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1. Introduction

Due to its complement of diverse proteins, such as actin filaments, intermediate fila-
ments, and microtubules, the cytoskeleton is essential not only for structural stability but
also for regulating cellular signaling, intracellular transportation, and cell division [1–3].
Moreover, cytoskeleton-binding proteins (CBPs) orchestrate these functions by interact-
ing with cytoskeletal components to form a complex system key to generating cellular
biochemical responses to physical and mechanical stimuli through mechanosensing and
mechanotransduction [4,5]. Therefore, the dysregulation of these interactions can lead
to numerous diseases, such as malignancies, degenerative disorders, and metabolic dis-
eases [6–8].

During recent decades, researchers have endeavored to decode molecular interactions
between the cytoskeleton and CBPs [2]. Diverse biochemical and biophysical analyses
have been employed to investigate the mechanical properties of CBPs and their responses
to intracellular stimuli [9,10]. Moreover, advanced imaging techniques, including super-
resolution microscopy and live-cell imaging, have provided a greater understanding of
the dynamics of these proteins [11,12]. Despite considerable advances, challenges persist
regarding the comprehension of the intricate interactions and regulatory mechanisms of
the cytoskeleton and CBPs. Unraveling the roles of cytoskeletal dynamics and the sig-
naling pathways involved in mechanotransduction is crucial for developing innovative
therapeutic approaches targeting these components in various health conditions and dis-
ease backgrounds. This Special Issue, entitled “Cytoskeleton and Its Binding Proteins as
Mechanosensors, Transducers, and Functional Regulators of Cells” and published in the
International Journal of Molecular Sciences, includes five significant articles (contributions 1–5)
that advance our understanding of cytoskeletal biology and mechanotransduction and
highlight potential therapeutic avenues.

2. Exploring This Special Issue

Accumulating evidence has highlighted the importance of actin cytoskeleton dynam-
ics in skeletal myogenesis, as influenced by the interplay between CBPs and the Hippo
signaling pathway. In the first article by Nguyen et al. (contribution 1), the authors reveal
the critical function played by actin-binding protein FLII during myogenic progenitor cell
differentiation. FLII levels are downregulated during the myogenesis of C2C12 myoblasts,
and the authors found that FLII knockdown in myoblasts led to the upregulation of filamen-
tous actin (F-actin), the nuclear translocation of YAP1, and the activation of genes crucial
for cell proliferation. Subsequent experiments revealed that FLII knockdown inhibited
the expressions of myogenic regulatory factors, hindering myoblast differentiation and
myotube formation. The crucial role of FLII in the regulation of the F-actin/YAP1 axis
during myogenic differentiation is highlighted in this study, which suggests that FLII could
be a feasible therapeutic target for muscle wasting.
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In the second article, Kazuo Katoh (contribution 2) discusses the effect of mechanical
stress on endothelial cells, which are essentially required for vascular homeostasis. The
review explains the basic principles of the cellular response to mechanical stresses and
explores how these mechanical stresses affect endothelial cells in vitro and in situ. The
article also introduces the signal transducers in the mechanotransduction mechanisms
regulated by cytoskeletal components in the endothelial cells. Understanding the impact of
mechanical stress on endothelial cells is crucial for comprehending complex interactions
within the vascular system in health and disease. It will thus provide valuable insights into
vascular physiology and pathology.

In the third article, Coscarella et al. (contribution 3) comprehensively review the
role of mechanotransduction in cardiomyocytes and its implications in cardiomyopathies.
The authors explore the crucial communication between the cytoskeleton and the nuclear
envelope, which changes nuclear remodeling, gene expression, and its involvement during
various pathogenic processes. The review also discusses molecular features in cardiomy-
ocytes, and especially how signals from sarcomeric contractions are transmitted to different
cellular parts and impact gene expression. Also, the authors connect dysfunctional sar-
comeric roles and contractility in cardiomyocytes with inherited or acquired sarcomeric
variants. The conclusions of this comprehensive review emphasize further research on
mechanotransduction and nucleus enveloping dynamics in cardiomyocytes to understand
the pathophysiology of cardiomyopathies.

In the fourth article, Sarantelli et al. (contribution 4) explore the significance of the
role of Fascin-1 in the migration and invasion of cancer cells and offer pathways to novel
anti-metastatic therapeutic targets. Fascin-1, an actin-bundling protein, plays a crucial role
in cell migration, which is essential in physiological and pathological contexts, including
cancer metastasis. Throughout the article, the authors analyze the latest research on Fascin-
1, with a particular focus on its expression in various types of cancer, its role in altering
the mechanical properties of cancer cells, and its role in promoting the migration, invasion,
and metastasis of cancer cells. Furthermore, the review discusses the potential effects
of inhibiting Fascin-1 in vitro and in vivo using a variety of pharmacological agents on
metastasis and the fact that Fascin-1 is a crucial component of metastasis, highlighting its
potential as an important anti-metastatic target that deserves further investigation.

In the last article, Cornelison et al. (contribution 5) address the urgent need for effective
treatments for this disease. Rhabdomyosarcoma is the most common pediatric soft-tissue
malignancy, with a low survival rate for high-risk children. The authors place focus on
the novel oncogenic actin-binding protein AVIL, which is commonly overexpressed in
rhabdomyosarcoma. The review focuses on the significance of the actin-binding protein
AVIL, as identified by studies on rhabdomyosarcoma cell lines, patient-derived xenograft
models, and clinical samples of the alveolar and embryonal subtypes. The authors propose
that AVIL be viewed as a therapeutic target and emphasize its potential ability to enhance
the efficacy and specificity of cytotoxic agents. They suggest that this approach offers
promise for the effective, safe treatment of this challenging pediatric cancer.
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