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Abstract: Endocan is a circulating proteoglycan secreted by several cell lines and identified as a
potential biomarker of inflammation and angiogenesis. Endocan-increased expression has been
found in a broad spectrum of human tumors, including lung cancer, and is associated with a poor
prognosis. To elucidate the possible mechanism, this study aimed to investigate the role of endocan in
non-small-cell lung carcinoma (NSCLC) using an in vitro model of cultured cells. Endocan expression
was knocked down by using a specific small interfering RNA. The effects of endocan knockdown have
been evaluated on VEGF-A, VEGFR-2, HIF-1α, the long non-coding RNAs H19 and HULC expression,
and AKT and ERK 1/2 degree of activation. Cell migration and proliferation have been studied
as well. VEGF-A, VEGFR-2, HIF-1α, and the long non-coding RNAs H19 and HULC expression
were significantly affected by endocan knockdown. These effects correlated with a reduction of cell
migration and proliferation and of AKT and ERK 1/2 activation. Our findings suggest that endocan
promotes a more aggressive cancer cell phenotype in NSCLC.
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1. Introduction

Lung cancer is one of the most common causes of cancer-related death worldwide,
with an estimated 2.20 million new cases and 1.79 million deaths yearly [1]. Recently, the
discovery of predictive biomarkers has led to the development of innovative therapeutic
approaches through the use of targeted therapy and immunotherapy [2]. The term lung
cancer refers to several tumoral conditions consisting of different tumor subtypes, each
of which carries a different molecular pattern and pathologic profile. Among them, non-
small cell lung cancer (NSCLC) is the main malignant epithelial tumor of the lung and
includes three histological subtypes: lung adenocarcinoma (ADC), lung squamous cell
carcinoma (SqCC), and large cell lung carcinoma (LCC); although the etiology of such
subtypes remains not well established, it is believed that they arise from different cells of
origin [3].

In NSCLC, the extracellular matrix (ECM) plays an extremely relevant role, providing
histoarchitectural support and anchoring the cells. Furthermore, ECM molecules regulate
cell survival, proliferation, differentiation, and motility, mediating important signaling
pathways, and the impaired expression of such molecules promotes invasive carcinoma
with an important impact on clinical outcomes [4,5].

ECM is a complex network of macromolecules and signaling factors that interact to
maintain the structural and functional integrity of tissues [6]. Proteoglycans (PGs) are
the main components of the ECM. They consist of a central core protein onto which one
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or more glycosaminoglycan (GAG) chains are covalently linked, including chondroitin
sulphate (CS), dermatan sulphate (DS), keratan sulphate (KS), heparin (HP), and heparan
sulphate (HS). PGs are membrane-bound, intracellular, or secreted molecules embedded in
the ECM. The impaired regulation of such compounds has been reported in human cancers
where, through their protein core and/or GAG chains, they interact with a wide array
of molecules participating in several pathophysiological steps of tumor formation and
progression [6–9]. In this setting, it has been shown that by binding extracellular ligands,
cell surface receptors, and other extracellular matrix molecules, PGs engage cell signaling
pathways involved in cell proliferation, cell adhesion, and cell motility [7].

Endocan, also known as endothelial specific molecule-1 (ESM-1), is a circulating PG
secreted by several cell lines and involved in a plethora of pathological conditions, such
as cancer and inflammatory diseases [10,11]. This PG was first cloned from the human
umbilical vein endothelial cells (HUVECs) cDNA library in 1996 by Lassalle et al. as a
constitutively secreted molecule [12]. The presence of a dermatan sulphate (DS) chain
linked to the protein core identified ESM-1 as a dermatan sulphate proteoglycan (DSPGS)
under the name of endocan [10]. Data have shown that the expression of such PG may be
modulated by several pro-inflammatory cytokines and pro-angiogenic growth factors. For
instance, vascular endothelial growth factor A (VEGF-A), fibroblast growth factor (FGF-2),
transforming growth factor-β1 (TGF-β1), and interleukin-1β (IL-1β) have been shown to
strongly upregulate endocan expression [13,14]. In contrast, interferon-γ (IFN-γ) inhibits
its expression [12].

Multiple signaling pathways are involved in regulating endocan expression, such as
the PKC/NF-kB and the PI3K/AKT pathways [15]. Furthermore, in hypoxic conditions,
it has been shown that activated hypoxia-inducible factor 1 alpha (HIF-1α) stimulates
vascular endothelial growth factor (VEGF) expression, which in turn mediates endocan
expression in a VEGF/VEGFR-2 dependent manner [16,17]. Increased serum endocan
levels have been correlated with tumor aggressiveness and vascularization [18]. In light of
this evidence, endocan could be considered a potential cancer biomarker [19].

Endocan is overexpressed in many human tumors, including lung cancer [20]. In this
setting, in a gene profiling study in tissues from 23 patients, among 42 genes associated
with a high risk for cancer death, endocan has been identified as one of the most significant
molecular signatures associated with a worse prognosis [20]. Furthermore, in NSCLC, high
endocan levels have been positively associated with the development of distant metastases
and, thus, a poor prognosis [21,22].

Long non-coding RNAs (lncRNAs) represent a novel class of functional molecules
that are critically involved in cancer biology, including NSCLC.

LncRNAs are a class of non-coding RNAs longer than 200 nucleotides that can affect
gene expression by interacting with DNA, RNA, and proteins and regulating RNA splicing,
stability, and translation [23].

Several studies have reported that lncRNAs are aberrantly expressed in cancer, and
their deregulation generally contributes to tumor progression by promoting proliferation,
invasion, and metastasis of tumor cells. In this setting, these non-coding RNAs act as
oncogenic or tumor suppressors [24–27], thereby they may be considered potential thera-
peutic targets and biomarkers for diagnosis, prognosis, and/or treatment, owing to their
characteristics of high efficiency, high tissue specificity, and stability [28,29]. Among them,
the lncRNA H19 is involved in developing multiple tumors, including lung cancer [30]. In
this setting, elevated plasma levels of H19 were found in NSCLC patients, and it has been
proposed as a promising biomarker for diagnosing this type of cancer [31].

It was shown that higher levels of H19 were associated with a poorer prognosis in
ovarian cancer (OC). Its knockdown by small interfering RNA inhibited OC cell migration
and invasion both in vitro and in vivo [32]. In bladder cancer, upregulated H19 promoted
cell migration and metastasis by modulating the Wnt/β catenin pathway [33].
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The same effects have been observed in glioma, where it has been found that such
lncRNA promotes cell proliferation, migration, and angiogenesis by regulating the Wnt5a/β-
catenin pathway and targeting miR-342 [34] and enhancing HIF-1α/VEGF signaling [35].

Similar functions have been reported for the highly upregulated liver cancer (HULC)
lncRNA, whose expression has been correlated with increased endocan and VEGF expres-
sion and enhanced angiogenesis and tumor progression [36]. In osteosarcoma, HULC
overexpression enhanced cell proliferation, migration, and invasion by blocking PTEN and
increasing the activity of the AKT-PI3K-mTOR pathway [37]. In addition, HULC promotes
mesenchymal stem cells (MSCs) migration and invasion by enhancing the expression of
vimentin, N-cadherin, and MMP2 [38].

As known, the PI3K/AKT and MAPK/ERK signaling pathways are dysregulated in
a broad spectrum of human cancers, including lung cancer [39–41]. In this setting, their
aberrant activation drives carcinogenesis by regulating cell survival, apoptosis, growth,
proliferation, and migration [42]. Akt is the central node of the PI3K/AKT pathway; this
molecule promotes tumor cell survival by inactivating pro-apoptotic proteins, including
procaspase-9 and BCL-2 [43]. Furthermore, Akt promotes cell proliferation by phosphory-
lating glycogen synthase kinase 3β (GSK3β), thus preventing cyclin D1 degradation [44].

As a member of the mitogen-activated protein kinase (MAPK) family, ERK1/2 reg-
ulates key biological functions [45]. Activated ERK 1/2 migrates into the nucleus and
phosphorylates numerous transcription factors, such as c-Fos, c-Myc, and c-Jun, promoting
cell growth, survival, and proliferation [46].

In light of the evidence, in the present study, we aimed to investigate the effects of
endocan knockdown on VEGF-A, VEGFR-2, HIF-1α, the long non-coding RNAs H19,
and HULC expression in A549 cells as a model of NSCLC. Furthermore, we also stud-
ied if endocan silencing affected AKT and ERK 1/2 activation as well as cell migration
and proliferation.

2. Results
2.1. Evaluation of Endocan Expression in A549 Cells

Endocan mRNA and related protein expression have been reported to be overex-
pressed in several types of cancer, including NSCLC [47]. As shown, also in our model,
endocan was expressed, as confirmed by qPCR, ELISA assay, and western blot data
(Figure 1A–C).
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Figure 1. Endocan mRNA expression (A) and related protein levels (B,C) in endocan knockdown 

and control A549 cells. Data are the mean ± SD of five experiments, mRNA levels are expressed as 

Figure 1. Endocan mRNA expression (A) and related protein levels (B,C) in endocan knockdown
and control A549 cells. Data are the mean ± SD of five experiments, mRNA levels are expressed as
relative fold change; protein levels are expressed as pg/106 cells (ELISA assay) and as arbitrary units
(western blot). *** p < 0.001 vs. CTRL.

To obtain endocan knockdown, we treated A549 cells with a specific small interfering
RNA against endocan mRNA. As reported, the treatment with the endocan siRNA was
able to significantly reduce the expression of such PG in terms of both mRNA (panel A) and
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protein levels (panels B and C). To note, endocan knockdown reduced both intracellular
(panel C) and secreted protein levels (panel B). These results indicated a high efficiency of
endocan knockdown in our model.

2.2. Endocan Silencing Affects VEGF-A, VEGFR-2, HIF-1α, and Long Non-Coding RNAs H19
and HULC Expression in A549 Cells

Since it has been shown that endocan supports tumor progression and promotes angio-
genesis within the tumor by modulating VEGF-A and HIF-1α expression and signaling [47],
we studied the effect of endocan knockdown on VEGF-A, VEGFR-2, HIF-1α mRNA expres-
sion. qPCR results reported in Figure 2A–C show that VEGF-A, VEGFR-2, and HIF-1α
mRNA expression was significantly reduced in cells where endocan was knocked down if
compared to control cells. These results, in line with previous evidence, demonstrate that
endocan mediates the expression of such angiogenic factors in A549 cells as well.
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Figure 2. VEGF-A (A), VEGFR-2 (B), HIF-1α (C), H19 (D), and HULC (E) expression assessed by 

q-PCR in endocan knockdown and control A549 cells. Data are the mean ± SD of five experiments 
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Figure 2. VEGF-A (A), VEGFR-2 (B), HIF-1α (C), H19 (D), and HULC (E) expression assessed by
q-PCR in endocan knockdown and control A549 cells. Data are the mean ± SD of five experiments
and are expressed as relative fold change. *** p < 0.001 vs. CTRL.

LncRNAs play key roles in regulating tumorigenesis and tumor progression by modu-
lating gene expression through transcriptional regulation, epigenetic regulation of chro-
matin modification, and post-transcriptional regulation of target genes [48]. It has been
reported that H19 and HULC are involved in the epigenetic mechanisms that regulate
NSCLC development [49–51]. Therefore, we aimed to evaluate the effects of endocan
knockdown on the expression of lncRNAs H19 and HULC.

As reported in Figure 2D,E, we found a significant reduction of H19 (panel D) and
HULC (panel E) expression in cells treated with the specific endocan siRNA compared to
control cells. Our results show that endocan can control H19 and HULC expression in A549
cells, suggesting a new and interesting role for such PG in NSCLC pathobiology.

2.3. Endocan Silencing Inhibits Cell Proliferation and Migration in A549 Cells

Tumor progression is driven by the uncontrolled proliferation, migration, and invasion
of cancer cells that migrate from their primary sites into new distant organs and tissues [52].
To study the involvement of endocan in NSCLC progression, we first measured cell migra-
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tion in control and endocan knockdown A549 cells by performing a scratch migration assay.
In Figure 3, representative images of the wound (panel A) and the migration rate (panel B)
at 0 h, 3 h, 6 h, and 12 h are reported. As shown, the capacity to fill the wound was severely
inhibited in A549 cells, where endocan expression was blocked by transfection with the
endocan siRNA (panel A). These results were confirmed by measuring the migration rate
(panel B); in fact, the percentage of wound closure values in control cells showed a 40%
reduction of the open wound area after 12 h. These results clearly show that A549 cells
transfected with the specific endocan siRNA are characterized by a reduced migratory
capacity compared to control cells.
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Figure 3. Effects of endocan siRNA on A549 cell migration (A,B). Representative wounds immediately
after scratching and after 3, 6, and 12 h of healing were recorded with a phase-contrast microscope
(A). The wound area was measured at 0, 3, 6, and 12 h after scratching to determine the area over
which healing occurred, and results are expressed as a percentage of wound closure (B). Error bars
represent the mean ± SD of almost three independent experiments. *** p < 0.001 and * p< 0.05 vs.
CTRL at 0 h; ◦ p < 0.05 vs. CTRL at 6 h: # p < 0.01 vs. CTRL at 12 h. Effect of endocan siRNA on
A549 cell proliferation (C). The data are expressed as percentage of increase vs. control. Error bars
represent the mean ± SD of almost three independent experiments. *** p < 0.001, and * p < 0.05 vs.
CTRL at 0 h; § p < 0.001 vs. CTRL at 24 h; ◦ p < 0.001 vs. 48 h CTRL at 48 h, #p < 0.001 vs. CTRL at
72 h.

Next, we measured cell proliferation by performing an MTT assay in both control
and endocan knockdown A549 cells. The growth was measured at 0 h, 24 h, 48 h, and
72 h. As reported in Figure 3C, the proliferation rate was significantly reduced, within
the all-time intervals considered, in both endocan knockdown A549 cells and control cells.
Taken together, these results suggest an important role for endocan in promoting NSCLC
cell migration and proliferation.

To determine whether cells underwent apoptosis, we evaluated caspase-3 activity
using a Caspase-3/CPP32 Colorimetric Protease Assay Kit (Thermo Fisher Scientific, Mi-
lano, Italy). As reported in Supplementary data, the knockdown endocan did not induce
apoptosis in A549 cells (Figure S1).
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2.4. Endocan Silencing Decreased AKT and ERK1/2 Activation

The PI3K/AKT and MAPK/ERK signaling pathways are aberrantly activated in
a wide spectrum of human tumors, including NSCLC, where they promote tumor cell
migration and proliferation [53].

Based on our obtained data regarding endocan effects on cell migration and pro-
liferation, we assessed the downstream signaling by evaluating the degree of AKT and
ERK1/2 activation in A549 cells endocan knocked down compared to control cells. In
Figure 4, western blot data with the densitometric evaluation of p-AKT/AKT (panel A)
and p-ERK1/2/ERK1/2 (panel B) are reported. As shown, the degree of AKT and ERK-
1/2 phosphorylation was significantly decreased in cells where endocan expression was
inhibited by endocan siRNA compared to control cells. Together, these data suggest that en-
docan promotes cell migration and proliferation, modulating these downstream pathways
in NSCLC.
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Figure 4. p-AKT, AKT, p-ERK 1/2, and ERK 1/2 protein levels in control and endocan knockdown
A549 cells. (B) Average ERK1/2 phosphorylation is quantified as ratios between p-ERK1/2 and
ERK1/2. (A) Average AKT phosphorylation is quantified as ratios between p-AKT and AKT. Data are
the mean ± SD of five experiments and are expressed as both western blot analysis and densitometric
evaluation. *** p < 0.001 vs. CTRL.

3. Discussion

Endocan is known to be involved in a broad spectrum of malignant tumors, inflam-
matory diseases, and vascular disorders [54,55]. In the context of the pathophysiology
of the lung, elevated endocan levels have been found in patients with lung cancer and
are associated with poor clinical outcomes [21]. Endocan expression and functions are
strictly related to VEGF signaling; in this setting, it has been shown that VEGF stimulates
endocan secretion, which in turn enhances its pathway, promoting the interaction of such
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pro-angiogenic factor with VEGFR-2. Furthermore, endocan can modulate the expression
of angiogenesis-related genes, including VEGF-A and VEGFR-2 [47,56].

The VEGF family includes different VEGF isoforms; among these, VEGF-A is a key
factor in normal and tumor-associated angiogenesis and exerts its physiological functions
by engaging three types of receptors: VEGFR-1, VEGFR-2, and VEGFR-3 [57]. In particular,
VEGFR-2 is critically involved in tumor angiogenesis, and its activation promotes neigh-
boring vessel formation for the sustainability of cancer proliferation, migration, metastasis,
and survival [58].

A hypoxic environment is an essential and common feature of solid tumors; in this
setting, the HIF-1α activity promotes tumor cells’ adaptation to the low oxygen tension [59].
In particular, activated HIF-1α is responsible for the transcriptional activation of several
genes, including VEGF, orchestrating both normal and pathological angiogenesis [60]. In
addition, it has been shown that HIF-1α-mediated VEGF expression correlates with the
increased expression of endocan [47].

This evidence led to the hypothesis that endocan could influence the expression of
these angiogenesis-associated genes in NSCLC as well.

In the present study, by evaluating VEGF-A, VEGFR-2, and HIF-1α, we found that
in cells where endocan was silenced by the specific siRNA, the expression of such factors
was significantly reduced. These results, in line with previous evidence [47,56], lead to the
hypothesis that endocan, once released, upregulates the expression of such pro-angiogenic
factors and promotes NSCLC growth in an autocrine and paracrine manner. Therefore, the
inhibition of endocan expression may inhibit this network.

LncRNAs are key players in different cellular functions, including regulating cell
proliferation, invasion, and metastasis, thus acting as oncogenes or tumor suppressors [61].

In this context, the dynamic interplay between lncRNAs and ECM components plays
a critical role in the pathobiology of human diseases, including lung cancer, where lncR-
NAs have been proposed as potential cancer biomarkers [62]. Among these, the altered
regulation of lncRNAs H19 and HULC transcription has been reported in many types of
tumors, and their aberrant expression triggers the activation of genes deeply involved in
cell survival, proliferation, and angiogenesis [63,64].

Based on these previous reports, we evaluated the effects of endocan knockdown on
H19 and HULC expression, and we found that the expression of these lncRNAs was signifi-
cantly reduced in cells where endocan expression was blocked compared to control cells.

It has been shown that in lung cancer, higher expression of H19 is positively correlated
with poor prognosis, and its knockdown significantly reduces tumor cell proliferation,
suggesting that H19 plays a pivotal role in NSCLC progression [49,50]. Furthermore, Liu
et al. showed that overexpression of HULC, another cancer-related lncRNA, enhances
sphingosine kinase 1 (SPHK1) expression and AKT phosphorylation, thus promoting tumor
cell proliferation. Furthermore, they showed that treatment with a specific SPHK1 inhibitor
reduced these HULC modulatory effects [51].

Our results further enforce these data and clearly show that endocan affects H19
and HULC expression, suggesting a possible regulatory mechanism of endocan on these
lncRNAs in NSCLC.

The PI3K/AKT and MAPK/ERK pathway’s aberrant activation is a hallmark of tumor
progression and resistance to cancer therapies [53,65,66]. Increased AKT activity has been
reported in patients with NSCLC, and it has been associated with a poor prognosis [67].
Furthermore, it has been reported that endocan promotes triple-negative breast cancer cell
proliferation in an AKT-dependent manner [68].

In light of these findings, we also evaluated the effects of endocan knockdown on AKT
activation in our experimental model. As shown, we found that the degree of AKT phospho-
rylation was significantly reduced in cells where the expression of such PG was inhibited.

ERK 1/2 is a downstream effector of VEGF signaling, and it has been shown that
endocan modulates its expression by inducing ERK 1/2 phosphorylation [56]. In the
cancer context, Jin and colleagues have shown that endocan overexpression correlated
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with increased breast cancer cell proliferation and migration due to enhanced ERK 1/2
activity; they also found that the degree of ERK1/2 activation was strongly reduced in cells
where the expression of endocan was inhibited. According to these modulatory effects, they
concluded that endocan plays a crucial role in radiotherapy-resistant breast cancer [69].

Based on these previous reports, we also evaluated the effects of endocan knockdown
on ERK 1/2 activation in A549 cells. As shown, the degree of ERK 1/2 phosphorylation
was significantly reduced in cells where endocan expression was blocked.

As reported, AKT and ERK 1/2 are both deeply involved in the regulation of a plethora
of cell functions, including cell migration and proliferation [42]. Therefore, we evaluated if
endocan knockdown affected A549 cell migration and proliferation. We found a significant
reduction in cell migration and proliferation in endocan knockdown cells compared to
control cells. Notably, these effects were correlated with a reduction in AKT and ERK1/2 ac-
tivation. Taken together, these results clearly suggest that endocan effects on cell migration
and proliferation can be mediated in an AKT and ERK1/2-dependent manner.

In conclusion, our data expand the knowledge of endocan biology in NSCLC, showing
that this PG can regulate the expression of tumor-related genes, including epigenetic
regulators such as lncRNAs H19 and HULC; furthermore, it promotes tumor cell migration
and proliferation.

4. Materials and Methods
4.1. Cell Cultures

We used A549 cells which are widely used as an in vitro model for non-small-cell lung
carcinoma (NSCLC), characterized by a higher endocan expression compared to healthy
lungs [70].

A549 cells were obtained from ATCC (Manassas, VA, USA) and cultured in 75 cm2

plastic flasks containing RPMI-1640 medium (Thermo Fisher Scientific, Milano, Italy).
Cells were supplemented with 10% fetal bovine serum (FBS), a mixture of antibiotics
(streptomycin/penicillin), and incubated in a 5% CO2 humidified incubator at 37 ◦C.
Experiments were performed using A549 cells between the third and tenth passages. The
culture medium was renewed every 2–3 days.

4.2. Cell Transfection

A549 cells were cultured in six-well culture plates at a density of 2.5 × 105 cells/well.
Twenty-four hours after plating (time 0), the culture medium was replaced with OPTI-
MEM (Life Technologies, Carlsbad, CA, USA). Then cells were transfected with an ESM-1
siRNA (endocan siRNA) (50 pmol/well) (Life Technologies, Carlsbad, CA, USA), using the
RNAiMAX transfection kit according to the manufacturer’s protocol (Life Technologies,
Carlsbad, CA, USA).

4.3. Endocan ELISA Assay

Samples of cell-secreted proteins in the culture medium were collected 24 h after
transfection in the presence of 1 nM PMSF and a protease inhibitor cocktail and centrifuged
at 10,000× g at 4 ◦C for 10 min. Endocan levels were detected using a commercial ELISA
kit (Raybiotech, Peachtree Corners, GA, USA). Briefly, 100 µL of standards and samples
were added, respectively, to each well of the coated microplate. 100 µL of biotin-labeled
secondary antibodies were then added and incubated for 2.5 h at 37 ◦C. After the incubation,
the liquid was discarded, the plate was washed four times, and then 100 µL of Streptavidin-
HRP was added. After an incubation step of 45 min at 37 ◦C, the liquid was discarded, the
plate was washed four times, and 100 µL of chromogenic substrate were added. After an
incubation of 30 min at 37 ◦C, 50 µL of stop solution was added, and the O.D. absorbance of
each well was immediately read at λ 450 nm. Endocan values are expressed as pg/n.cells.
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4.4. RNA Isolation, cDNA Synthesis, and Real-Time Quantitative PCR Amplification

Total RNA was isolated from A549 cells for real-time quantitative PCR evaluation
(qPCR) of endocan, VEGF-A, VEGFR-2, HIF-1α, lncRNAs H19, and HULC expression
(mod 7500, Applied Biosystems Inc., Carlsbad, CA, USA) using the TRIzol reagent kit
(Thermo Fisher Scientific, Milano, Italy). The first strand of cDNA was synthesized starting
from 5.0 µg of total RNA using a high-capacity cDNA archive kit (Applied Biosystems
Inc, Carlsbad, CA, USA). Actin-ß and GAPDH were used as endogenous controls to allow
relative quantification. The amplified PCR products were quantified by measuring the
calculated cycle thresholds (Ct) of endocan, VEGF-A, VEGFR-2, HIF-1α, lncRNAs H19,
HULC, actin-ß, and GAPDH. In addition, a melting curve analysis was always performed
to verify the specificity of the reactions. After normalization, the mean value of untreated
A549 target levels (CTRL) was chosen as the calibrator, and the results were expressed
using the 2−∆∆CT method and expressed as fold change relative to normal controls.

4.5. Protein Determination

The amount of total protein was determined using the Bio-Rad protein assay system
(Bio-Rad, Hercules, CA, USA), using bovine serum albumin (BSA) to obtain a standard curve.

4.6. Protein Extraction and Western Blot Analysis

Protein extraction from cells was performed using a Cell Extraction Buffer Kit (Life
Technologies, Carlsbad, CA, USA) containing a protease inhibitor cocktail (Sigma-Aldrich,
Mailand, Italy), 1 nM phenylmethylsulfonyl fluoride (PMSF), and a phosphatase inhibitor
cocktail (Sigma-Aldrich, Mailand, Italy). 20µg of the protein extracted sample was mixed
with Laemmli sample buffer with β-mercaptoethanol and separated on SDS-polyacrylamide
gels. β-actin protein was used as an endogenous control. Protein samples were blotted on
PVDF membranes (Amersham Bioscience, Buckinghamshire, UK) using a specific transfer
buffer. After washing in TBS 0.1% Tween 20 buffer and incubation with 2% BSA blotting
buffer, membranes were incubated with specific primary antibodies for endocan (Abnova,
Taipei, Taiwan), the phosphorylated and total forms of both ERK 1/2 and AKT (Cell Sig-
naling, Danvers, MA, USA), overnight at 4 ◦C. The next day, the blots were washed in
three stages in wash buffer (TBS 0.1% Tween 20) and incubated with the diluted (1:5000)
secondary polyclonal antibody (goat anti-rabbit conjugated with peroxidase, purchased at
Abcam (Cambridge, UK) in TBS 0.15% Tween 20 buffer. After 1 h of gentle shaking, the
blots were washed five times in a wash buffer, and images were achieved and quantified
by scanning densitometry using a bio-image analysis system (C-DiGit, Li-cor, Lincoln, NE,
USA).

4.7. In Vitro Scratch Assay on A549 Cells

The scratch assay was performed to evaluate the effects of endocan knockdown on cell
migration. A549 cells were grown on 24-well plates at a density of 7.0 × 104. Then, cells
were transfected with the endocan siRNA (12 pmol/well) and incubated for an additional
24 h. A linear scratch was created on the cell monolayer using a 20 µL sterile pipette tip.
Cells were carefully washed with phosphate-buffered saline (PBS) to remove any scratched
cells and further incubated at 37 ◦C in reduced serum RPMI (0.2% FBS). Relative migration
of cells was estimated by taking representative images of the scratch area after 0 h, 3 h, 6 h,
and 12 h using a microscopic graduated scale (µm).

The percentage (%) of wound closure was calculated according to the following
algorithm:

Wound Closure % =

[
At=0 − At=∆t

At=0

]
× 100%

At = 0 corresponds to the initial wound area, and At = ∆t corresponds to the wound
area after n hours of the initial scratch. Values were expressed as µm2, and images were
analyzed using the Image J software [71]. Experiments were performed in triplicate, and
untransfected cells were used as controls.
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4.8. Cell Proliferation Assay (MTT)

MTT assay was performed to evaluate the effects of endocan silencing on cell pro-
liferation. A549 cells were seeded in 24-well plates at a density of 5.0 × 104 24 h before
treatment with the endocan siRNA. The culture medium was replaced with fresh RPMI
(10% FBS) without antibiotics 6 h after transfection, and cells were incubated for 12 h,
24 h, 48 h, and 72 h. Then 400 µL of a mixture constituted by the tetrazolium dye MTT
3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (Sigma Aldrich, Milan, Italy),
dissolved in sterile filtered PBS (5 mg/mL), was added into each well 3 h before the end
of the incubation. Then the medium was removed, the insoluble formazan crystals were
dissolved in dimethyl sulfoxide (DMSO 1 mL/well) addition, and the OD was read at λ
540 and λ 670 nm. The results were expressed as a percentage (%) increase with respect to
control at T0 and reported as means ± standard deviation (S.D.).

4.9. Statistical Analysis

All data are expressed as mean ± standard deviation (S.D.). Statistical significance
was calculated with the Student’s t-test for unpaired data, and the statistical significance of
differences was set at p less than 0.05. For the scratch migration assays and the proliferation
assay, a two-way ANOVA followed by Tukey’s post hoc test and multiple t-tests were
performed. All statistical tests were carried out using the software GraphPad Prism (version
7.04 for Windows). All experiments were repeated at least three times (figure legends report
the exact number of replicates of each experiment) to ensure reproducibility.
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