nonspecified. Therefore, we encourage
further studies to leverage this method to enhance our understanding of the development
of neurodegenerative diseases.
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7. Materials and Methods

We carried out a review that investigates control theory, systems biology, and their
applications, especially in neurodegeneration. Articles eligible for inclusion were articles
published in indexed journals that characterized the methodology and application in
chronic or complex diseases.

Therefore, we designed a highly sensitive search strategy that combines free text,
logical operators, and the following combinations of generic groups: systems biology,
control theory, and applications of control theory with an emphasis on biological systems;
neurodegeneration and systems biology; and neurodegeneration, systems biology, and
control theory. We then systematically searched for articles published on Google Scholar.
Additional searches were performed on servers such as Scopus, ScienceDirect, and PubMed.
The selected articles refer to works presented in peer-reviewed journals.

For greater sensitivity, we used the following search terms:

1. Control theory OR Systems biology;
2. Metabolic models on a genomic scale OR GEMS AND Control theory;
3. Minimal dominant set (MDS) approach OR MDS OR Control theory AND Sys-

tems biology;
4. Probabilistic blocking of metabolic fluxes approach AND Systems biology AND

Control theory;
5. Metabolic models on a genomic scale AND Control theory AND applications OR Neu-

rodegeneration;
6. GEMs OR genomic-scale metabolic models OR systems biology AND control theory

AND applications OR neurodegeneration OR chronic diseases OR complex systems
OR applications in neurodegeneration AND date limit 2000/01/01–2023/08/01.

No exclusions were made for disease severity or reported outcomes. An additional
search was performed in the application research rabbit app in order to identify other
possible related works.
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the topology-based analysis of biological pathways. Front. Physiol. 2013, 4, 278. [CrossRef]
101. Asgari, Y.; Salehzadeh-Yazdi, A.; Schreiber, F.; Masoudi-Nejad, A. Controllability in cancer metabolic networks according to drug

targets as driver nodes. PLoS ONE 2013, 8, e79397. [CrossRef]
102. Ravindran, V.; Sunitha, V.; Bagler, G. Identification of critical regulatory genes in cancer signaling network using controllability

analysis. Phys. A Stat. Mech. Its Appl. 2017, 474, 134–143. [CrossRef]
103. Yuan, Z.; Zhao, C.; Di, Z.; Wang, W.X.; Lai, Y.C. Exact controllability of complex networks. Nat. Commun. 2013, 4, 2447. [CrossRef]
104. Holzhütter, H. The principle of flux minimization and its application to estimate stationary fluxes in metabolic networks.

Eur. J. Biochem. 2004, 271, 2905–2922. [CrossRef]
105. Sarathy, C.; Breuer, M.; Kutmon, M.; Adriaens, M.E.; Evelo, C.T.; Arts, I.C.W. Comparison of metabolic states using genome-scale

metabolic models. PLoS Comput. Biol. 2021, 17, e1009522. [CrossRef]
106. Hsiao, V.; Swaminathan, A.; Murray, R.M. Control Theory for Synthetic Biology: Recent Advances in System Characterization,

Control Design, and Controller Implementation for Synthetic Biology. IEEE Control Syst. 2018, 38, 32–62. [CrossRef]
107. Schafer, J.R.A.; Fell, D.A.; Rothman, D.; Shulman, R.G. Protein phosphorylation can regulate metabolite concentrations rather

than control flux: The example of glycogen synthase. Proc. Natl. Acad. Sci. USA 2004, 101, 1485–1490. [CrossRef]
108. Schmidt, H.; Jacobsen, E.W. Linear systems approach to analysis of complex dynamic behaviours in biochemical networks.

Syst. Biol. 2004, 1, 149–158. [CrossRef]
109. Rao, V.S.H.; Rao, P.R.S. Dynamic Models and Control of Biological Systems; Springer: New York, NY, USA, 2009.
110. Jakubowski, H.; Flatt, P. Fundamentals of Biochemistry II—Bioenergetics and Metabolism; LibreTexts: Davis, CA, USA, 2023.

https://doi.org/10.1038/s41467-018-07240-8
https://doi.org/10.1126/sciadv.aaz2299
https://www.ncbi.nlm.nih.gov/pubmed/19461917
https://doi.org/10.1186/s12859-020-03655-7
https://www.ncbi.nlm.nih.gov/pubmed/32711453
https://doi.org/10.1093/bioinformatics/btz059
https://www.ncbi.nlm.nih.gov/pubmed/30689741
https://doi.org/10.1038/nbt.4072
https://www.ncbi.nlm.nih.gov/pubmed/29457794
https://doi.org/10.3390/metabo12010014
https://www.ncbi.nlm.nih.gov/pubmed/35050136
https://doi.org/10.1016/j.cels.2021.06.005
https://www.ncbi.nlm.nih.gov/pubmed/34555324
https://doi.org/10.1371/journal.pcbi.1006541
https://www.ncbi.nlm.nih.gov/pubmed/30335785
https://doi.org/10.1371/journal.pcbi.1009550
https://doi.org/10.1093/nar/gky537
https://doi.org/10.1016/B978-0-12-388403-9.00004-7
https://doi.org/10.1371/journal.pcbi.1002901
https://www.ncbi.nlm.nih.gov/pubmed/23509437
https://doi.org/10.1016/j.febslet.2009.09.031
https://www.ncbi.nlm.nih.gov/pubmed/19769971
https://doi.org/10.1038/s41540-022-00247-4
https://www.ncbi.nlm.nih.gov/pubmed/36192551
https://doi.org/10.1093/bioinformatics/bts517
https://www.ncbi.nlm.nih.gov/pubmed/22923292
https://doi.org/10.1097/NNR.0000000000000200
https://doi.org/10.1016/j.csbj.2022.12.022
https://doi.org/10.3390/genes10020143
https://doi.org/10.1093/bioinformatics/btm554
https://doi.org/10.3389/fphys.2013.00278
https://doi.org/10.1371/journal.pone.0079397
https://doi.org/10.1016/j.physa.2017.01.059
https://doi.org/10.1038/ncomms3447
https://doi.org/10.1111/j.1432-1033.2004.04213.x
https://doi.org/10.1371/journal.pcbi.1009522
https://doi.org/10.1109/MCS.2018.2810459
https://doi.org/10.1073/pnas.0307299101
https://doi.org/10.1049/sb:20045015


Int. J. Mol. Sci. 2024, 25, 365 27 of 29

111. Moreno-Sánchez, R.; Saavedra, E.; Rodríguez-Enríquez, S.; Olín-Sandoval, V. Metabolic Control Analysis: A Tool for Designing
Strategies to Manipulate Metabolic Pathways. J. Biomed. Biotechnol. 2008, 2008, 597913. [CrossRef]

112. Knüpfer, C.; Beckstein, C. Function of dynamic models in systems biology: Linking structure to behaviour. J. Biomed. Semant.
2013, 4, 24. [CrossRef]

113. Lalwani, M.A.; Zhao, E.M.; Avalos, J.L. ScienceDirect Current and future modalities of dynamic control in metabolic engineering.
Curr. Opin. Biotechnol. 2018, 52, 56–65. [CrossRef] [PubMed]

114. Hartline, C.J.; Schmitz, A.C.; Han, Y.; Zhang, F. Dynamic control in metabolic engineering: Theories, tools, and applications.
Metab. Eng. 2020, 63, 126–140. [CrossRef]

115. Pan, M.; Gawthrop, P.J.; Cursons, J.; Crampin, E.J. Modular assembly of dynamic models in systems biology. PLoS Comput. Biol.
2021, 17, e1009513. [CrossRef]

116. Raue, A.; Schilling, M.; Bachmann, J.; Matteson, A.; Schelke, M.; Kaschek, D.; Hug, S.; Kreutz, C.; Harms, B.D.; Theis, F.J.; et al.
Lessons Learned from Quantitative Dynamical Modeling in Systems Biology. PLoS ONE 2013, 8, e74335. [CrossRef]

117. Ni, C.; Dinh, C.V.; Prather, K.L. Dynamic Control of Metabolism. Annu. Rev. Chem. Biomol. Eng. 2021, 12, 519–541. [CrossRef]
118. Azeloglu, E.U.; Iyengar, R. Good practices for building dynamical models in systems biology. Sci. Signal. 2015, 8, fs8. [CrossRef]
119. Miskovic, L.; Tokic, M.; Savoglidis, G.; Hatzimanikatis, V. Control Theory Concepts for Modeling Uncertainty in Enzyme Kinetics

of Biochemical Networks. Ind. Eng. Chem. Res. 2019, 58, 13544–13554. [CrossRef]
120. Wildermuth, M.C. Minireview Metabolic control analysis: Biological applications and insights. Genome Biol. 2000, 1, reviews1031.1.

[CrossRef]
121. Braun, U.; Harneit, A.; Pergola, G.; Menara, T.; Schäfer, A.; Betzel, R.F.; Zang, Z.; Schweiger, J.I.; Zhang, X.; Schwarz, K.; et al.

Brain network dynamics during working memory are modulated by dopamine and diminished in schizophrenia. Nat. Commun.
2021, 12, 3478. [CrossRef]

122. Villoslada, P.; Steinman, L.; Baranzini, S.E. Systems biology and its application to the understanding of neurological diseases.
Ann. Neurol. 2009, 65, 124–139. [CrossRef] [PubMed]

123. Chung, C.H.; Lin, D.W.; Eames, A.; Chandrasekaran, S. Next-Generation Genome-Scale Metabolic Modeling through Integration
of Regulatory Mechanisms. Metabolites 2021, 11, 606. [CrossRef] [PubMed]

124. Moulin, C.; Tournier, L.; Peres, S. Combining Kinetic and Constraint-Based Modelling to Better Understand Metabolism Dynamics.
Processes 2021, 9, 1701. [CrossRef]

125. Vasilakou, E.; Machado, D.; Theorell, A.; Rocha, I.; Nöh, K.; Oldiges, M.; Wahl, S.A. Current state and challenges for dynamic
metabolic modeling. Curr. Opin. Microbiol. 2016, 33, 97–104. [CrossRef]

126. Reder, C. Metabolic control theory: A structural approach. J. Theor. Biol. 1988, 135, 175–201. [CrossRef]
127. Hofmeyr, J.-H.S.; Kacser, H.; Merwe, K.J. Metabolic control analysis of moiety-conserved cycles. JBIC J. Biol. Inorg. Chem. 1986,

155, 631–640. [CrossRef]
128. Shinzawa, Y.; Akutsu, T.; Nacher, J.C. Uncovering and classifying the role of driven nodes in control of complex networks. Sci. Rep.

2021, 11, 9627. [CrossRef]
129. Sajitz-Hermstein, M.; Nikoloski, Z. Structural Control of Metabolic Flux. PLoS Comput. Biol. 2013, 9, e1003368. [CrossRef]
130. Annamalai, K.; Puri, I.K.; Jog, M.A. Thermodynamics and Biological Systems. In Advanced Thermodynamics Engineering; CRC Press:

Boca Raton, FL, USA, 2020; pp. 755–850. [CrossRef]
131. Brown, G.C.; Hafner, R.P.; Brand, M.D. A ‘top-down’ approach to the determination of control coefficients in metabolic control

theory. JBIC J. Biol. Inorg. Chem. 1990, 188, 321–325. [CrossRef]
132. Guo, W.-F.; Zhang, S.W.; Shi, Q.Q.; Zhang, C.-M.; Zeng, T.; Chen, L. A novel algorithm for finding optimal driver nodes to target

control complex networks and its applications for drug targets identification. BMC Genom. 2018, 19, 924. [CrossRef]
133. Guo, W.-F.; Zhang, S.-W.; Zeng, T.; Li, Y.; Gao, J.; Chen, L. A novel network control model for identifying personalized driver

genes in cancer. PLoS Comput. Biol. 2019, 15, e1007520. [CrossRef]
134. Nacher, J.C.; Akutsu, T. Dominating scale-free networks with variable scaling exponent: Heterogeneous networks are not difficult

to control. New J. Phys. 2012, 14, 073005. [CrossRef]
135. Fiedler, B.; Mochizuki, A.; Kurosawa, G.; Saito, D. Dynamics and Control at Feedback Vertex Sets. I: Informative and Determining

Nodes in Regulatory Networks. J. Dyn. Differ. Equ. 2013, 25, 563–604. [CrossRef]
136. Mochizuki, A.; Fiedler, B.; Kurosawa, G.; Saito, D. Dynamics and control at feedback vertex sets. II: A faithful monitor to

determine the diversity of molecular activities in regulatory networks. J. Theor. Biol. 2013, 335, 130–146. [CrossRef]
137. Vinayagam, A.; Gibson, T.E.; Lee, H.-J.; Yilmazel, B.; Roesel, C.; Hu, Y.; Kwon, Y.; Sharma, A.; Liu, Y.-Y.; Perrimon, N.; et al.

Controllability analysis of the directed human protein interaction network identifies disease genes and drug targets. Proc. Natl.
Acad. Sci. USA 2016, 113, 4976–4981. [CrossRef]

138. Kenett, Y.N.; Medaglia, J.D.; Beaty, R.E.; Chen, Q.; Betzel, R.F.; Thompson-Schill, S.L.; Qiu, J. Driving the brain towards creativity
and intelligence: A network control theory analysis. Neuropsychologia 2018, 118, 79–90. [CrossRef]

139. Liu, X.; Pan, L. Detection of driver metabolites in the human liver metabolic network using structural controllability analysis.
BMC Syst. Biol. 2014, 8, 51. [CrossRef]

140. Liu, X.; Pan, L. Identifying Driver Nodes in the Human Signaling Network Using Structural Controllability Analysis. IEEE/ACM
Trans. Comput. Biol. Bioinform. 2014, 12, 467–472. [CrossRef]

https://doi.org/10.1155/2008/597913
https://doi.org/10.1186/2041-1480-4-24
https://doi.org/10.1016/j.copbio.2018.02.007
https://www.ncbi.nlm.nih.gov/pubmed/29574344
https://doi.org/10.1016/j.ymben.2020.08.015
https://doi.org/10.1371/journal.pcbi.1009513
https://doi.org/10.1371/annotation/ea0193d8-1f7f-492a-b0b7-d877629fdcee
https://doi.org/10.1146/annurev-chembioeng-091720-125738
https://doi.org/10.1126/scisignal.aab0880
https://doi.org/10.1021/acs.iecr.9b00818
https://doi.org/10.1186/gb-2000-1-6-reviews1031
https://doi.org/10.1038/s41467-021-23694-9
https://doi.org/10.1002/ana.21634
https://www.ncbi.nlm.nih.gov/pubmed/19260029
https://doi.org/10.3390/metabo11090606
https://www.ncbi.nlm.nih.gov/pubmed/34564422
https://doi.org/10.3390/pr9101701
https://doi.org/10.1016/j.mib.2016.07.008
https://doi.org/10.1016/S0022-5193(88)80073-0
https://doi.org/10.1111/j.1432-1033.1986.tb09534.x
https://doi.org/10.1038/s41598-021-88295-4
https://doi.org/10.1371/journal.pcbi.1003368
https://doi.org/10.1201/9781439805718-21
https://doi.org/10.1111/j.1432-1033.1990.tb15406.x
https://doi.org/10.1186/s12864-017-4332-z
https://doi.org/10.1371/journal.pcbi.1007520
https://doi.org/10.1088/1367-2630/14/7/073005
https://doi.org/10.1007/s10884-013-9312-7
https://doi.org/10.1016/j.jtbi.2013.06.009
https://doi.org/10.1073/pnas.1603992113
https://doi.org/10.1016/j.neuropsychologia.2018.01.001
https://doi.org/10.1186/1752-0509-8-51
https://doi.org/10.1109/tcbb.2014.2360396


Int. J. Mol. Sci. 2024, 25, 365 28 of 29

141. Wang, Y. Identifying neuron subtype-specific metabolic network changes in single cell transcriptomics of Alzheimer’s Disease
using perturb-Met. bioRxiv 2021. [CrossRef]

142. Bassett, D.S.; Khambhati, A.N.; Grafton, S.T. Emerging Frontiers of Neuroengineering: A Network Science of Brain Connectivity.
Annu. Rev. Biomed. Eng. 2017, 19, 327–352. [CrossRef] [PubMed]

143. He, F.; Fromion, V.; Westerhoff, H.V. (Im)Perfect robustness and adaptation of metabolic networks subject to metabolic and
gene-expression regulation: Marrying control engineering with metabolic control analysis (Im) Perfect robustness and adaptation
of metabolic networks subject to met. BMC Syst. Biol. 2013, 7, 131. [CrossRef] [PubMed]

144. Imielinski, M.; Klitgord, N.; Belta, C. Investigating the genomic basis of metabolic robustness through in silico flux analysis. In
Proceedings of the 2008 47th IEEE Conference on Decision and Control, Cancun, Mexico, 9–11 December 2008; pp. 793–798.

145. Saavedra, E.; Moreno-Sánchez, R. Metabolic Control Theory. In Encyclopedia of Systems Biology; Springer: New York, NY, USA, 2013.
[CrossRef]

146. Westerhoff, H.V.; Kolodkin, A.; Conradie, R.; Wilkinson, S.J.; Bruggeman, F.J.; Krab, K.; van Schuppen, J.H.; Hardin, H.;
Bakker, B.M.; Moné, M.J.; et al. Systems biology towards life in silico: Mathematics of the control of living cells. J. Math. Biol.
2009, 58, 7–34. [CrossRef]

147. Iglesias, P.A.; Ingalls, B.P. Control Theory and Systems Biology, 1st ed.; MIT Press: Cambridge, MA, USA, 2010.
148. Moreno-Sánchez, R.; Saavedra, E.; Rodríguez-Enríquez, S.; Gallardo-Pérez, J.C.; Quezada, H.; Westerhoff, H.V. Metabolic control

analysis indicates a change of strategy in the treatment of cancer. Mitochondrion 2010, 10, 626–639. [CrossRef]
149. Marashi, S.; Bockmayr, A. BioSystems Flux coupling analysis of metabolic networks is sensitive to missing reactions. Biosystems

2011, 103, 57–66. [CrossRef]
150. Chen, J.; Liu, Y.; Lu, S.; O’Sullivan, B.; Razgon, I. A fixed-parameter algorithm for the directed feedback vertex set problem.

J. ACM 2008, 55, 1–19. [CrossRef]
151. Belykh, V.N.; Belykh, I.V.; Hasler, M. Connection graph stability method for synchronized coupled chaotic systems. Phys. D

Nonlinear Phenom. 2004, 195, 159–187. [CrossRef]
152. Maarleveld, T.R.; Khandelwal, R.A.; Olivier, B.G.; Teusink, B.; Bruggeman, F.J. Basic concepts and principles of stoichiometric

modeling of metabolic networks. Biotechnol. J. 2013, 8, 997–1008. [CrossRef]
153. Burgard, A.P.; Nikolaev, E.V.; Schilling, C.H.; Maranas, C.D. Flux Coupling Analysis of Genome-Scale Metabolic Network

Reconstructions. Genome Res. 2004, 14, 301–312. [CrossRef]
154. David, L.; Marashi, S.A.; Larhlimi, A.; Mieth, B.; Bockmayr, A. FFCA: A feasibility-based method for flux coupling analysis of

metabolic networks. BMC Bioinform. 2011, 12, 236. [CrossRef]
155. Larhlimi, A.; Bockmayr, A. A New Approach to Flux Coupling Analysis of Metabolic Networks. In International Symposium on

Computational Life Science; Springer: Berlin/Heidelberg, Germany, 2006; pp. 205–215.
156. Poolman, M.G.; Sebu, C.; Pidcock, M.K.; Fell, D.A. Modular decomposition of metabolic systems via null-space analysis.

J. Theor. Biol. 2007, 249, 691–705. [CrossRef]
157. Tomar, N.; De, R.K. A Comprehensive View on Metabolic Pathway Analysis Methodologies. Curr. Bioinform. 2014, 9, 295–305.

[CrossRef]
158. Kim, D.H.E.; Motter, A. Slave nodes and the controllability of metabolic networks. New J. Phys. 2009, 11, 113047. [CrossRef]
159. Furtado, E.L. FireScholars Artificial Intelligence: An Analysis of Alan Turing’s Role in the Conception and Development of Intelligent

Machinery; Southeastern University: Lakeland, FL, USA, 2018.
160. Sidak, D.; Schwarzerová, J.; Weckwerth, W.; Waldherr, S. Interpretable machine learning methods for predictions in systems

biology from omics data. Front. Mol. Biosci. 2022, 9, 926623. [CrossRef]
161. Thiyagalingam, J.; Shankar, M.; Fox, G.; Hey, T. Scientific machine learning benchmarks. Nat. Rev. Phys. 2022, 4, 413–420.

[CrossRef]
162. Zampieri, G.; Vijayakumar, S.; Yaneske, E.; Angione, C. Machine and deep learning meet genome-scale metabolic modeling.

PLoS Comput. Biol. 2019, 15, e1007084. [CrossRef]
163. Janiesch, C.; Zschech, P.; Heinrich, K. Machine learning and deep learning. Electron. Mark. 2021, 31, 685–695. [CrossRef]
164. Oliveira, A.; Cunha, E.; Cruz, F.; Capela, J.; Sequeira, J.C.; Sampaio, M.; Sampaio, C.; Dias, O. Systematic assessment of

template-based genome-scale metabolic models created with the BiGG Integration Tool. J. Integr. Bioinform. 2022, 19, 20220014.
[CrossRef]

165. Cheng, Y.; Bi, X.; Xu, Y.; Liu, Y.; Li, J.; Du, G.; Lv, X.; Liu, L. Machine learning for metabolic pathway optimization: A review.
Comput. Struct. Biotechnol. J. 2023, 21, 2381–2393. [CrossRef]

166. Vijayakumar, S.; Angione, C. Protocol for hybrid flux balance, statistical, and machine learning analysis of multi-omic data from
the cyanobacterium Synechococcus sp. PCC 7002. STAR Protoc. 2021, 2, 100837. [CrossRef]

167. Osorio, D.; Gonzalez, J.; Pinzon, A. ‘exp2flux’ Convert Gene EXPression Data to FBA FLUXes; The R Project for Statistical Computing:
Vienna, Austria, 2016. [CrossRef]

168. Xu, C.; Jackson, S.A. Machine learning and complex biological data. Genome Biol. 2019, 20, 76. [CrossRef] [PubMed]
169. Cortassa, S.; Caceres, V.; Bell, L.N.; O’rourke, B.; Paolocci, N.; Aon, M.A. From Metabolomics to Fluxomics: A Computational

Procedure to Translate Metabolite Profiles into Metabolic Fluxes. Biophys. J. 2015, 108, 163–172. [CrossRef] [PubMed]
170. Hoppe, A.; Hoffmann, S.; Gerasch, A.; Gille, C.; Holzhütter, H.G. FASIMU: Flexible software for flux-balance computation series

in large metabolic networks. BMC Bioinform. 2011, 12, 28. [CrossRef] [PubMed]

https://doi.org/10.1101/2021.01.18.427154
https://doi.org/10.1146/annurev-bioeng-071516-044511
https://www.ncbi.nlm.nih.gov/pubmed/28375650
https://doi.org/10.1186/1752-0509-7-131
https://www.ncbi.nlm.nih.gov/pubmed/24261908
https://doi.org/10.1007/978-1-4419-9863-7
https://doi.org/10.1007/s00285-008-0160-8
https://doi.org/10.1016/j.mito.2010.06.002
https://doi.org/10.1016/j.biosystems.2010.09.011
https://doi.org/10.1145/1411509.1411511
https://doi.org/10.1016/j.physd.2004.03.012
https://doi.org/10.1002/biot.201200291
https://doi.org/10.1101/gr.1926504
https://doi.org/10.1186/1471-2105-12-236
https://doi.org/10.1016/j.jtbi.2007.08.005
https://doi.org/10.2174/1574893609666140516005147
https://doi.org/10.1088/1367-2630/11/11/113047
https://doi.org/10.3389/fmolb.2022.926623
https://doi.org/10.1038/s42254-022-00441-7
https://doi.org/10.1371/journal.pcbi.1007084
https://doi.org/10.1007/s12525-021-00475-2
https://doi.org/10.1515/jib-2022-0014
https://doi.org/10.1016/j.csbj.2023.03.045
https://doi.org/10.1016/j.xpro.2021.100837
https://doi.org/10.13140/RG.2.2.14401.56168
https://doi.org/10.1186/s13059-019-1689-0
https://www.ncbi.nlm.nih.gov/pubmed/30992073
https://doi.org/10.1016/j.bpj.2014.11.1857
https://www.ncbi.nlm.nih.gov/pubmed/25564863
https://doi.org/10.1186/1471-2105-12-28
https://www.ncbi.nlm.nih.gov/pubmed/21255455


Int. J. Mol. Sci. 2024, 25, 365 29 of 29

171. Emwas, A.H.; Szczepski, K.; Al-Younis, I.; Lachowicz, J.I.; Jaremko, M. Fluxomics—New Metabolomics Approaches to Monitor
Metabolic Pathways. Front. Pharmacol. 2022, 13, 805782. [CrossRef] [PubMed]

172. Cai, Z.; Poulos, R.C.; Liu, J.; Zhong, Q. Machine learning for multi-omics data integration in cancer. iScience 2022, 25, 103798.
[CrossRef] [PubMed]

173. Strain, B.; Morrissey, J.; Antonakoudis, A.; Kontoravdi, C. Genome-scale models as a vehicle for knowledge transfer from
microbial to mammalian cell systems. Comput. Struct. Biotechnol. J. 2023, 21, 1543–1549. [CrossRef] [PubMed]

174. Kanhaiya, K.; Tyagi-Tiwari, D. Identification of Drug Targets in Breast Cancer Metabolic Network. J. Comput. Biol. 2020, 27,
975–986. [CrossRef] [PubMed]

175. Gatto, F.; Nookaew, I.; Nielsen, J. Chromosome 3p loss of heterozygosity is associated with a unique metabolic network in clear
cell renal carcinoma. Proc. Natl. Acad. Sci. USA 2014, 111, E866–E875. [CrossRef] [PubMed]

176. Bidkhori, G.; Benfeitas, R.; Klevstig, M.; Zhang, C.; Nielsen, J.; Uhlen, M.; Boren, J.; Mardinoglu, A. Metabolic network-
based stratification of hepatocellular carcinoma reveals three distinct tumor subtypes. Proc. Natl. Acad. Sci. USA 2018, 115,
E11874–E11883. [CrossRef] [PubMed]

177. Bidkhori, G.; Benfeitas, R.; Elmas, E.; Kararoudi, M.N.; Arif, M.; Uhlen, M.; Nielsen, J.; Mardinoglu, A. Metabolic network-based
identification and prioritization of anticancer targets based on expression data in hepatocellular carcinoma. Front. Physiol. 2018,
9, 916. [CrossRef] [PubMed]

178. GBD 2019 Diseases and Injuries Collaborators. Global burden of 369 diseases and injuries in 204 countries and territories,
1990–2019: A systematic analysis for the Global Burden of Disease Study 2019. Lancet 2020, 396, 1204–1222. [CrossRef]

179. Wareham, L.K.; Liddelow, S.A.; Temple, S.; Benowitz, L.I.; Di Polo, A.; Wellington, C.; Goldberg, J.L.; He, Z.; Duan, X.; Bu, G.; et al.
Solving neurodegeneration: Common mechanisms and strategies for new treatments. Mol. Neurodegener. 2022, 17, 23. [CrossRef]
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