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Abstract: Cinnamon is a natural spice with a wide range of pharmacological functions, including
anti-microbial, antioxidant, and anti-tumor activities. The aim of this study is to investigate the
effects of cinnamaldehyde-rich cinnamon extract (CRCE) on the colorectal cancer cell lines HCT 116
and HT-29. The gas chromatography mass spectrometry analysis of a lipophilic extract of cinnamon
revealed the dominance of trans-cinnamaldehyde. Cells treated with CRCE (10–60 µg/mL) showed
significantly decreased cell viability in a time- and dose-dependent manner. We also observed that cell
proliferation and migration capacity were inhibited in CRCE-treated cells. In addition, a remarkable
increase in the number of sub-G1-phase cells was observed with arrest at the G2 phase by CRCE
treatment. CRCE also induced mitochondrial stress, and finally, CRCE treatment resulted in activation
of apoptotic proteins Caspase-3, -9, and PARP and decreased levels of mu-2-related death-inducing
gene protein expression with BH3-interacting domain death agonist (BID) activation.

Keywords: cinnamon; cinnamaldehyde; colorectal cancer; apoptosis; cytotoxicity; MUDENG

1. Introduction

Colorectal cancer is one of the most common lethal cancers worldwide and was
ranked as the third most common and lethal cancer in the U.S. population in 2022 [1].
Although extensive studies are underway to improve colorectal cancer treatments based on
chemotherapy, monoclonal antibodies, and alternative therapies (e.g., macrobeads and anti-
inflammatory drugs) [2], these treatments have been reported to have several side effects
and cannot prevent recurrence [3]. To compensate for these flaws, it has been proposed
that complementary and alternative medicines, including dietary supplements or herbal
medicine, should be considered alongside conventional treatments [4].

Many plant-derived phytoextracts and natural dietary compounds such as phenolics,
flavonoids, carotenoids, terpenoids, and peptides possess potential anti-cancer and cyto-
toxic properties [5]. Cinnamon, the dried bark obtained from several tree species of the
genus Cinnamomum, is one of the most widely used aromatic condiments and flavoring
additives worldwide [6]. It is also used traditionally in various cultures as a medicinal
herb, and its positive effect on health has been scientifically recognized [7]. In vivo studies
performed on rats show that ingested cinnamon extract does not have mutagenic or cyto-
genic effects, with minor nephrotoxicity and hepatotoxicity properties at high doses [8],
underlying its overall safety for consumption. On the other hand, as reviewed [9], various

Int. J. Mol. Sci. 2023, 24, 8191. https://doi.org/10.3390/ijms24098191 https://www.mdpi.com/journal/ijms

https://doi.org/10.3390/ijms24098191
https://doi.org/10.3390/ijms24098191
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/ijms
https://www.mdpi.com
https://orcid.org/0009-0006-1070-5655
https://orcid.org/0000-0002-3533-7979
https://orcid.org/0000-0003-2097-717X
https://orcid.org/0000-0002-1485-861X
https://orcid.org/0000-0001-9052-9941
https://orcid.org/0000-0003-2439-0499
https://doi.org/10.3390/ijms24098191
https://www.mdpi.com/journal/ijms
https://www.mdpi.com/article/10.3390/ijms24098191?type=check_update&version=1


Int. J. Mol. Sci. 2023, 24, 8191 2 of 14

extracts of cinnamon (i.e., water-soluble cinnamon extract, cinnamon bark essential oil,
eugenol, cinnamaldehyde, and its derivatives) were reported to be effective in inducing
apoptosis or inhibiting proliferation in diverse cancer types, suggesting their potential as
a dietary complement in cancer treatment. Trans-cinnamaldehyde, the only natural form
of cinnamaldehyde, is the principal component of cinnamon aromatic oil, for example,
comprising up to 71.75% (w/w) of the oil from Cinnamomum zelanicum [10]. Cinnamalde-
hyde has been shown to affect apoptosis by the peroxisome proliferator-activated receptor
and PI3K-Akt pathway in breast cancer [11], by ROS-mediated mitochondrial cell death in
the leukemia cell line [12], by the CD95-mediated pathway in the hepatoma cell line [13],
and by inducing oxidative stress in the melanoma cell line [14]. In colorectal cancer, cin-
namaldehyde induces cell apoptosis in the SW480 [15], HT-29 [16], LoVo [15,16], and
HCT 116 [15,17–19] cell lines. Cinnamaldehyde was also shown to affect cell invasion
and adherence ability [15], sensitivity to chemotherapy [16], cell cycle [17,18], tubulin
accumulation [17], and a cytoprotective effect at a sublethal concentrations via thiore-
doxin reductase (TrxR) inhibition [18] and oxidative stress response protein nuclear factor
erythroid 2-related factor 2 (Nrf2) up-regulation [18,20]. Several derivatives of cinnamalde-
hyde, such as 2′-hydroxycinnamaldehyde or 5-fluoro-2-benzoyloxycinnamaldehyde, have
been shown to have similar effects [17–19,21]. In addition to cinnamaldehydes, other active
compounds in cinnamon extracts, such as eugenol [22], have been reported to have cyto-
toxic effects on cancer cells [23]. Moreover, as it has been previously described that several
active components of cinnamon extract can act synergistically [24], cinnamon extracts might
be more effective compared to pure cinnamaldehyde in treating cancer.

Based on the above considerations, the aim of the present study is to determine the
anti-cancer effect of a cinnamon extract produced in a lab on colorectal cancer cell lines.
In this study, the most abundant active compound of the cinnamon extract was determined
to be cinnamaldehyde, and therefore the extract is identified as cinnamaldehyde-rich
cinnamon extract (CRCE). We analyzed the effects of CRCE on colorectal cancer cell lines
HCT116 and HT-29 in terms of cytotoxicity, colony formation ability, cell migration, cell
cycle, mitochondrial potential change, and finally apoptosis-related protein expression.

2. Results
2.1. GC-MS Analysis of Cinnamon Extract

We analyzed the active compound in the lipophilic cinnamon extract prepared as
described in Materials and Methods. GC-MS analysis revealed the dominance of trans-
cinnamaldehyde, which accounted for 52.2 g/100 g of the total extract (Figure 1a). GC-MS
spectra analysis confirmed the identity of trans-cinnamaldehyde from cinnamon extract
(Figure 1b). We conclude that the major active compound of the lipophilic cinnamon
extract we isolated is trans-cinnamaldehyde, and therefore the extract is identified as
cinnamaldehyde-rich cinnamon extract (CRCE). Moreover, palmitic (C16:0), stearic (C18:0),
oleic (C18:1n9c), and linoleic (C18:2n6c) acids were identified as minor compounds.

2.2. CRCE Is Cytotoxic to HCT 116 and HT-29 Cells in a Dose- and Time-Dependent Manner

The CRCE effect on HCT 116 and HT-29 cells was assessed by WST-1 assay. As a
result, CRCE treatment affected cell viability in dose- and time-dependent manners in
both cell lines (Figure 2a,b). In HCT 116 cells, 10 µg/mL of CRCE treatment lowered cell
viability at a statistically significant level upon treatment for 48 h (Figure 2a). In HT-29 cells,
10 µg/mL of CRCE treatment did affect cell viability in a time-dependent manner but not at
a statistically significant level (Figure 2b), presumably due to the higher standard deviation.
Overall, HT-29 cells responsivity to CRCE seems to be slower than that of HCT 116, as
the IC50 values of CRCE for HCT 116 were 16.7, 13.5, and 18.9 µg/mL; for HT-29, they
were 18.2, 16.3, and 9.3 µg/mL for 12, 24, and 48 h treatment, respectively. In addition
to decreased cell viability, CRCE treatment resulted in the cell morphological change in
HCT 116 and HT-29 cells (Figure 2c), which are hallmarks of apoptosis [25]. Based on these
results, it is confirmed that CRCE is cytotoxic to the colorectal cancer cell lines HCT 116
and HT-29.
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Figure 1. Gas chromatography (GC) analysis of cinnamon extract. (a) GC-total ion chromatograms
(TICs) of trans-cinnamaldehyde standard and cinnamon extract. (b) GC-mass spectra (MS) of the
trans-cinnamaldehyde detected from cinnamon extract.
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This shows that CRCE greatly affected the cells’ ability to proliferate as colonies. 

Figure 2. Evaluation of cytotoxic effect of CRCE in colorectal cancer cells. (a,b) WST-1 assays were
used to evaluate cytotoxic effects of CRCE on HCT 116 and HT-29 cells in a dose- and time- dependent
manner. Data in the graph are presented as mean± SD of three biological replica. Two-tailed t-student
test compared to control (* p < 0.01, ** p < 0.001). (c) Representative light microscopy image to analyze
cellular morphological changes at 100×magnification in CRCE treatment for 24 h.

2.3. CRCE Inhibits Proliferation of HCT 116 and HT-29 Cells

Clonogenic assays were performed on both cell lines for two weeks after treatment
with 0, 10, 20, or 40 µg/mL of CRCE for 24 h. As shown in Figure 3, both cell line clones
decreased at a significant level upon CRCE treatment. Experiments were performed in
three biological replicas, and a representative picture of the stained colonies is presented
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(Figure 3a). The plating efficiencies (PE) of HCT 116 and HT29 controls treated with DMSO
were 1.503 and 1.9495, respectively. The surviving efficiency (SE) was calculated and plotted
(Figure 3b). Both SEs of HCT 116 and HT-29 were significantly affected, even at the lowest
CRCE concentration, as SE dropped to 0.61 and 0.62, respectively. The SE of cells treated
with 40 µg/mL of CRCE for 24 h was as low as 0.02 and 0.18, respectively. This shows that
CRCE greatly affected the cells’ ability to proliferate as colonies.
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Figure 3. The effects of CRCE on colony formation in HCT 116 and HT-29 cells for 24 h. (a) Representa-
tive image of colony formation of HCT 116 and HT-29 cells treated with CRCE for 24 h before seeding.
(b) Surviving fraction in three biological replicas. Data are presented as the mean ± SD.

2.4. CRCE Inhibits Cell Migration of HT 116 and HT-29 Cells

To investigate CRCE’s role in cell migration, we performed wound healing assays
on CRCE-treated HCT 116 (Figure 4a,c) and HT-29 cells (Figure 4b,d). As shown in the
microscope image (Figure 4a,b) and relative cell migration calculated by the % of the
wounded area from the image (Figure 4c,d), HCT 116 and HT-29 cells treated with CRCE
had a relative migration rate that decreased in the scratch wound healing assay. These
results show that CRCE inhibited the migratory capabilities of both cell lines.

2.5. CRCE-Treatment-Regulated Cell Cycle of HT 116 and HT-29 Cells

The effects of CRCE on the cell cycle were investigated in HCT 116 and HT-29 cells
by flow cytometry analysis (Figure 5a,b). The total cell population and population of cells
in each phase were calculated in % and presented in graphs (Figure 5c,d). As shown in
the figure, CRCE treatment at 40 µg/mL increased the accumulation of cells in the sub-G1
phase by 11.5% compared to 2.23% in the control in HCT 116 cells and 7.8% compared
to 3.7% in HT-29 cells. The G0/G1 phase population also decreased substantially in both
cell lines, from 33.0% to 19.8% in HCT 116 cells and from 59.2% to 35.2% in HT-29 cells
upon CRCE treatment in a dose dependent manner. Accordingly, the population of the
cells that are in S + G2/M slightly increased from 64.6% to 68.6% and from 36.9% to 56.9%
in HCT 116 and HT-29 cells. In HCT 116 cells, the sub-G1 population increase and G1
population decrease were correlated with treated CRCE concentration (Figure 5c). In HT-29
cells, the G1 population and G2/M population decrease were correlated with the treated
CRCE concentration (Figure 5d). In short, we showed that upon CRCE treatment, dose-
dependent G1 phase depletion with sub-G1 increase or G2/M phase arrest was observed in
HCT 116 and HT-29 cells.
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Figure 4. The effects of CRCE on cell migration in HCT 116 and HT-29 cells for 48 h. (a,b) Scratch
wound-healing assay was used to evaluate the effect of CRCE on cell migration availability in
HCT 116 and HT-29 cells. Representative images were captured using a light microscope at 10×
magnification. (c,d). Graphs represent the wounding area change in HCT 116 and HT-29 cells upon
CRCE treatment. The wounding areas were analyzed using ImageJ software. Data are presented as
the mean ± SD of three biological replicas.
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Figure 5. The effects of CRCE on cell cycles in HCT 116 and HT-29 cells for 24 h. (a,b) PI staining
and analysis by flow cytometer were performed on cells treated with CRCE to assay cell cycle.
The representative plot shows cells in G0/G1 phase (green), S phase (yellow), and G2/M phase
(cyan). (c,d) Graphs show the percentages of cells in Sub G1, G0/G1, S, and G2/M phase. More than
10,000 cells were analyzed for each treatment.
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2.6. CRCE Treatment Induces Mitochondrial Stress in HCT 116 and HT-29 Cells

We investigated the CRCE effect on mitochondrial stress by analyzing the change
in mitochondrial transmembrane potential (∆ψm). In cells with healthy mitochondria,
JC-1 enters the mitochondria and forms J-aggregates with red fluorescence, while in cells
with stressed mitochondria (low ∆ψm), monomeric green fluorescent JC-1 remains in the
cytoplasm. Dot plots (Figure 6a,b) represent the cells with lower-right green fluorescence
and the upper left with red fluorescence. To improve visualization, bar graphs of the red
versus green cell populations were plotted (Figure 6c,d). As shown in Figure 6, CRCE
significantly depolarized the mitochondrial membrane potential of HCT 116 and HT-29
cells after 24 h of treatment.
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Figure 6. The effect of CRCE on the mitochondrial membrane potential (∆Ψm) of HCT 116 and
HT-29 cells. (a,b) JC-1 assays was performed on HCT 117 and HT-29 cells treated with CRCE for
24 h. The dot plots represent the JC-1 dyed cells with healthy mitochondria (red fluorescence) or
depolarized mitochondria (green fluorescence). (c,d) Bar graph indicating the percentages of polar-
ized and depolarized cells based on JC-1. Data are expressed as mean ± SD from three independent
experiments. Two-tailed t-student test compared to control (* p < 0.05, ** p < 0.005).

2.7. CRCE Induces Cell Apoptosis of HCT 116 and HT-29 Cells

The analysis of apoptosis in colorectal cell lines upon CRCE treatment was performed
with the Annexin V/PI double staining kit (Figure 7a,b). Based on the data of more
than 10,000 cells, percentages of cells at specific stages (viable, early or late apoptosis,
and necrosis) were presented in graphs (Figure 7c,d). Upon CRCE treatment, viable
cells decreased from 93.54% to 54.21% or from 91.27% to 41.8% in HCT 119 or HT-29,
respectively, in dose-dependent manners. Accordingly, cells in early or late apoptosis and
necrosis increased upon CRCE treatment in a time-dependent manner. In HCT 116, most of
the increase in apoptotic cell population was due to an increase in the early apoptotic cell
population, whereas in HT-29, it was due to an increase in the late apoptotic cell population,
with a small but substantial increase in necrotic cells.

2.8. CRCE Affected Expression of Apoptotic Pathway Related Proteins

To investigate the mechanism of CRCE-induced apoptosis at the molecular level,
we examined its effect on the cascade of caspase-mediated signaling that is crucial in
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initiating cell death pathways. Protein levels and a cleaved form of caspase-3 and caspase-9
were observed by western blot analysis in HCT 116 and HT-29 cells treated with CRCE.
As shown in Figure 8, CRCE induced the activation of procaspase-9 into cleaved caspase-9
and of procaspase-3 into the active cleaved caspase-3. Bid and PARP, two substrates of
activated caspases, were also shown to be cleaved or downregulated upon CRCE treatment.
Interestingly, MuD, a novel gene that plays an important role in cell death in various
tissues [26], has been shown to be downregulated by CRCE treatment. These observations
strongly indicate CRCE-induced apoptosis in HCT 116 and HT-29 cells via activation of the
caspase cascade.
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3. Discussion

In this study, we produced CRCE from cinnamon quills that are composed of 52.5%
cinnamaldehyde. We further showed that CRCE affected cell proliferation, migration, cell
cycles, mitochondrial potential, and apoptosis in the colon cancer cell lines HCT 116 and HT-29.

As mentioned in the introduction, cinnamon extracts’ and active compounds’ effects
on colon cancer cells have been studied. As cinnamaldehyde is the major compound in
cinnamon extracts, their effect on cancer cells is usually thought to be induced by this
chemical. Indeed, HCT 116 treated with pure cinnamaldehyde showed cytotoxicity at
concentrations starting at 20 µg/mL for 24 h [15], and HT-29 IC50 for cinnamaldehyde
was around 9.12 µg/mL [16]. However, extracts isolated with different methods consist
of a mixture of chemicals, and while cinnamaldehyde is the main compound, the effects
of extracts might differ or be synergistic. For example, it was previously shown that a
cinnamon extract with 92.8% cinnamaldehyde had cytotoxic properties in HCT 116 cells
and affected mitochondrial health at concentrations as low as 0.4 µg/mL for 12 h [27].
In this study, CRCE, which consists of around 52.2% cinnamaldehyde, was efficient in both
HCT 116 and HT-29 cells at concentrations as low as 10 µg/mL; the IC50 was 13.5 and
16.3, respectively. Therefore, based on a previous study, CRCE was slightly more cytotoxic
than pure cinnamaldehyde in both HCT 116 and HT-29 cell lines. This might imply that in
treatment, extracts of cinnamon might be more effective compared to pure cinnamaldehyde.
The other major bioactive compounds in cinnamon are A-type proanthocyanidin polymers,
cinnamic acid, and coumarin [28]. Further studies should be performed to analyze both the
independent and synergistic effects of those compounds.

Exposure to phytochemicals through diet or drug administration can halt or delay
carcinogenic processes. Phytochemicals are thought to play a role in reducing the incidence
of colon cancer [29]. Polyphenols, such as flavonoids, phenolic acids, and sesquiterpenoids,
are known for their ability to induce apoptosis in colon cancer cells [30,31]. In addition,
high levels of ROS contribute to the progression of a variety of disorders and multiple
cancers, including colorectal cancer [32]. It is well known that the main role of antioxidants
is to protect them from damage caused by ROS, reducing their risk of cancer. Cinnamalde-
hyde decreases the expression of nitric oxide, interleukin (IL)-1β, IL-6, and tumor necrosis
factor (TNF)-α in lipopolysaccharide (LPS)-activated BV2 microglial cells [33] and has
been reported to be a reducing factor in myoblasts [34]. In the rat model, orally injected
cinnamaldehyde had a beneficial effect on the gut microbiome [35], therefore showing
that cinnamaldehyde, as well as other antioxidants, are considered as healthy dietary
supplements. Interestingly, in the colon cancer cell lines HCT 116, HT-29 (that was stud-
ied here), and immortalized epithelial human colon cells of fetal origin (FHC), it was
shown that cinnamaldehyde has a protective effect on oxidative stress by up-regulating
the anti-inflammatory protein Nrf2 [19]. In this study, we observed that cinnamaldehyde-
enriched CRCE induced HCT 116 and HT-29 cell mitochondrial stress, which correlates
with oxidative stress by increasing ROS [36]. The discrepancy between these results might
be because CRCE consists of several other compounds besides cinnamaldehyde, and/or
cinnamaldehyde has both anti- and pro-oxidant activity. Indeed, it was previously shown
that, in contrast with healthy cells, antioxidative agents are proposed to increase the effect
of chemotherapeutic agents [37] and trigger apoptosis in cancer cells [38]. The possibility
of controlling ROS to trigger cancer cell apoptosis while protecting adjacent healthy cells
with antioxidants was recently reviewed [39].

In this study, CRCE induced cell cycle arrest in the G2/M phase, which is similar
to the results of previous studies using cinnamon extract in various human cancer cell
lines [40,41]. The sub-G1 phase increase is characteristic and indicative of apoptotic bod-
ies [42]. G2/M phase arrest is due to the failure to pass checkpoints that are usually due to
DNA damage [43]. The central machinery that promotes cell cycle progression is regulated
by Cdk [44], which in turn is regulated by cell-cycle-specific interactions with cyclins and
Cdk inhibitors. P53 is a protein encoded by the TP53 gene that plays a role in regulation
or progression via the cell cycle, apoptosis, and genomic stability. Fischer et al. [45] found
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that the p53-p21-DREAM-CDE/CHR pathway involves 210 genes that regulate the G2/M
cell cycle in HCT 116 cells. The downregulation of most of these genes appears to be the
primary mechanism by which p53 arrests the G2/M cell cycle. This may represent G2/M
phase arrest in experiments with HCT 116 and HT-29 cells; however, more studies are
needed to confirm the involvement of p53. Moreover, we have shown by clonogenic assay
that CRCE decreased the proliferation ability of viable cells. This also suggests that the
proliferation ability might have been impaired by DNA damage, while we cannot rule out
the possibility that the cytotoxic effect of CRCE impaired the seeded cells’ viability [46].
We assume that the activity of CRCE is exerted via different pathways, which still need to
be explored, as both the increase in sub-G1 and Annexin V/PI assays confirmed that CRCE
induces apoptosis and that cell cycle arrest is an intermediate step prior to apoptotic death.

Apoptosis is most clearly characterized by cytoplasmic and nuclear condensation,
followed by nucleosomes, DNA breaks between membrane specks, and finally cellular
damage [47]. In most cases, anti-cancer therapy ultimately leads to caspase activation,
which plays an important role in apoptosis. We investigated the dose-dependent activation
of caspases by western blot analysis using anti-caspase-3 and anti-caspase-9 Abs. According
to the results here, CRCE induced the activation of caspase-3 and caspase-9 in both cell
lines. Following caspase-3 activation, the cleavage of the active form of PARP, which
represents cell survival, is an important step in the completion of the apoptotic program.
Western blot analysis showed that CRCE treatment resulted in PARP cleavage in these cells
in a dose-dependent manner. The mu-2-related, death-inducing gene (MUDENG, MuD)
was reported to be involved in the apoptotic pathway in various cancer cell lines [48–50].
Subsequent studies demonstrated the cleavage of MUDENG by active caspase-3 during
TRAIL-induced apoptotic signaling [51] and the subsequent activation of the anti-apoptotic
function of MUDENG near the BH3-interacting domain death agonist (Bid) and B-cell
lymphoma 2 (Bcl-2) junction [26]. Previous studies have shown that Bid proteins inhibit
MuD expression and that apoptotic response by TRAIL, which cleaves Bid into active Bid
(tBid), is inhibited by MuD in a Bid-protein-dependent manner [26]. Here, we have found
that the expression of MuD was significantly reduced and that the Bid protein was cleaved
by CRCE treatment. As previously described by Fulda and Devatin [52], the use of the
extrinsic and intrinsic mechanisms of apoptosis can be inferred from the cross-talk between
the two apoptotic pathways. Thus, we suggest that CRCE treatment induced an extrinsic
apoptotic pathway, which results in tBid migration to the mitochondria and activates the
endogenous apoptotic pathway that can be shown by MuD degradation, activation of
caspase-3 and caspase-9, and cleavage of PARP.

4. Materials and Methods
4.1. Plant Material and Lipophilic CRCE Extraction

Authentic cinnamon quills (obtained from the inner bark of Cinnamomum verum J. Presl)
were procured from a commercial supplier (Foreign Mart, Itaewon, Seoul, Republic of Korea).
The cinnamon quills were powdered using a domestic food processor and sieved through
a 500 mm mesh. A total of 20 g of cinnamon quill powder was homogenized with 150
mL of isopropanol/cyclohexane (3:2, v/v) in a 250 mL conical flask. After, extraction was
performed using a bath sonicator JAC-2010 at 300 W and 60 Hz for 10 min to enable sufficient
disintegration and complete extraction. The obtained extract was vacuum-filtered, and the
pellets were extracted again with 50 mL of cyclohexane. The filtrate containing lipophilic
compounds was pooled, transferred to a 500 mL separating funnel, and partitioned with
100 mL of 1% NaCl. The upper cyclohexane fraction containing lipophilic compounds
was recovered, transferred to a 500 mL round bottom flask, and vacuum-dried in a rotary
evaporator at 35 ◦C. The weight of the lipophilic extract was measured gravimetrically and
was dissolved in dimethyl sulfoxide (DMSO; 100 mg/mL of extract) for cell treatment or
in hexane for gas chromatography mass spectrometry (GC-MS) analysis [25]. All organic
solvents used for extraction were of liquid chromatography (LC)-MS grade and were obtained
from J.T. Baker® (Avantor Performance Materials Korea Ltd.), Suwon, Republic of Korea.
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4.2. GC-MS Analysis of Cinnamon Extract

A fraction of the prepared cinnamon extract was dissolved in hexane (0.05 mg/mL)
and analyzed using QP2010 SE GC-MS (Shimadzu, Tokyo, Japan). The analytical condi-
tions are listed in Table 1. Quantitative analysis was performed using a calibration curve
(0.1–0.01 mg/mL) with a trans-cinnamaldehyde standard (Merck, Rahway, NJ, USA) as
per the protocol described by Wang et al. [53].

Table 1. GC-MS Parameters used for the analysis of sterols.

Gas Chromatograph Parameters

Column over temperature 70 ◦C
Injection Temperature 275 ◦C

Injection mode Split
Carrier gas Helium

Flow control mode Liner velocity
Pressure 62.1 kPa

Total Flow 9.0 mL/min
Column Flow 1.0 mL/min
Liner velocity 36.7 cm/sec

Purge flow 3.0 mL/min

Column DB-5ms (30 m, 0. 25 µm film thickness, 0.25 mm ID; Agilent 7890B,
Agilent Technologies Canada, Inc., Mississauga, ON, Canada

Column over temperature
Rate (◦C/min)

Final
temperature

(◦C)
Hold time (min)

- 70 10
5 300 20

Total program time 76.0 min

Mass spectrometer parameters

Ion source temperature 250 ◦C
Interface temperature 280 ◦C

Solvent cut time 12 min
Acquiring mode Scan

Event time 30 s
Detector voltage 1.5 kv

Scan speed 2500
Start m/z 50.00
End m/z 650.00

4.3. Cell Lines and Culture Condition

The human colorectal cancer cell lines HCT 116 and HT-29 were obtained from the
Korean Cell Line Bank (Seoul, Republic of Korea) and determined to be mycoplasma-free
based on the Biomax Mycoplasma PCR Analysis Kit (Biomax Inc., Daejeon, Republic of
Korea). Cells were maintained in McCoy’s 5A medium supplemented with 10% heat-
inactivated (v/v) fetal bovine serum (FBS), 2 mM L-glutamine, 10,000 units/mL penicillin,
10,000 of µg/mL streptomycin, and 1 mM of sodium pyruvate. All mediums, supplemental
serum, and antibiotics were purchased from Welgene (Gyeongsan, Republic of Korea).

4.4. Cell Viability Assay

The viability of HCT 116 and HT-29 cells treated with CRCE (0–60 µg/mL) for 12, 24,
and 48 h was assayed by the WST-1 assay kit (Dogen, Seoul, Republic of Korea). Briefly, the
HCT 116 and HT-29 cells were seeded in a clear-bottom 96-well plate at a density of 1 × 103

cells per well and grown overnight before the replacement of a serum-free medium with
CRCE or DMSO as the control and incubation for 12, 24, or 48 h. After treatment, 10 µL
of WST-1 solution was added per well, and plates were incubated for an additional hour.
Finally, a SpectraMaxM2 microplate reader (Molecular Devices, San Diego, CA, USA) was
used to measure plates’ absorbance at 450 nm, with 600 nm as the reference wavelength as
per the manufacturers’ protocol.
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4.5. Colony Formation Assay

HCT 116 and HT-29 cells were seeded in 6-well plates at a density of 2.5 × 105 cells
per well and grown overnight. After treatment with 10, 20, or 40 µg/mL CRCE or DMSO
as a control for 24 h, cells were trypsinized, counted, and 1000 cells per well were re-seeded
in 6-well plates. Cells were further cultivated for 7 days with the medium refreshed every
other day to allow colonies to grow. Obtained colonies were washed with PBS, fixed with
methanol for 10 min at room temperature (RT, 20 to 25 ◦C), washed with PBS, and stained
with a 0.5% crystal violet solution (Junsei Chemicals, Tokyo, Japan). After washing in water
and adequate drying, colonies on the six-well plates were counted, and the seeding efficiency
(SE) and surviving fraction (SF) were evaluated with the previously described method [54].

4.6. Wound Healing Assay

HCT 116 and HT-29 cells were seeded in 6-well plates at a density of 5 × 104 cells per
well and cultured for 24 h to allow cell adhesion and the formation of a confluent monolayer.
A straight-line scratch was then made using a sterile pipette tip to leave a scratch width of
approximately 0.5 mm, which was then washed with PBS to remove debris. The cells were
then treated with 10, 20, or 40 µg/mL of CRCE or DMSO as the control. After treatment,
the wounding area was measured at 0, 12, 24, and 48 h after treatment using the Zeiss
Axiovert 200 M inverted microscope (Carl Zeiss, Oberkochen, Germany) and computed as
graphs, and the rate of cell migration were calculated as described previously [55].

4.7. Cell Cycle Analysis

To perform cell cycle analysis, HCT 116 and HT-29 cells were seeded in 6-well plates
at a density of 2.5 × 105 cells per well. After overnight incubation, cells were treated with
10, 20, or 40 µg/mL of CRCE or DMSO as the control for 24 h. After treatment, cells were
collected via trypsinization and centrifuged at 850× g for 5 min, washed with PBS, and
fixed with 70% ethanol in PBS at 4 ◦C for 1 h. Subsequently, cells were washed twice
with PBS, and 50 µL of 100 µg/mL stock of DNase-free RNase was added to digest RNA.
After RNase treatment, cells were stained with 50 µg/mL propidium iodide (PI) (BD Life
Science, San Diego, CA, USA) for 30 min at RT. The PI intensity was measured using the
NovoCyte 1000 benchtop flow cytometer (ACEA Biosciences, San Diego, CA, USA).

4.8. Mitochondrial Membrane Potential Analysis

HCT 116 and HT-29 cells were seeded in 6-well plates at a density of 2.5 × 105 cells per
well and incubated overnight. After that, cells were treated with 10, 20, or 40 µg/mL of CRCE
or DMSO for 24 h before harvesting by trypsin. Cells were resuspended in 1× assay buffer
and stained with JC-1 from the Mito Probe JC-1 Assay Kit (Enzo Life Sciences, New York,
NY, USA) for 30 min at RT. The cells were then washed and resuspended in PBS for flow
cytometric analysis using the NovoCyte 1000 benchtop flow cytometer (ACEA Biosciences,
San Diego, CA, USA) to detect red/green fluorescence changes in cells mitochondrion.

4.9. Apoptosis Assay

HCT 116 and HT-29 cells were seeded in 6-well plates at a density of 2.5 × 105 cells
per well and incubated overnight. Cells were treated with 10, 20, or 40 µg/mL of CRCE or
DMSO as the control for 48 h. After treatment, cells were harvested, washed twice with cold
PBS, and stained with the Annexin V-FITC/7-AAD apoptosis detection kit (Sino Biological,
Beijing, China). The apoptotic states in each cell group were detected using the NovoCyte
1000 benchtop flow cytometer (ACEA Biosciences, San Diego, CA, USA).

4.10. Western Blot Analysis

Differential protein expression after CRCE treatment in HCT 116 and HT-29 cells was
observed by western blot. Cells were seeded in 6-well plates at a density of 2.5 × 105 cells
per well and incubated overnight. Plated cells were treated with DMSO, 10, 20, or 40
µg/mL of CRCE for 24 h before harvest and lysis with RIPA lysis buffer (Thermo Fisher
Scientific, Waltham, MA, USA). Cellular protein concentrations were determined by the
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Bio-Rad Protein Assay Kit (Bio-Rad, Hercules, CA, USA). A total of 50 µg of cellular
proteins from each treatment was subjected to SDS-PAGE and transferred to polyvinylidene
difluoride membranes by electrophoresis. Membranes were blocked with 5% (w/v) skim
milk for 1 h at RT and incubated with primary antibodies diluted in 5% skim milk at the
following dilutions: β-actin (1:5000), Caspase-3 (1:1000), Caspase-9 (1:1000), Bid (1:1000),
Bcl-2 (1:1000), PARP (1:1000), and MUDENG (1:5) at 4 ◦C overnight. Caspase-3, -9, and
PARP antibodies were purchased from Cell Signaling Technology (Danvers, MA, USA). Bid
antibodies were purchased from Santa Cruz Biotechnology (Dallas, TX, USA). MUDENG
antibodies were produced in this lab [56]. Thereafter, the membranes were rinsed with
TBS-T five times for 5 min each and incubated with the appropriate horseradish peroxidase-
conjugated secondary antibodies purchased from Jackson Immuno Research (West Grove,
PA, USA) at RT for 2 h. After washing membranes in TBS-T five times for 5 min each,
immunoreaction was detected by applying the enhanced chemiluminescence detection kit
solution (Amersham Pharmacia, Uppsala, Sweden) on washed membranes and developing
on X-ray film (AGFA, Mortsel, Belgium).

5. Conclusions

We have found that CRCE treatment induces a reduction of mitochondrial ∆ψm, which
is one of the main events in the apoptosis induced by chemotherapeutic drugs [57]. We also
observed cell cycle arrests and a decrease in proliferation that might be linked to DNA damage.
In addition, we found cell motility decreased upon CRCE treatment. Finally, we observed
the activation/degradation of extrinsic and intrinsic apoptosis-related proteins. Other studies
have shown that the antitumor effects of CRCE appear to be mediated by multiple mecha-
nisms [58,59].
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