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Abstract: Lactobacilli have been widely used as probiotics because of their benefits for intestinal
health and physiological functions. Among a variety of Lactobacillus genera, Limosilactobacillus
reuteri has been studied for its ability to exert anti-inflammatory functions and its role in controlling
metabolic disorders, as well as the production of the antimicrobial compound reuterin. However,
the effects and mechanisms of L. reuteri on enhancing immune responses in the immunosuppressed
states have been relatively understudied. In this study, we isolated an immunomodulatory strain,
namely, L. reuteri KBL346 (KBL346), from a fecal sample of a 3-month-old infant in Korea. We
evaluated the immunostimulatory activity and hematopoietic function of KBL346 in macrophages
and cyclophosphamide (CPA)-induced immunosuppressed mice. KBL346 increased the phagocytic
activity against Candida albicans MYA-4788 in macrophages, and as biomarkers for this, increased
secretions of nitric oxide (NO) and prostaglandin E2 (PGE2) were confirmed. Also, the secretions
of innate cytokines (TNF-α, IL-1β, and IL-6) were increased. In CPA-induced immunosuppressed
mice, KBL346 at a dosage of 1010 CFU/kg protected against spleen injury and suppressed levels of
immune-associated parameters, including NK cell activity, T and B lymphocyte proliferation, CD4+

and CD8+ T cell abundance, cytokines, and immunoglobulins in vivo. The effects were comparable
or superior to those in the Korean red ginseng positive control group. Furthermore, the safety
assessment of KBL346 as a probiotic was conducted by evaluating its antibiotic resistance, hemolytic
activity, cytotoxicity, and metabolic characteristics. This study demonstrated the efficacy and safety
of KBL346, which could potentially be used as a supplement to enhance the immune system.

Keywords: Limosilactobacillus reuteri; probiotics; macrophage; cyclophosphamide; immunity; safety

1. Introduction

The immune system plays an important role in maintaining body homeostasis by
defending against infections and diseases. The body uses innate and adaptive immune
systems to detect and eliminate pathogenic invaders that enter through physical barriers.
The innate immune response is an immediate and non-specific defense mechanism that
involves the activation of macrophages, neutrophils, and natural killer (NK) cells, which
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further leads to cytokines production, including tumor necrosis factor alpha (TNF-α), inter-
leukin (IL)-1β, and IL-6. The adaptive immune response provides highly specific protection
against pathogens. It is characterized by its ability to recognize and remember specific
antigens on the surface of pathogens or foreign substances. Gut-associated lymphoid tissue
(GALT) is a significant component of the immune system that is located in the gastrointesti-
nal tract and plays a central role in monitoring and responding to substances that enter the
digestive system. The research in recent years has highlighted the significant impact of the
gut microbiota in maintaining systemic immunity by modulating GALT and other immune
organs [1].

As probiotic gut microbiota, certain strains of lactobacilli isolated from human feces
are known to modulate the host immune system [2–5]. Lactobacillus has anti-inflammatory
functions, reduces chronic inflammation, maintains immune tolerance and balance, and
therefore, controls various types of metabolic and autoimmune diseases [6–8]. However,
studies on the immunomodulatory function of Lactobacillus have been rarely reported in the
context of improving immune suppression. Some strains of L. casei [9], L. plantarum [10–12],
and L. acidophilus [13] isolated from various food sources were reported to enhance the
depressed immunity by cyclophosphamide in in vivo models. However, the effects were
highly strain specific and most of the strains originated from fermented foods.

Lactobacillus reuteri (Limosilactobacillus reuteri) reside in various human body sites,
primarily including the gastrointestinal tract, urinary tract, skin, and breast milk [14]. L.
reuteri has several beneficial effects on health by preventing and alleviating symptoms of
metabolic and inflammatory diseases [15]. It can also withstand various pH environments
and employs multiple mechanisms that allow it to inhibit pathogenic microorganisms
including the production of the highly potent anti-microbial metabolite reuterin [16,17].
In addition, L. reuteri has stimulatory effects on the immune system by increasing T cell
development and function [15]. Upon supplementation with L. reuteri ATCC 55730, B
lymphocyte numbers were increased and promoted increased numbers of CD4-positive T-
lymphocytes in the ileal epithelium [18]. There is growing interest in the immune-boosting
potential of L. reuteri; however, its efficacy is limited to certain strains.

Here, we aimed to evaluate the immune-stimulating ability and safety profile of L.
reuteri KBL346 isolated from the feces of a 3-month-old infant. In our study, we used murine
macrophage cells as an in vitro model to evaluate various factors, such as phagocytic activ-
ity, secretions of nitric oxide (NO) and prostaglandin E2 (PGE2), immunomodulatory cy-
tokines (TNF-α, IL-1β, IL-6), and the phosphorylation and expression of mitogen-activated
protein kinase (MAPK) or nuclear factor-κB (NF-κB) protein. Furthermore, we employed a
cyclophosphamide (CPA)-induced immunosuppressed mice model as an in vivo model to
examine the histological changes in the spleen, the immune-related blood cell counts, the
proliferation of lymphocytes, the natural killer cell activity, the CD4- and CD8-positive T
cell counts, the cytokines, and the measurement of immunoglobulins in splenocytes and
blood serum obtained from the mice.

2. Results
2.1. KBL346 Increased the Phagocytic Activity of Macrophages

Phagocytosis occurs when phagocytes consume pathogens or foreign substances after
physical/chemical barriers are broken. We confirmed the phagocytic activity of RAW264.7
cells with exposure to KBL346.

In the experiment, RAW264.7 cells were cocultured with KBL346, and then Candida
albicans MYA-4788 was added. The percentage of phagocytic cells among all cells was
calculated to measure the phagocytic activity. As depicted in Figure 1, the group treated
with KBL346 showed a significant increase in phagocytic activity (up to 84.2%) compared
with the group treated with C. albicans alone (57.4%). Moreover, the phagocytic activity
of the KBL346-treated group was found to be similar to that of the group treated with
lipopolysaccharide (LPS), which is a representative immune-stimulating agent (92.8%).
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Figure 1. Effects of KBL346 on phagocytic activity in macrophage. After coculture of KBL346 and 

RAW264.7 cells (ratio, 50:1), Candida albicans MYA-4788 was added to RAW264.7 cells at an MOI of 

10. (a) Light micrograph showing RAW264.7 cells (magnification, ×1000) stained with 0.5% meth-

ylene blue reagent. Red arrows indicate phagocytic activities of RAW264.7 cells. (b) Phagocytic ac-

tivity was calculated as the ratio of phagocytic cells to total macrophages in the micrograph. ns, not 

significant difference compared with the marked sample (p > 0.05); * significant difference compared 

with the marked samples (*** p < 0.001). 
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Figure 1. Effects of KBL346 on phagocytic activity in macrophage. After coculture of KBL346 and
RAW264.7 cells (ratio, 50:1), Candida albicans MYA-4788 was added to RAW264.7 cells at an MOI of 10.
(a) Light micrograph showing RAW264.7 cells (magnification, ×1000) stained with 0.5% methylene
blue reagent. Red arrows indicate phagocytic activities of RAW264.7 cells. (b) Phagocytic activity was
calculated as the ratio of phagocytic cells to total macrophages in the micrograph. ns, not significant
difference compared with the marked sample (p > 0.05); * significant difference compared with the
marked samples (*** p < 0.001).

2.2. KBL346 Increased Secretion of Nitric Oxide and Prostaglandin Secretion by Macrophages

When a foreign substance enters a phagocyte, it undergoes degradation through
various enzymes, reactive oxygen/nitrogen species, and antibacterial peptides within
phagolysosomes, which are formed by the combination of phagosomes with lysosomes.
Macrophages and neutrophils, which are types of phagocytes, have receptors for C5a
and fMLF (fMet-Leu-Phe). When these receptors are activated, the production of reactive
oxygen/nitrogen species increases to promote the intracellular destruction of microorgan-
isms within phagolysosomes. In addition, certain types of PRRs initiate inflammasome
activation, and activated inflammasomes play a vital role in the induction of inflam-
matory cascades and coordination of host defenses. Inflammasome activation leads to
the release of PGE2, which is known to be involved in gut wound repair, although this
remains controversial.

We used ELISA to measure the levels of NO and P PGE2 in culture supernatants, and
Western blotting to determine the expression of iNOS and COX-2, which are responsible
for the production of NO and PGE2. When we added KBL346 to RAW264.7 cells, we
observed an increase in the secretion of NO and PGE2 (as shown in Figure 2a,b). There
was no reduction in cell viability at any of the concentrations tested, as seen in Figure 2c.
Treatment of cells with KBL346 (ratio, 50:1) resulted in a significant increase of up to
9.25-fold (14.8 µM) in the secretion of NO compared with the control group (1.6 µM).
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Figure 2. Effects of KBL346 on the production of nitric oxide (NO) and prostaglandin E2 (PGE2) in 
macrophages. KBL346 and RAW264.7 cells were cocultured at ratios from 3.13:1 to 100:1. As a posi-
tive control group, 10 ng/mL of lipopolysaccharide (LPS) was treated, and the negative control 
group (ctrl) was not treated with either LPS or bacteria. (a,b) The levels of immune mediators (NO, 
PGE2) in the culture supernatant of RAW264.7 cells were measured. (c) The viability of RAW264.7 
cells was assessed using MTT assay. The viability was calculated as a percentage of that in the con-
trol group based on the control group using an MTT assay kit. (d) After coculturing KBL346 with 
RAW264.7 cells at ratios of 10:1 and 100:1, the expressions of inducible nitric oxide synthase (iNOS) 
and cyclooxygenase-2 (COX-2) were analyzed using Western blotting. As a positive control group, 
treatment with 10 ng/mL of LPS was used. Data are expressed as the mean ± SD (n = 3). ns, not 
significant compared with the control group (p > 0.05); * significant difference compared with the 
control group (*** p < 0.001, **** p < 0.0001). 

The amount of PGE2 secretion was significantly higher in the group treated with 
KBL346 (in a ratio of 50:1) compared with the control group. Specifically, the level in-
creased up to 29.8-fold, reaching 5.07 ng/mL, while in the control group, it was only 0.17 
ng/mL. This increase was directly proportional to the amount of KBL346 used. Moreover, 
KBL346 caused a concentration-dependent increase in the expressions of iNOS and COX-
2, as shown in Figure 2d. 

2.3. KBL346 Increased the Production of Cytokines by Macrophages 
As innate immune cells, macrophages have the ability to eliminate pathogens via 
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(TLRs) are one type of pathogen recognition receptor (PRR) that activates signal 

Figure 2. Effects of KBL346 on the production of nitric oxide (NO) and prostaglandin E2 (PGE2)
in macrophages. KBL346 and RAW264.7 cells were cocultured at ratios from 3.13:1 to 100:1. As a
positive control group, 10 ng/mL of lipopolysaccharide (LPS) was treated, and the negative control
group (ctrl) was not treated with either LPS or bacteria. (a,b) The levels of immune mediators (NO,
PGE2) in the culture supernatant of RAW264.7 cells were measured. (c) The viability of RAW264.7
cells was assessed using MTT assay. The viability was calculated as a percentage of that in the
control group based on the control group using an MTT assay kit. (d) After coculturing KBL346 with
RAW264.7 cells at ratios of 10:1 and 100:1, the expressions of inducible nitric oxide synthase (iNOS)
and cyclooxygenase-2 (COX-2) were analyzed using Western blotting. As a positive control group,
treatment with 10 ng/mL of LPS was used. Data are expressed as the mean ± SD (n = 3). ns, not
significant compared with the control group (p > 0.05); * significant difference compared with the
control group (*** p < 0.001, **** p < 0.0001).

The amount of PGE2 secretion was significantly higher in the group treated with
KBL346 (in a ratio of 50:1) compared with the control group. Specifically, the level increased
up to 29.8-fold, reaching 5.07 ng/mL, while in the control group, it was only 0.17 ng/mL.
This increase was directly proportional to the amount of KBL346 used. Moreover, KBL346
caused a concentration-dependent increase in the expressions of iNOS and COX-2, as
shown in Figure 2d.

2.3. KBL346 Increased the Production of Cytokines by Macrophages

As innate immune cells, macrophages have the ability to eliminate pathogens via
phagocytosis. Additionally, they secrete several inflammatory mediators that activate
and recruit other immune cells. Cytokines and chemokines are the most important of
these mediators and they act as hormones to signal to other immune cells. Toll-like
receptors (TLRs) are one type of pathogen recognition receptor (PRR) that activates signal
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transduction, leading to the secretion of inflammatory cytokines, such as TNF-α, IL-1β,
and IL-6, as well as antiviral cytokines, such as type 1 interferon.

To determine the secretion of proinflammatory cytokines by RAW264.7 cells following
exposure to KBL346, the levels of cytokines in the culture supernatant were measured via
ELISAs. The results, shown in Figure 3, indicate that KBL346 increased the secretion of
TNF-α and IL-6 in a concentration-dependent manner (Figure 3a,c). However, macrophages
did not secrete a significant amount of IL-1β until exposed to 50 KBL346 bacteria per cell
(Figure 3b).
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Figure 3. Effects of KBL346 on production of cytokines by macrophages. KBL346 and RAW264.7 cells
were cocultured at ratios from 3.13:1 to 100:1. As a positive control group, treatment with 10 ng/mL
of lipopolysaccharide (LPS) was used, and the control group (ctrl) was not treated with either LPS or
bacteria. The level of immunomodulatory cytokines ((a) TNF-α; (b) IL-1β; (c) IL6) was measured in
the culture supernatant using an ELISA kit. Data are expressed as the mean ± SD (n = 3). nd, not
detected; * significant difference compared with control group (*** p < 0.001, **** p < 0.0001).

2.4. KBL346 Activated Immune Signaling Pathways and Increased Expression of Their Target
Genes in Macrophages

We conducted an analysis of the expression and phosphorylation of various kinases
involved in different signaling pathways (Figure 4a). This was done to identify the mech-
anisms responsible for the immunostimulatory effects of KBL346. Macrophages, which
have Toll-like receptors (TLRs) on their membranes and NOD-like receptors (NLRs) in
their cytoplasm, express several pattern recognition receptors (PRRs). Specific receptors
recognize different pathogen-associated molecular patterns (PAMPs). Among the PRRs
expressed by macrophages, TLRs have been the focus of many studies on the intracellular
response to their stimulation. The formation of ligand-induced TLR polymers and differ-
ences in adapter proteins according to the composition of these polymers have been studied.
However, despite the different intracellular signaling processes, most studies suggest that
TLRs activate either AP-1 family transcription factors (c-Jun, c-Fos, etc.) or the transcription
factor NF-κB [19]. Therefore, we investigated the expression and phosphorylation of ki-
nases involved in the signaling pathways that activate each family of transcription factors
(Figure 4b,c).

When kinases within the MAPK signaling pathway (p38, JNK, and ERK) involved in
the activation of AP-1 family transcription factors were examined, we found no significant
differences in the expression of non-phosphorylated proteins compared with the control
group. However, the level of phosphorylated protein (i.e., the activated form) increased
significantly after treatment with KBL346 (Figure 4b). In the NF-kB signaling pathway,
IkBα inhibits the activity of NF-kB by forming a complex with it. We found that IkBα
was phosphorylated after KBL346 treatment, thereby allowing it to dissociate from NF-kB
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(Figure 4c). However, despite the increased amounts of phosphorylated IkBα, the level of
NF-kB inside the cells did not increase significantly above the levels in the control group.
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index by approximately 1.5-fold in comparison with that of the cyclophosphamide group, 
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KBL346 at both 108 or 1010 CFU/kg similar to the red ginseng positive control group (Figure 

Figure 4. Effects of KBL346 on immune signaling pathways in macrophage. (a) Schematic representa-
tion of cellular signaling pathway of Toll-like receptors (TLRs) in macrophages. (b,c) After coculture
of KBL346 and RAW264.7 cells at ratios of 10:1 and 100:1, phosphorylation and expression of mitogen-
activated protein kinase (MAPK; blue in (a)) in MAPK signaling pathway or nuclear factor-κB (NF-κB;
green in (a)) in the NF-κB signaling pathway were determined using immunochemical method. As a
positive control group, treatment with 10 ng/mL concentration of LPS was used. β-actin was used as
an internal loading control.

2.5. KBL346 Protected against Spleen and Body Weight Changes Decreased by Cyclophosphamide

To evaluate the immunostimulatory effect of KBL346 on physiological conditions,
cyclophosphamide-induced immunosuppressed mice were used (Figure 5a). The effect
of KBL346 was observed on the spleen size, body weight, thymus, and spleen index.
The spleen size was significantly reduced by cyclophosphamide administration in the
negative control groups in comparison with that of the normal group. However, KBL346 at
1010 CFU/kg dosage increased the spleen size, which was reduced using cyclophosphamide
(Figure 5b). As shown in Figure 5c, KBL346 at 1010 CFU/kg significantly raised the spleen
index by approximately 1.5-fold in comparison with that of the cyclophosphamide group,
in which this improvement was superior to that of the red ginseng administration positive
control group. However, the thymus index did not show significant changes in the KBL346
at both 108 or 1010 CFU/kg dosage or red ginseng positive control group compared with the
cyclophosphamide group (Figure 5d). The body weight was improved by KBL346 at both
108 or 1010 CFU/kg similar to the red ginseng positive control group (Figure 5e). The results
indicate that KBL346 had beneficial effects on immune organs and body weight change.
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Figure 5. Effect of KBL346 on immune-enhancing activity in CPA-treated BALB/c mice. (a) Experi-
mental design and timeline of in vivo study; (b,c) spleen size and spleen index; (d) thymus index;
(e) body weight after 20 days of KBL346 administration. N, naïve mouse; C, CPA (100 mg/kg)-treated
mouse; 108, CPA-treated mouse administered with 108 CFU/kg of KBL346; 1010, CPA-treated mouse
administered with 1010 CFU/kg of KBL346; PC, positive control group administered with red ginseng
(100 mg/kg). * Significant difference compared with the naïve group (*** p < 0.001). # Significant
difference compared with the CPA-treated control group (# p < 0.05, ## p < 0.01, ### p < 0.001).

2.6. KBL346 Alleviated Spleen Tissue Damage Induced by Cyclophosphamide

The spleen is an immunological organ and, therefore, structural damage may cause an
increased risk of infection [20]. Cyclophosphamide-treated mice showed structural disorga-
nization of the spleen compartments in comparison with that of the normal group. The
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blood-containing red pulp (RP), lymphocyte-containing white pulp (WP), and macrophage-
containing marginal zone (MZ) were invisible. However, the spleen organization was
restored by KBL346 at both 108 or 1010 CFU/kg dosage, which was similar to that of the
red ginseng administration positive control group (Figure 6a). In parallel with the spleen
structural changes, spleen injury scores were significantly alleviated by KBL346 at both
the 108 or 1010 CFU/kg dosages by approximately 1.5-fold (Figure 6b). The results indi-
cate that KBL345 potentially protected spleen function by restoring the spleen structural
compartments.
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Figure 6. Effect of KBL346 on the restoration of structural disorganization (a) and injury score (b) of
spleen in CPA-induced immunosuppressed mice. RP, red pulp; WP, white pulp; MZ, marginal zone;
CA, central arteriole. N, naïve mouse; C, CPA (100 mg/kg)-treated mouse; 108, CPA-treated mouse
administered with 108 CFU/kg of KBL346; 1010, CPA-treated mouse administered with 1010 CFU/kg
of KBL346; PC, positive control group administered with red ginseng (100 mg/kg). * Significant
difference compared with the naïve group (*** p < 0.001). # Significant difference compared with the
CPA-treated control group (## p < 0.001, ### p < 0.001).

2.7. KBL346 Enhanced Blood Cell Counts Decreased by Cyclophosphamide

Cyclophosphamide administration induced a significant decrease in the immunolog-
ical blood cell numbers. Decreased numbers of blood cells were found for white blood
cells (WBCs), platelets (PLTs), lymphocytes (LYMs), red blood cells (RBCs), hemoglobins
(HGBs), and hematocrits (HCTs). However, KBL346 at mostly the 1010 CFU/kg dosage
elevated WBC, PLT, and LYM counts that were similar or superior to those of the red
ginseng administration positive control group (Figure 7). The results show that KBL345
potentially had immunostimulatory effects by restoring immunological peripheral cells.
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KBL346 administration at 1010 CFU/kg dosage effectively restored NK cell activity (p < 
0.0001), as measured by LDH release levels in NK cells reacting with YAC-1 cells. The 
improved NK cell activity was similar to that of the red ginseng positive control group 
(Figure 8a). And KBL346 at both 108 or 1010 CFU/kg dosage restored T lymphocyte (p < 
0.001) and B lymphocyte (p < 0.0001) proliferation, as detected in splenocytes with conca-
navalin A (1 µg/mL) and LPS (1 µg/mL) for T cell and B cell proliferation, respectively 
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Figure 7. Changes in immunological blood cell profile by KBL346 in CPA-induced immunosuppressed
mice. (a) WBCs, white blood cells; (b) PLTs, platelets; (c) LYMs, lymphocyte; (d) RBCs, red blood
cell; (e) HGB, hemoglobin; (f) HCT, hematocrit; (g) MCV, mean corpuscle volume; (h) MCHC, mean
corpuscle hemoglobin concentration; (i) MCH, mean corpuscle hemoglobin. N, naïve mouse; C,
CPA (100 mg/kg)-treated mouse; 108, CPA-treated mouse administered with 108 CFU/kg of KBL346;
1010, CPA-treated mouse administered with 1010 CFU/kg of KBL346; PC, positive control group
administered with red ginseng (100 mg/kg). * Significant difference compared with the naïve group
(*** p < 0.001). # Significant difference compared with the CPA-treated control group (# p < 0.05,
## p < 0.01, ### p < 0.001).

2.8. KBL346 Promoted Lymphocyte Proliferation and NK Cell Activity

Natural killer (NK) cells’ activity reflects the ability to produce immunological cy-
tokines [21] and T and B lymphocytes are responsible for adaptive immune response.

Cyclophosphamide administration notably decreased the NK cell activity (1.5-fold)
and T and B lymphocyte proliferation (2-fold and 1.5-fold, respectively). However, KBL346
administration at 1010 CFU/kg dosage effectively restored NK cell activity (p < 0.0001),
as measured by LDH release levels in NK cells reacting with YAC-1 cells. The improved
NK cell activity was similar to that of the red ginseng positive control group (Figure 8a).
And KBL346 at both 108 or 1010 CFU/kg dosage restored T lymphocyte (p < 0.001) and
B lymphocyte (p < 0.0001) proliferation, as detected in splenocytes with concanavalin A
(1 µg/mL) and LPS (1 µg/mL) for T cell and B cell proliferation, respectively (Figure 8b,c).
This level of protection was similar to that of the red ginseng positive control group. The
results indicated that KBL346 remarkably promoted immunity by inducing NK cell activity
and T and B lymphocyte proliferation.
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Figure 8. Effects of KBL346 on NK cell activity (a) and T cell (b) and B cell (c) proliferation in
CPA-induced immunosuppressed mice. N, naïve mouse; C, CPA (100 mg/kg)-treated mouse; 108,
CPA-treated mouse administered with 108 CFU/kg of KBL346; 1010, CPA-treated mouse administered
with 1010 CFU/kg of KBL346; PC, positive control group administered with red ginseng (100 mg/kg).
* Significant difference compared with the naïve group (*** p < 0.001). # Significant difference
compared with the CPA-treated control group (# p < 0.05, ## p < 0.01, ### p < 0.001).

2.9. KBL346 Elevated CD4+ and CD8+ T Cell Numbers in Splenocytes Decreased by Cyclophosphamide

CD8+ T lymphocytes and CD8+ T lymphocyte-induced CD4+ cells play a major role in
cellular-mediated immune responses to foreign antigen [22]. Therefore, changes in counts of
CD4+- and CD8+-positive cells in the spleen were evaluated using immunohistochemistry.
In splenocytes, cyclophosphamide significantly decreased the numbers of both CD4+- and
CD8+-positive T cells. However, KBL346 at 108 CFU/kg dosage remarkably enhanced cell
counts of CD4+-positive T lymphocytes (p < 0.0001) superior to that of the red ginseng
administration positive control group (Figure 9a,c). In addition, KBL346 at both the 108 and
1010 CFU/kg dosages significantly restored the cell counts of CD8+-positive T lymphocytes
(Figure 9b,d). The results show that KBL346 promoted cell counts of CD4+ and CD8+ T
lymphocytes that could increase immunity.
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Interleukin (IL)-1β, Tumor Necrosis Factor (TNF)-α, IL-6, IL-2, IL-4, and Interferon (IFN)-
γ were measured in mouse blood serum using ELISA. As depicted in Figure 10, the ad-
ministration of cyclophosphamide significantly reduced these immune-related cytokine 
levels. However, KBL346 at both dosages of 108 and 1010 CFU/kg significantly restored the 
serum levels of these cytokines, specifically IL-1β and IL-6. Moreover, at a dosage of 1010 
CFU/kg, KBL346 significantly increased the production of TNF-α, IL-2, IL-4, and IFN-γ. 
The increase in cytokine by KBL346 was comparable with that of the red ginseng admin-
istration positive control group. These results indicate that KBL346 has the potential to 
stimulate immunity by increasing immune-related cytokines. 
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Figure 9. Restoration of CD4- and CD8-positive T lymphocytes in the spleen of CPA-induced
immunosuppressed mice. (a,b) Representative immunohistochemical staining images and (c,d) fold
changes of CD4+ and CD8+ cells in CPA-treated mouse spleen. Scale bar: 75 µm. N, naïve mouse; C,
CPA (100 mg/kg)-treated mouse; 108, CPA-treated mouse administered with 108 CFU/kg of KBL346;
1010, CPA-treated mouse administered with 1010 CFU/kg of KBL346; PC, positive control group
administered with red ginseng (100 mg/kg). * Significant difference compared with the naïve group
(*** p < 0.001). # Significant difference compared with the CPA-treated control group (### p < 0.001).

2.10. KBL346 Stimulated Secretion of Immune-Associated Cytokines

Cytokines are essential proteins involved in generating and regulating immune cells.
In an attempt to study the effect of KBL346 on immune-associated cytokines, the levels
of Interleukin (IL)-1β, Tumor Necrosis Factor (TNF)-α, IL-6, IL-2, IL-4, and Interferon
(IFN)-γ were measured in mouse blood serum using ELISA. As depicted in Figure 10, the
administration of cyclophosphamide significantly reduced these immune-related cytokine
levels. However, KBL346 at both dosages of 108 and 1010 CFU/kg significantly restored
the serum levels of these cytokines, specifically IL-1β and IL-6. Moreover, at a dosage
of 1010 CFU/kg, KBL346 significantly increased the production of TNF-α, IL-2, IL-4, and
IFN-γ. The increase in cytokine by KBL346 was comparable with that of the red ginseng
administration positive control group. These results indicate that KBL346 has the potential
to stimulate immunity by increasing immune-related cytokines.
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CFU/kg dosage or the red ginseng administration positive control group. These results 
show that KBL346 improved immunity by increasing the levels of immunological Ig. 
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Figure 10. Effect of KBL346 on serum cytokine levels in CPA-induced immunosuppressed mice.
(a) IL-1β, (b) TNF-α, (c) IL-6, (d) IL-2, (e) IL-4, and (f) IFN-γ levels in serum. N, naïve mouse; C,
CPA (100 mg/kg)-treated mouse; 108, CPA-treated mouse administered with 108 CFU/kg of KBL346;
1010, CPA-treated mouse administered with 1010 CFU/kg of KBL346; PC, positive control group
administered with red ginseng (100 mg/kg). * Significant difference compared with the naïve group
(* p < 0.05, ** p < 0.01, *** p < 0.001). # Significant difference compared with the CPA-treated control
group (# p < 0.05, ## p < 0.01, ### p < 0.001).

2.11. KBL346 Stimulated Secretion of Immune-Related Immunoglobulins

Immunoglobulins (Igs) are a type of glycoprotein that plays a crucial role in maintain-
ing the immune system. In order to examine immunoglobulins, blood serum levels of IgA,
IgM, and IgG were measured using ELISA (Figure 11). Cyclophosphamide significantly
decreased serum levels of IgA, IgM, and IgG. However, the administration of KBL346
at both 108 and 1010 CFU/kg dosages restored the levels of IgM (p < 0.0001) and IgG
(p < 0.0001) to levels superior to those of the red ginseng administration positive control
group. The level of IgA was not significantly changed by either KBL346 at 108 or 1010

CFU/kg dosage or the red ginseng administration positive control group. These results
show that KBL346 improved immunity by increasing the levels of immunological Ig.
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Figure 11. Effect of KBL346 on serum immunoglobulin levels in CPA-induced immunosuppressed
mice. (a) IgA, (b) IgM, and (c) IgG levels in serum. N, naïve mouse; C, CPA (100 mg/kg)-treated
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2.12. Safety Profile of KBL346

We conducted tests to determine the safety of using KBL346 as a probiotic. We exam-
ined its antibiotic resistance, hemolytic activity, cytotoxicity, and metabolic characteristics.
The E-strip test showed that KBL346 is susceptible to eight antibiotics, which is within
the EFSA breakpoint (as shown in Table 1 and Figure 12a). Additionally, no antibiotic
resistance genes were found in either the 2.23 Mb chromosome or the 19.1 kb plasmid
(Table 2 and Figure 12b). Unlike Staphylococcus aureus ATCC12600, KBL346 is identified as a
γ-hemolysis bacterium that does not show hemolytic activity (as shown in Figure 12c). To
confirm cytotoxicity against Caco-2 cells, which is a human intestinal epithelial cell line, we
tested LDH activity, and the results showed that KBL346 caused no significant cytotoxicity
to any of the treated groups (as shown in Figure 12d). When S. aureus ATCC12600 was
treated with 20,000 times the number of cells, the cytotoxicity was similar to that of the
positive control. However, KBL346 caused no significant cytotoxicity even when treated
with a high number of cells.

Table 1. Minimum inhibitory concentration (MIC) of antibiotics and qualitative analysis of antibiotic
resistance genes.

Antibiotic (mg/L) AM GM KM SM EM CM TC CL

Susceptibility EFSA BP 2 8 64 64 1 1 16 4
KBL346 2 0.38 12 4 0.023 <0.016 12 0.75

Resistance gene n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d.

Abbreviations: EFSA BP, European Food Safety Authority breakpoint; AM, ampicillin; GM, gentamicin; KM,
kanamycin; SM, streptomycin; EM, erythromycin; CM, clindamycin; TC, tetracyclin; CL, chloramphenicol; n.d.,
not detected.

Finally, we examined metabolic characteristics, BSH activity, and D-lactate production.
BSH activity was confirmed by streaking the KBL346 strain on MRS agar medium contain-
ing taurodeoxycholic acid (TDCA), which is a bile acid. If the strain has BSH activity, the
colonies appear as opaque white circles; however, in the case of KBL346, no opaque white
colonies were formed, indicating that the strain was negative for BSH activity. To confirm
whether KBL346 produces D-lactate, D-lactate concentrations in the culture supernatant
comprising two media (BHI and MRS) were measured in an ELISA. Although there was
a difference in the amount produced, D-lactate was detected in both media (0.16 mM in
BHI medium; 7.56 ± 0.17 mM in MRS medium). Humans cannot metabolize D-lactate;
therefore, if orally ingested probiotics contain DL-lactate racemase, which converts L-
lactate to D-lactate, D-lactate accumulates and causes acidosis. Since the accumulation of
D-lactate is a problem for newborns, children, and patients with congenital short bowel
syndrome, it can only be used in conjunction with a warning statement according to the
WHO/FAO guidelines.

Table 2. Characteristics of the L. reuteri KBL346 genome.

Contig Name Size (bp) GC (%) CDS tRNA rRNA

Contig 1 2,227,886 39.1 2151 69 18
Contig 2 19,058 36.9 17 0 0

Total 2,246,944 39.0 2168 69 18
Abbreviations: bp, base pairs; GC, guanine–cytosine; rRNA, ribosomal ribonucleic acid; tRNA, transfer ribonucleic
acid; CDS, coding sequence.
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3. Discussion and Conclusions

In this study, we investigated the immunostimulatory properties of L. reuteri KBL346
in both in vitro macrophage cells and in vivo CPA-induced immune-suppressed BALB/c
mice. Additionally, we evaluated the safety profile of KBL346 using a variety of tests based
on the EFSA guidelines.

Lactobacillus spp. have indeed gained significant attention in clinical and medical
settings due to their safety, reliability, and promising performance in a range of health
conditions [23]. However, it is important to note that the effects of Lactobacillus on the im-
mune system can be strain specific, and individual responses may vary. For over 30 years,
L. rhamnosus GG (LGG) has been reported to be effective in treating various diseases,
including gastrointestinal, respiratory, cardiovascular, metabolic, and autoimmune dis-
eases [24]. LGG has been available commercially for a long time and is considered a reliable
strain due to its functionality. However, it may not work effectively for everyone, or it
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may not address specific health concerns, such as its immunostimulatory efficacy in a
cyclophosphamide-induced condition. The effectiveness of probiotics can be influenced by
various factors, including their metabolic capacity, the composition of bioactive molecules
they produce, and the individual differences in the gut microbiome of the host. Therefore, it
is still important and necessary to discover more effective and specific probiotic strains that
cater to each individual’s health goals and status. This will help to take a more personalized
and informed approach to probiotic use.

Immune suppression, whether due to medical conditions, medications, or other factors,
can significantly increase the risk of developing infections, reactivating latent infections,
and experiencing prolonged illness. It can also increase the risk of developing cancer
and reduce the effectiveness of vaccines [25,26]. Cyclophosphamide (CPA) has been a
widely used alkylating agent for more than 40 years for the treatment of cancer and as
an immunosuppressive agent for the treatment of autoimmune and immune-mediated
diseases [27]. One of the main side effects of CPA is the development of myelosuppression,
leading to increased susceptibility to infections due to the reduction in immune cells [28].
Our research showed that when we gave KBL346 to mice that were immunosuppressed and
treated with CPA orally, it significantly improved the condition of their spleen tissue dam-
age, blood cell counts, immune-associated cytokine and immunoglobulin secretion, and T
and B lymphocyte proliferation and activities, as well as NK cell activity. Treatment with
KBL346 also increased the phagocytic activity of macrophages and stimulated the secretion
of TNF-α, IL-1β, IL-6, NO, and PGE2 via the TLR-MAPK signaling pathway. In particular,
NO can act as an important intracellular signal; however, it also can cause NO-mediated
cytotoxicity, which is related to the inflammatory function of M1-type macrophages and is
suppressed via intracellular factors, such as MRP1 and GSTP1 [29,30]. The treatment using
KBL346 controlled the excessive production of NO in comparison to PGE2 and showed no
cytotoxic effect on cells.

Several strains of Lactobacillus species, including L. rhamnosus NCU011054 [9], L. rham-
nosus CRL1506 [31], L. reuteri PSC102 [32], L. plantarum Lp2v [10], L. plantarum 20655 [11], L.
plantarum NCU116 [12], and L. acidophilus LA85 [13], showed immune-boosting effects in a
CPA-induced immunosuppressed model. L. casei CRL431 and L. paracasei CNCM I-1518
increase immune-related cytokines, such as IL-6 and macrophage chemoattractant pro-
tein 1, and mediate immune stimulation through Toll-like receptors [33,34]. L. acidophilus
LA85 ameliorates immunosuppression by modulating Notch and TLR4/NF-κB signal
pathways [13].

L. reuteri is a probiotic species widely used as a dietary supplement. It was reported to
modulate insulin sensitivity, glucose homeostasis, and systemic inflammation, and alleviate
the symptoms of various diseases, such as obesity, hepatic disorders, brain disorders,
infant diarrhea, inflammatory bowel disease, cystic fibrosis, and autoimmune diseases
(reviewed in [15]). However, only a heat-killed L. reuteri PSC102 strain has been reported to
have immunostimulatory efficacy among the diverse L. reuteri strains. Although the anti-
inflammatory and regulatory mechanisms of L. reuteri and other lactobacilli are relatively
well-specified, the molecular mechanisms of immune-boosting by the same species need
further study.

In conclusion, L. reuteri KBL346 can effectively stimulate the innate and adaptive
immune systems in both in vitro and in vivo systems without any safety concerns. As
a result, it could be used as a potent immunostimulatory probiotic strain for enhancing
immunity. However, the molecular mechanism of how L. reuteri KBL346 differs from
other strains in modulating the immune function of both gene and protein expression
levels requires further investigation. A longitudinal human study with the tracking of
the absorption–distribution–metabolism–excretion properties of KBL346 can also provide
valuable data for KBL346 as a useful probiotic strain.
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4. Materials and Methods
4.1. Isolation and Identification of the L. reuteri KBL346

L. reuteri KBL346 (hereafter referred to as KBL346) was isolated from a fecal sample
from a 3-month-old infant (provided by SAMSUNG MEDICAL CENTER (SMC); Seoul,
Republic of Korea). After culturing the single colony, the genomic DNA was extracted and
analyzed. 16S ribosomal RNA (rRNA) gene sequencing and whole-genome sequencing
(both performed by Macrogen Inc., Seoul, Republic of Korea) revealed that the isolated
strain KBL346 showed the highest homology with L. reuteri. This strain was deposited in
the Korean Collection for Type Culture (KCTC) under registration number KCTC 15268BP.

4.2. Preparation of Bacterial Samples

Lyophilized bacteria were used for the efficacy test (provided by KoBioLabs, Seoul,
Republic of Korea). Briefly, 1 g of lyophilized KBL346 powder was reconstituted in
9 mL of sterile phosphate-buffered saline (PBS) buffer (Gibco, Grand Island, NY, USA,
10010-023), and the bacteria were recovered by centrifugation at 12,000× g for 5 min at
4 ◦C. The bacterial cell pellet was washed twice with PBS buffer to remove additives, such
as cryoprotectants, and adjusted to the appropriate density in Dulbecco’s modified Eagle
medium (DMEM, Gibco, 10313-021) or Roswell Park Memorial Institute 1640 (RPMI 1640,
Gibco, 22400-089) medium. Otherwise, live bacteria were used for the safety test. KBL346
was inoculated onto a de Man, Rogosa, and Sharpe (MRS, BD Difco, Franklin Lakes, NJ,
USA, 288130) medium or Brain Heart Infusion (BHI, BD Difco, 237500) medium, and cul-
tured for 16–24 h at 37 ◦C under anaerobic conditions. As a positive control, Staphylococcus
aureus ATCC12600 was inoculated into a Tryptic soy broth (TSB, BD Difco, 211825) medium
and cultured for 16–24 h at 37 ◦C under aerobic conditions. The CFU for each bacterial
sample was quantified using a 10-fold serial dilution and the plate-count method of MFDS.

4.3. Cell Culture

The murine macrophage cell line, RAW264.7 was cultured at 37 ◦C/5% CO2 in DMEM
containing 10% inactivated fetal bovine serum (FBS, WELGENE, Gyeongsan, Republic of
Korea, S 001-01), 100 U/mL penicillin, and 100 mg/mL streptomycin (Gibco, 15140-122).
The human colon epithelial cell line, Caco-2 was cultured at 37 ◦C/5% CO2 in DMEM/F-
12 (Gibco, 11320033) containing 20% inactivated FBS, 1% MEM nonessential amino acid
solution (Gibco, 11140-050), 10 mM HEPES (Gibco, 15630-080), 0.1% sodium bicarbonate
solution (Gibco, 25080-094), 10 µg/mL of gentamicin, 100 U/mL penicillin, and 100 mg/mL
streptomycin. When the cells were about 80% confluent, they were detached from the
culture dish and used for experiments.

4.4. Coculture Conditions

RAW264.7 or Caco-2 cells were seeded for each experiment: 5 × 104 cells/well (200 µL,
96-well plates; cell viability, nitric oxide level, cytokine level, PGE2 level, LDH assay),
8 × 105 cells/well (1 mL, 6-well plates; phagocytosis assay), 2 × 106 cells/dish (10 mL,
100 mm cell culture dish; protein expression). All plates were incubated for 24 h at
37 ◦C/5% CO2. Next, the KBL346 strain was added to the cultures and incubated at 37 ◦C
for 24 h. After coculture, the culture supernatant or cell pellet was analyzed as required.

4.5. Evaluation of Macrophage Phagocytic Activity

RAW264.7 cells were cocultured with KBL346 at a ratio of 1:5. Next, RAW264.7
cells were washed twice with PBS buffer and then treated with the yeast Candida albi-
cans MYA-4788 at an MOI (multiplicity of infection) of 10 at 37 ◦C for 1 h. After the C.
albicans treatment, RAW264.7 cells were washed twice with PBS, fixed for 1 h with 2.5%
glutaraldehyde, and stained for 20 min with 0.5% methylene blue. All cells were detached
from the culture plate using a cell scraper and observed under an optical microscope. If
more than one C. albicans was engulfed in a macrophage, it was considered to have trig-
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gered phagocytosis. Phagocytic activity was calculated as follows: Phagocytic activity (%)
= (Number of phagocytosis-triggering cells/Total number of observed macrophage cells) × 100.

4.6. Measurement of Cell Viability

The viability of RAW264.7 cells was assessed using an MTT (3-(4,5-dimethylthiazol-
2-yl)-2,5-diphenyltetrazolium bromide) assay kit (Promega, Madison, WI, USA, G4000).
After being cocultured with KBL346, the RAW264.7 cells were washed twice with PBS,
and the cell viability was assessed using cell pellets, as described in the manufacturer’s
protocol. A sample treated with neither bacteria nor LPS was used as a negative control.
In the case of the LPS- or KBL346-treated groups, viability was compared with that of the
negative control.

4.7. Measurement of NO, PGE2, and Cytokine Levels

The levels of NO, PGE2, and cytokines (TNF-α, IL-1β, IL-6) in the culture supernatant
of RAW264.7 cells cocultured with KBL346 were measured. The amount of NO produced
by macrophages was analyzed using the Griess reaction. The Griess reagent was prepared
by mixing Griess reagent A (1% sulfanilamide in 5% phosphoric acid) (sulfanilamide,
Sigma-Aldrich Co., St. Louis, MO, USA, 33626-100G) (phosphoric acid, Sigma-Aldrich Co.,
49685-100ML) and Griess reagent B (0.1% N-(1-naphthyl) ethylenediamine dihydrochloride
in DW) (Sigma-Aldrich Co., 33461-25G) at a 1:1 ratio. Absorbance was measured at 540 nm
after mixing equal amounts of the sample and Griess reagent and incubating in the dark
for 20 min. The concentration of NO was calculated from a standard calibration curve
obtained using sodium nitrite (NaNO2) (Sigma-Aldrich Co., 7632-00-0). The levels of PGE2
and cytokines in the cocultured cell supernatant were measured using ELISA kits: PGE2
(Cayman CHEMICAL, Ann Arbor, Michigan, USA, 514010), TNF-α (558534), IL-6 (555240)
(BD Biosciences, San Jose, CA, USA), and IL-1β/IL-1F2 (R&D SYSTEMS, Minneapolis, MN,
USA, DY401).

4.8. Western Blot

Changes in expression and phosphorylation levels of immune-related proteins in
macrophages were examined immunochemically using specific antibodies. After coculture
with KBL346, RAW264.7 cells were lysed in radioimmunoprecipitation assay (RIPA) buffer
(Thermo Fisher Scientific, Waltham, MA, USA, 89900), and the supernatant was separated
by centrifugation. Total cellular proteins in the supernatant were quantified in a bicin-
choninic acid (BCA) assay (Thermo Fisher Scientific, 23227). Proteins were separated on
sodium dodecyl sulfate-polyacrylamide gels (SDS-PAGE). After the transfer of the proteins
to a polyvinylidene difluoride (PVDF) membrane, the membrane was blocked for 1 h in
a TBS-T solution containing 5% bovine serum albumin (BSA, Sigma-Aldrich Co., A2153).
After blocking, the membranes were incubated with the target primary antibody (4 ◦C
overnight) at the dilution recommended by each manufacturer. The following were the
specific antibodies used for each biomarker: iNOS (Cayman, 160862), COX-2 (Cayman,
160106), Phospho-IκBα (2859S), IκBα (4812S), NF-κB p65 (8242S), Phospho-p38 MAPK
(4511S), p38 MAPK (9212S), Phospho-ERK1/2 (4370S), ERK1/2 (4695S), Phospho-JNK
(9251S), SAPK/JNK (9252S) (Cell Signaling Technology, Danvers, MA, USA), and anti-β-
Actin (N-term) (Abfrontier, Seoul, Republic of Korea, LF-PA0207A). After washing three
times with TBS-T, a horse radish peroxidase-conjugated secondary antibody was added
at a dilution of 1:5000 and incubated for 1 h at room temperature. The blots were probed
using an ECL solution and imaged by a ChemiDoc analyzer.

4.9. Animals

The effect of KBL346 on immune and hematopoietic function was evaluated in 7-week-
old, male BALB/c mice (Samtako Bio Korea, Osan, Republic of Korea). The mice were
maintained in standard laboratory conditions (temperature 20–25 ◦C, humidity 50–60%,
and 12 h light–dark cycle). Mice were randomly allocated to five groups: normal (N),
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cyclophosphamide (CPA) (CPA, Sigma-Aldrich Co.), red ginseng positive control (PC),
and KBL346 at low (108 CFU/kg) and high (1010 CFU/kg) dosages, as described previ-
ously with some modification [35–38]. The total duration of the animal experiment was
20 days. Intraperitoneal administration of cyclophosphamide (100 mg/kg) was performed
on the 14th, 15th, and 16th days. This study was carefully reviewed and approved by
the Institutional Animal Care and Use Committee of Dong-eui University (approval no.
A2022-018).

4.10. Collection of Blood Samples

At the end of the experiment, mice were sacrificed via carbon dioxide (CO2) inhalation
and blood was collected via cardiac puncture. Collected blood was centrifuged at 2000 rpm
and 4 ◦C to obtain blood serum for immune-associated biomarker analysis.

4.11. Hematological Analysis

Hematological parameters include white blood cell, platelet, lymphocyte, red blood
cell, hematocrit, hemoglobin, mean corpuscular volume, mean corpuscular hemoglobin,
and mean corpuscular hemoglobin concentration. These parameters were evaluated using
a blood cell analyzer (Sysmex Corporation, Kobe City, Japan), as previously described [39].

4.12. Immune-Associated Marker Analysis

Serum contents of immunoglobulins and cytokines were measured using an enzyme-
linked immunosorbent assay kit. The following were evaluated: Mouse/Rat-immunoglobulin
immunoglobulin (Ig) M (IgM, ab215085), IgA (ab157717), IgG (ab151276) (Abcam Inc.,
Cambridge, UK), Mouse tumor necrosis factor-α (SMTA00B), interleukin (IL)-6 (M600B),
and IL-1β (MLB00C) (R&D Systems, Minneapolis, MN, USA) conjugated antibodies, as
described in the manufacturer’s protocol.

4.13. Splenocytes Isolation

The mice spleens were incubated in RPMI1640 medium (WelGENE) and homogenized
using a 40 µm nylon cell strainer (BD Bioscience). These homogenates were centrifuged
at 1000 rpm and 4 ◦C and red blood cells were removed using a red blood cell lysis buffer
(Sigma-Aldrich Co., St. Louis, MO, USA) and added to RPMI 1640 medium for cell growth.

4.14. T and B Lymphocytes Proliferation Analysis

The mice splenocytes were obtained and seeded into a 96-well plate and lipopolysac-
charides (1 µg/mL) (LPS, Sigma-Aldrich Co.) and concanavalin A (1 µg/mL) (Con A,
Sigma-Aldrich Co.) were treated for B lymphocyte and T lymphocyte proliferation. The
proliferation was evaluated using a CCK-8 assay (Abcam Inc., Cambridge, UK), as de-
scribed in the manufacturer’s protocol.

4.15. Natural Killer Cell Activity Measurement

The natural killer (NK) cells were obtained from splenocytes and were reacted with
YAC-1 cells at 37 ◦C and 5% CO2 for 4 h. Then, the NK cell activity was measured using the
lactate dehydrogenase (LDH) release level with a colorimetric L-LDH assay kit (Thermo
Fisher Scientific), as described in the manufacturer’s protocol.

4.16. Lymphocyte Subpopulation Analysis

Numbers of CD4+ and CD8+ T cells were analyzed by staining splenocytes by FITC
Rat Anti-Mouse CD8a and PE Rat Anti-Mouse CD4 for CD8 and CD4, respectively. After
washing cells with PBS, counts of positive cells were analyzed using a flow cytometry
analyzer (Accuri C6, BD Bioscience, Ann Arbor, MI, USA) at the Core-Facility Center for
Tissue Regeneration, Dong-eui University.
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4.17. Hematoxylin and Eosin (H&E) Staining

Histological detection of spleens was detected using H&E staining. The paraffin-
embedded tissues were cut with a thickness of 4 µm into a slide specimen. The prepared
slides were stained with H&E (Sigma-Aldrich Co.), as previously described [40].

4.18. Safety Profile of KBL346

The safety profile of KBL346 was analyzed in accordance with the “guidelines for
safety assessment of probiotics” issued by the MFDS. The safety profile includes antibiotic
resistance (minimum inhibitory concentration (MIC)), hemolytic activity, cytotoxicity (LDH
activity test), and the metabolism of bile acids (bile salt hydrolase (BSH) activity) and D-
lactate. Susceptibility to eight antibiotics (ampicillin, gentamicin, kanamycin, streptomycin,
erythromycin, clindamycin, tetracycline, and chloramphenicol) was determined using
a commercial E-test strip. Suspensions of bacterial culture with turbidity equivalent to
McFarland standard 1 were swabbed evenly onto an LSM (LAB susceptibility test medium;
90% IST broth, 10% MRS broth, 1.8% agar) plate using a sterile cotton swab, and E-test
strips were placed on the surface of the plates. After incubation at 37 ◦C for 24 h, antibiotic
resistance was evaluated in accordance with the “guidelines for antibiotic resistance of
the European Food Safety Authority (EFSA)”. The bacteria were streaked onto blood agar
plates for the hemolytic activity test. Hemolytic activity was classified according to the
pattern of the zones formed around the colony (clear zones: β-hemolysis, green-hued zones:
α-hemolysis, no zones: γ-hemolysis). The cytotoxicity of KBL346 was evaluated in an LDH
activity test using a Lactate Dehydrogenase Assay Kit. The cytotoxicity was calculated as
follows: Cytotoxicity (%) = {(Test sample−Negative control)/(Positive contro−Negative
control)} × 100. A positive control lysate was obtained by dissolving Caco-2 cells in a lysis
buffer containing a surfactant. A sample treated with neither bacteria nor lysis buffer was
used as a negative control. Bile salt metabolism was confirmed by streaking bacteria onto
an MRS plate supplemented with 0.5% TDCA, and the activity of BSH was tested. If no
opaque white colonies were formed around a single colony, it was regarded as having
no BSH activity. D-lactate metabolism was confirmed by measuring the D-lactate levels
in culture supernatant from bacteria using a D-lactate assay kit. Staphylococcus aureus
ATCC12600 was used as a control strain for the hemolysis and cytotoxicity tests.

4.19. Statistical Analysis

All data are expressed as the mean ± standard deviation. Statistical analysis of the
in vitro data was performed using an independent t-test (p < 0.05, p < 0.01, p < 0.001, or
p < 0.0001) using GraphPad PRISM version 9 (GraphPad Software, San Diego, CA, USA).
Statistical analysis of in vivo data was performed using one-way ANOVA of GraphPad
prism® Ver 5.0 (GraphPad Inc.). The p < 0.5 was significant via post hoc testing with
Tukey’s test.
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