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Abstract: Coronavirus disease 2019 (COVID-19) has spread, with thrombotic complications being
increasingly frequently reported. Although thrombosis is frequently complicated in septic patients,
there are some differences in the thrombosis noted with COVID-19 and that noted with bacterial
infections. The incidence (6–26%) of thrombosis varied among reports in patients with COVID-19; the
incidences of venous thromboembolism and acute arterial thrombosis were 4.8–21.0% and 0.7–3.7%,
respectively. Although disseminated intravascular coagulation (DIC) is frequently associated with
bacterial infections, a few cases of DIC have been reported in association with COVID-19. Fibrin-
related markers, such as D-dimer levels, are extremely high in bacterial infections, whereas soluble
C-type lectin-like receptor 2 (sCLEC-2) levels are high in COVID-19, suggesting that hypercoagulable
and hyperfibrinolytic states are predominant in bacterial infections, whereas hypercoagulable and
hypofibrinolytic states with platelet activation are predominant in COVID-19. Marked platelet
activation, hypercoagulability and hypofibrinolytic states may cause thrombosis in patients with
COVID-19.

Keywords: COVID-19; bacterial infection; thrombosis; platelet activation; sCLEC-2; hypofibri-
nolytic state

1. Introduction

Coronavirus disease 2019 (COVID-19) has spread worldwide from China [1,2], result-
ing in a pandemic [3]. It was previously reported that approximately 2% of patients with
COVID-19 died, and 5–10% developed severe and life-threatening acute respiratory distress
syndrome (ARDS) [4–6], with many more patients developing COVID-19 developing mild
or moderate illness [7,8]. Following the appearance of the omicron variants of COVID-
19 [9], the mortality rate was reduced, but the incidence of infections markedly increased,
resulting in a relative increase in deaths. Therefore the management of complications of
COVID-19 has become increasingly important.

2. Macrothrombotic Complications

The relationship between COVID-19 and thrombosis including venous thromboem-
bolism (VTE) [10], such as pulmonary embolism (PE), and deep vein thrombosis (DVT)
and arterial thrombosis, such as acute cerebral infarction (ACI) [11] and acute coronary
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syndrome (ACS) [12], has attracted attention [13]. On the other hand, many reports on
thrombotic complications, such as disseminated intravascular coagulation (DIC) [14] and
thrombotic microangiopathy (TMA) [15] have been previously reported in severe sepsis
due to bacterial infection. A soluble C-type lectin-like receptor 2 (sCLEC-2) assay has been
recently developed as a biomarker for platelet activation [16–18].

We herein review, based on a large number of reports, the mechanism underlying the
development of thrombosis in COVID-19, which differs from that in bacterial infection.

3. Incidence of Macrothrombotic Complications in COVID-19

There have been many reports on macrothrombosis, such as VTE, ACS and ACI,
in general, and the incidence of all thrombosis has varied substantially (6–26%) among
patients with COVID-19 [19] (Table 1).

3.1. VTE

There have been many systematic reviews and meta-analyses concerning VTE [10,19–21],
and the incidence of VTE, including DVT with PE and DVT, has been reported to vary in
COVID-19. VTE was reportedly found more frequently in patients who were admitted to the
intensive-care unit (ICU) than in those not admitted to the ICU. More than half of COVID-19
patients with PE (57.6%) lacked DVT [20], suggesting that some cases of PE might be caused by
vascular injury instead of embolism. The incidence of VTE was higher when assessed according
to screening or prospective studies [10] and postmortem studies [21] than in retrospective studies.
These findings suggest that the incidence of VTE is high but varies depending on the incidence
and severity of COVID-19, the age and race of patients, and the details of hospitalization and
prophylaxis.

3.2. Arterial Thrombosis

The incidence of arterial thrombosis was low (0.7–3.7%) in overall patients [20,21] and
5% among ICU admissions [21]. The frequency of ACS in patients with COVID-19 was
1.0% in overall patients and 6.0–33.0% in cases of severe disease [12,22]. A review of cardiac
autopsy cases of COVID-19 found that the most common comorbidities were coronary
artery disease (33%) and acute ischemia (8%) [23]. A higher mortality rate among patients
with COVID-19 and ST-segment elevation myocardial infarction (STEMI) was noted in
comparison to previous studies, with reported concerns being late presentation due to fear
of infection, delayed care time, and poor resource allocation [24].

On the neuroimaging of COVID-19 patients, especially critically ill patients, 3.4% of
patients showed COVID-19-related neuroimaging findings [25,26], such as white matter
abnormalities, followed by acute/subacute ischemic infarction and encephalopathy. The
incidence of ACI in patients with COVID-19 is low (0.4–1.3%) [11,26–28]. The risk factors
for ACS and ACI in patients with COVID-19 include old age, hypertension, diabetes
mellitus, coronary artery disease, and severe infection [11,28]. Accurately diagnosing
arterial thrombosis is difficult in COVID-19 patients with critical illnesses and there are no
routine markers for ACI (such as D-dimer for VTE), which suggests that the true incidence
of arterial thrombosis may be increased in COVID-19.
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Table 1. Pooled incidence and thromboembolism in patients with COVID-19 infections.

ICU+Non-ICU ICU Non-ICU Japan

Pooled incidence (%)
TH 6–26 [19] — — 1.86 [22]
PE 7.1–16.5 [10,20,21] 19.0–24.7 [20,21] 10.5–19.0 [20,21] 0.5 [22]

DVT 12.1–20.0 [10,20,21] 28.0 [21] — 0.7 [22]
VTE 17.0–21.0 [10,21] 4.8–31.0 [10,19,21] 1.5–46.1 [10,19] 1.2 [22]
ACI 0.4–1.3 [11,22,29,30] — — 0.4 [22]
ACS 1.0 [12] 6–33 [23] — 0.1 [22]

TH, thrombosis; PE, pulmonary embolism; DVT, deep vein thrombosis; TE, thromboembolism; ACI, acute cerebral
infarction; ACS. Acute coronary thrombosis, DIC, disseminated intravascular coagulation; COVID-19; coronavirus
disease 2019; ICU, intensive-care unit; Reference [10] Jiménez D et al.: 48 studies with 18,093 patients; [11] Nannoni
S et al.: 61 studies with 108,571 patients; [12] Zhao YH et al.: 2277 articles with 108,571 patients; [19] Cheng
NM et al.: 68 studies; [20] Suh YJ et al.; 27 studies with 3342 patients; [21] Malas MB et al.: 42 studies with 8271
patients; [22] Peiris S et al.: 63 studies; [23] Roshdy A et al.: 316 cases; [26] Kim PH et al.: 17 studies with 1394; [27]
Horiuchi H et al.: one questionnaire with 5807 patients; [28] Qureshi AI et al.: 8163 patients; [29] Xiao, D. et al.:
systemic review. [30] Pepera, G. et al.; systemic review.

3.3. Mortality

The pooled mortality rate among patients with all types of thrombosis was 23%,
while that among patients without any types of thrombosis was 13%. The pooled odds
of mortality were 74% higher among patients who developed thrombosis than among
those who did not [21]. A systematic review of reports on COVID-19 demonstrated that
thrombosis increased the risk of mortality by 161% and the risk of a critical status by
190% [29]. In addition, preexisting cerebrovascular diseases (CVDs) were linked to poor
outcomes and an increased risk of death in patients with COVID-19 [30].

3.4. After Discharge

The incidence of events in patients with COVID-19 after discharge was 1.55% for VTE,
0.45% for acute CVD, 0.49% for ACS, 0.77% for other arterial thromboses and 1.73% for
major bleeding [31]. In an analysis of patients with and without COVID-19, the incidence
of ACI was 1.3% in those with COVID-19 and 1.0% in those without COVID-19, suggesting
that the risk of thrombosis continues after discharge and that the management of comor-
bidities is important for patients with COVID-19. ACI usually occurs in the presence of
other cardiovascular risk factors and is associated with a twofold increase in the risk of
long hospitalization or death in patients with COVID-19 [28].

3.5. Asia including Japan

The incidence of acute CVD in patients with COVID-19 was shown to be higher in Asia
(3.1%) than in Europe (1.1%) and North America (1.1%) [11]. A questionnaire on COVID-
19-related thrombosis in 6202 patients hospitalized in Japan showed that thrombotic events
occurred in 1.86% of the 5807 patients with available data including symptomatic ACI
(0.4%), AMI (0.1%), DVT (0.7%), PE (0.5%), and other thrombotic events (0.4%) [27], sug-
gesting that the frequency of VTE is low in Japan due to the low incidence and severity of
COVID-19 and sufficient prophylaxis with heparin.

3.6. Variety of Severity and Complications of Thrombosis in COVID-19

There are large differences in severity or mortality among the COVID-19 variants.
Furthermore, an increased number of patients causes an increase in severe patients with
COVID-19. The level of the medical system, such as bed numbers for COVID-19, quality of
ICU, medical insurance and medication, can decrease mortality or thrombotic complications.
Although high mortality was observed in 2019, low mortality due to COVID-19 was
observed in 2023. As many factors affect mortality or complications of thrombosis in
patients with COVID-19, the evaluation of thrombosis in COVID-19 should be carefully
performed (Figure 1).
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4. Microangiopathy as DIC and TMA in COVID-19 and Other Infections
4.1. DIC

Although the relationship between DIC and COVID-19 has sometimes been reviewed [32],
few systematic reviews have been conducted and the incidence of typical DIC in patients with
COVID-19 was shown to be very low [33]. However, it has been generally reported that DIC
is frequently associated with patients with other infectious diseases, and the incidence of DIC
in other infectious diseases suspected to be bacterial infections is 20–70% [34,35], considering
that the incidence of complications with DIC is higher in patients with bacterial infections
than in those with COVID-19. The outcome of DIC in septic patients is extremely low [14].
There have been many systematic reviews and studies based on big data of the effects of
DIC or sepsis treatments [36,37]. In a recent report that compared COVID-19 to bacterial
infection, the mortality rate was 17.0% in patients with other pneumonia, 16.7% in patients
with sepsis, and 4.3% in patients with COVID-19, suggesting that the mortality rate due to
sepsis is higher than that due to COVID-19 [36]. In addition, thrombosis such as VTE, ACI
or ACS is not frequently detected in patients with bacterial infection [38]. There are many
differences between septic DIC and COVID-19 coagulopathy. In particular, a clot waveform
analysis (CWA) [39] of activated partial thromboplastin time (APTT) showed a large difference
between the two diseases. Significant prolongation of the peak time and a marked reduction
in the peak height of CWA-APTT were observed in patients with overt DIC [40], whereas
moderate prolongation of the peak time and a significant increase in the peak height of
CWA-APTT were observed in patients with COVID-19 coagulopathy [41]. Based on these
findings, a markedly increased peak height suggests hypercoagulability, while a markedly
decreased peak height suggests hypocoagulability (Figure 2). These differences may be caused
by hypofibrinogenemia and hyperfibrinolysis in overt DIC and hypercoagulability induced
by thrombin burst and hypofibrinolysis in COVID-19 coagulopathy.
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Figure 2. Difference in the CWA-APTT between COVID-19 coagulopathy with thrombin burst (a)
and overt-DIC (b). CWA, clot waveform analysis; APTT, activated partial thromboplastin time; HV,
healthy volunteer; COVID-19, coronavirus disease 2019; DIC, disseminated intravascular coagulation;
navy line, fibrin formation curve; pink line, 1st derivative curve (velocity); light blue, 2nd derivative
curve (acceleration); solid line, patient; dotted line, HV. A significant reduction in the peak height
suggests bleeding, and a significant increase in the peak height suggest hypercoagulability and
thrombotic risk. FX, activated FX; PLs, phospholipids; FVIIIa, activated FVIII, FVa, activated FV; FIXa,
activated FIX; FXIa, activated FXI. A schematic illustration of thrombin burst in hypercoagulability
with COVID-19.

4.2. TMA

The association with TMA in patients with COVID-19 has been reviewed [42] and
several reports described TMA in patients with COVID-19 [43], with the frequency of TMA
being reported to be 1.0–20% and the outcome of TMA varying but quite poor [15]. TMA
involves Shiga toxin-producing Escherichia coli (STEC)-hemolytic uremic syndrome (HUS),
thrombotic thrombocytopenic purpura (TTP), atypical HUS and secondary HUS [15]. Ac-
quired TTP is caused by the inhibitor for a disintegrin-like and metalloproteinase with
thrombospondin type 1 motifs 13 (ADAMTS13) and aHUS is mainly caused by an heredi-
tary abnormality of compliment regulation.



Int. J. Mol. Sci. 2023, 24, 7975 6 of 16

As ADAMTS-13 activity and the complement system are not usually examined,
TTP and aHUS may not usually be diagnosed in general hospitals. However, decreased
ADAMTS-13 activity and elevated C5b-9 levels have been reported in patients with COVID-
19 [41,44,45]. The low incidence of TMA may be due to the lack of diagnostic biomarkers
for TMA in clinical use. Elevated sCLEC-2 levels suggest that critically ill patients with
COVID-19 have some degree of microangiopathy [46]. A marked elevation of sCLEC-2
levels was also reported in patients with TMA [17], suggesting the marked activation of
platelets in patients with COVID-19 as well as in patients with TMA. Many critically ill
patients with COVID-19 are also associated with thrombocytopenia, anemia and organ fail-
ure, suggesting that these patients met the diagnostic criteria of TMA [47] and necessitating
further investigation for TMA in patients with COVID-19. COVID-19 complicated with
TMA is expected to increase in frequency going forward.

5. Biomarkers for Thrombosis in COVID-19
5.1. Routine Biomarkers

Although conventional PT and APTT are hemostatic markers and cannot show hy-
percoagulability and thrombotic risk, CWA-APTT and a small amount of TF-induced FIX
activation assay (sTF/FIXa) can show hypercoagulability [39]. D-dimer values have been
reported to be useful biomarkers with a high sensitivity for thrombosis in patients with
COVID-19 and are correlated with the severity of COVID-19 [19,20] (Table 2). Although
elevated D-dimer levels are a well-known risk factor for thrombosis, the D-dimer cutoff
level is low in COVID-19 [48]. Although D-dimer is useful for the exclusion of VTE in
patients with COVID-19, it may not be useful for the diagnosis of VTE in patients with
COVID-19 [15,19,20]. D-dimer levels were reported to be significantly higher in patients
with other pneumonia and sepsis due to bacterial infections than in patients with COVID-
19, whereas there was no significant difference in D-dimer levels between patients with
unidentified clinical syndrome and those with COVID-19 [14,15,46].

Platelet counts were extremely low in patients with sepsis and other pneumonia due to
bacterial infection, especially DIC or pre-DIC, but only moderately low in COVID-19 patients
with critical illness [14,15,46]. As multiple viruses interfere with hematopoiesis, thrombocytope-
nia is a common phenomenon in various viral infections including COVID-19 [49]. However,
thrombocytopenia is suggested to be associated with increased platelet consumption and de-
struction in COVID-19. The prothrombin time (PT) and APTT were significantly prolonged
in septic patients with DIC but not in patients with COVID-19 [14,15,46]. Therefore, DIC and
sepsis-induced coagulopathy are generally diagnosed using a scoring system based on PT,
platelet counts and fibrin-related products, such as D-dimer levels [50–52]. Fibrinogen levels
were significantly increased in patients with COVID-19 compared with patients with sepsis.
No significant differences have been noted in platelet counts, PT or APTT among the four
stages of COVID-19, although platelet counts tend to be reduced in severe or critical illness [46].
Therefore, the above scoring system may not be useful for diagnosing thrombosis in patients
with COVID-19, suggesting that coagulation factor abnormalities may not be significant in
COVID-19.

5.2. Platelet Activation

Platelet activation can be evaluated to detect substances such as P selectin [53] or phos-
phatidylserine [54] on the platelet surface via flow cytometry. However, this method is not
routine laboratory work. Platelet–leukocyte aggregates are often detected to show platelet
activation [55], but this method is not quantitative (Table 3). Microparticles with tissue
factor (TF) from platelets or vessels have been reported to be increased in patients with
thrombosis [56], but this method is still being researched. Although, the β-thromboglobulin
(β-TG), platelet factor 4 (PF4), and P-selectin are considered biomarkers of platelet activa-
tion, their diagnostic specificity for thrombosis due to platelet activation is not high, and
their clinical laboratory use is inconvenient [57].
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Soluble platelet membrane glycoprotein VI (sGPVI) and soluble C-type lectin-like
receptor 2 (sCLEC-2) have been reported as new biomarkers for platelet activation [16,17,57].
Both sGPVI and sCLEC-2 were significantly elevated in patients with TMA and DIC [17,51].
Elevated sCLEC-2 levels were also reported in patients with ACS [18], ACI [58] and
COVID-19 [46]. Specifically, the sCLEC-2/platelet ratio is useful for evaluating the severity
of COVID-19. Furthermore, the plasma sCLEC-2 levels in patients with the mild stage of
COVID-19 were similar to those in patients with other pneumonias, suggesting that the
activation of platelets may occur in the early stage of COVID-19 without symptoms of
microangiopathy [36]. Activated platelets in patients with COVID-19 may release large
amounts of sCLEC-2 into the blood before causing severe microangiopathy. Although many
reports have demonstrated decreased ADAMTS13 activity and increased von Willebrand
factor (VWF) in patients with COVID-19 [59,60], ADAMTS-13 activity was not less than
10% in COVID-19 and the clinical usefulness of a mild decrease in ADAMTS-13 is not
clear. Anti-PF 4 antibodies have often been reported in COVID-19 patients associated with
thrombosis [61,62], suggesting that one of the thrombotic mechanisms in patients with
COVID-19 is heparin-induced thrombocytopenia (HIT).

Table 2. Routine biomarkers for coagulopathy in COVID-19 infections and sepsis.

COVID-19 Infection [14,15,52,54,55] Sepsis Due to Bacterial Infection [37,38,57,59]

Cutoff Value Sensitivity Specificity Cutoff Value Sensitivity Specificity

D-dimer 1.0–3.0 µg/mL high low 5–10 µg/mL moderately high moderately high

Platelet counts 16.0 × 1010/L low low 12.0 × 1010/L moderately high moderately high

PT-INR 1.20 low low 1.20 moderately high moderately high

Fibrinogen increased - - 1.5 g/L slightly high high

Antithrombin - - - 70% moderately high moderately high

WBC decreased (at first) markedly increased

Hemoglobin decreased (at severe or critical illness) no change

PT-INR, prothrombin time-internationalized ratio; WBC, white blood cells; COVID-19, coronavirus disease 2019.

Table 3. Examinations for platelet activation.

Methods Quantitative Multiple Assay Easy Assay Specificity

Activated substance on platelet flow cytometry NA NA adequate specific

Microparticles from platelet flow cytometry,
immunoassay NA NA adequate semispecific

Platelet–leukocyte aggregates flow cytometry,
microscopy NA NA adequate specific

β-TG, platelet factor 4 (PF4) ELISA PA PA NA specific

P-secretin ELISA adequate adequate adequate semispecific

GP-VI, ELISA adequate adequate adequate specific

sCLEC-2 CLEIA adequate adequate SA specific

β-TG, β-thromboglobulin; PF4, platelet factor 4; NA, not adequate; PA, partially adequate; SA, strongly adequate;
sGPVI, soluble platelet membrane glycoprotein VI; sCLEC-2, soluble C-type lectin-like receptor 2; ELISA, enzyme-
linked immunosorbent assay, CLEIA, chemiluminescent enzyme immunoassay.

5.3. Hypofibrinolysis and Vascular Endothelial Cell Injury Markers

Increased fibrinogen [63] and plasminogen activator inhibitor-1 (PAI-I) levels [64],
slightly increased D-dimer levels [65], and viscoelastic whole blood coagulation testing
with and without tissue plasminogen activator [66,67] suggested a hypercoagulable and
hypofibrinolytic state in patients with COVID-19. Most studies that reported hypofibrinol-
ysis in patients with COVID-19 [66–68] used thromboelastography (TEG), and conducting
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statistical analyses for hypofibrinolysis proved difficult. Therefore, the hypofibrinolytic
state in COVID-19 has not yet been sufficiently evaluated. Although it has been em-
phasized that D-dimer levels are increased in COVID-19 patients with severe or critical
illness [36], the increase in D-dimer values in patients with COVID-19 has been shown to
be significantly lower than that in other pneumonia patients [69]. Organ failure is worse in
advanced COVID-19 patients, so vascular endothelial cell injury markers such as soluble
thrombomodulin (sTM), VWF and PAI-I are high, while AT levels are low, suggesting that
hypofibrinolysis may be related to organ failure and vascular endothelial cell injury.

5.4. Inflammatory Marker

Increased values for the white blood cell count, C-reactive protein (CRP) level [8],
procalcitonin level [70], presepsin level [71], C5b-9 and C5a levels [44], and levels of inflam-
matory cytokines, such as tumor necrosis factor α, interleukin-1, interleukin-2, interleukin-6,
interleukin-10 and interferon γ, were reported in patients with severe COVID-19; eleva-
tion in these inflammatory factors can lead to cytokine storm [72]. As procalcitonin is a
biomarker for bacterial infection, presepsin may be more useful for diagnosing COVID-19
than procalcitonin [73]. These inflammatory mediators can further cause hypercoagulabil-
ity, platelet activation, hypofibrinolysis, and vascular endothelial cell injuries by activating
leukocytes, vascular endothelial cells and platelets.

6. Mechanisms for Thrombosis in COVID-19 and Sepsis

Several mechanisms for thrombosis underlying the worsening of the condition of
COVID-19 patients, such as old age, long time-bed rest and comorbidities [23,28], inflam-
mation and cytokine storms [12], vascular endothelial injuries [74], primary pulmonary
thrombosis [75], hypoventilation, a hypercoagulable state (including activation of the TF
pathway) [74], neutrophil extracellular traps (NETs) [76], hypofibrinolysis [66] and platelet
activation [60], have been proposed. The mechanism underlying thrombosis in COVID-19
(Figure 3) and in bacterial infection (Figure 4) is shown.

6.1. Platelet Activation

Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) binds to the CD-147
receptor of platelets [77]. Early and intense platelet activation, which was reproduced
in vitro by stimulating platelets with SARS-CoV-2 depending on the CD147 receptor, has
been reported [53]. Platelet activation and platelet–monocyte aggregate formation trigger
TF expression in patients with severe COVID-19 [78]. SARS-CoV-2-induced platelet acti-
vation may participate in thrombus formation and inflammatory responses in COVID-19
patients. The early accumulation of extracellular vesicles with the soluble P-selectin and
high mobility group box 1 (HMGB-1) protein which platelets release, was shown to predict
worse clinical outcomes [53]. The plasma sCLEC-2 levels in patients with COVID-19 were
significantly higher than those in patients with other infections and reflected the progres-
sion of the severity of COVID-19 although these levels were significantly higher in patients
with sepsis due to bacterial infection [46] (Figure 4).

Thrombocytopenia is often observed in COVID-19 patients with severe disease as
well as in septic patients with DIC [79]. The sCLEC-2/platelet ratio was significantly
higher in COVID-19 patients with severe and critical illness than in those with mild illness,
suggesting that one of the causes of thrombocytopenia might be consumption due to
microthrombi formation, suggesting that COVID-19 has microangiopathy as well as DIC or
TMA. Low-dose aspirin was reported to be useful for managing COVID-19 [80].
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lipopolysaccharide; TF, tissue factor; IL, interleukin; TNF, tumor necrosis factor; TM, thrombomod-
ulin; PAI-I, plasminogen activator inhibitor-1; AT-III, antithrombin; MOF, multiple organ failure; VTE,
venous thromboembolism; DIC, disseminated intravascular coagulation; aF, activated platelet; PLT,
platelet; COVID-19, coronavirus disease 2019; SARS-CoV-2, severe acute respiratory syndrome related
coronavirus-2; sCLEC-2, soluble C-type lectin-like receptor 2; TMA, thrombotic microangiopathy;
VTE, venous thromboembolism; ATE, arterial thromboembolism.
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6.2. Hypercoagulable State

Marked activation of leukocytes and the overexpression of TF are considered some of
the most important causes of thrombosis or DIC due to bacterial infection [14,79]. Markedly
increased values of white blood cell count, plasma TF, and TF messenger RNA levels in white
blood cells have been reported in patients with sepsis [81]. Increased levels of inflammatory
cytokines, fibrin-related products (e.g., D-dimer), vascular endothelial cell injury markers
(e.g., thrombomodulin [TM]), and PAI-I and decreased antithrombin, thrombocytopenia, and
a prolonged PT were also reported in septic patients [14,38,82]. Such cases of sepsis are
frequently associated with DIC [38]. Severe septic patients with elevated sCLEC-2 levels may
also have microangiopathy [46]. There are some differences in the mechanism underlying
thrombocytopenia between DIC and TMA [79], although thrombocytopenia in both diseases
is caused by platelet consumption. Regarding COVID -19 (Figure 3), leukocyte counts are
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generally decreased early in COVID-19 [8], suggesting that activated platelets and injured
vascular endothelial cells may play an important role in the onset of thrombosis through CD-
147 [53]. However, CWA-APTT and CWA-sTF/FIXa showed hypercoagulability in patients
with COVID-19 [41] suggesting that thrombin burst (Figure 2) [83] which is enhanced by
activated platelets, causes hypercoagulability in this state.

6.3. Hypofibrinolysis

Although both severe COVID-19 and bacterial infections may have similar microan-
giopathy, complications with VTE are frequent in patients with COVID-19 but are not
frequent in septic patients. DIC is caused by hypercoagulation and hyperfibrinolysis [38],
most microthrombi in the microvasculature may dissolve promptly in DIC, whereas mi-
crothrombi in COVID-19 may develop into venous thrombosis. Vascular injuries are
observed in COVID-19 [74], suggesting that elevated PAI-I may inhibit fibrinolysis [84]
(Tables 4 and 5). In addition, the sCLEC-2/D-dimer ratio in patients with COVID-19 was
significantly higher than that in patients with other infections [69], suggesting that hyperco-
agulable and hypofibrinolysis states are more predominant in patients with COVID-19 than
in other pneumonia patients. Markedly increased TF and D-dimer levels are observed in
cases of bacterial infection [38,81], suggesting that hypercoagulable and hyperfibrinolytic
states exist in severe bacterial infections. Regarding COVID-19 infection, the sCLEC-2/D-
dimer ratio in cases with critical illness was significantly lower than that in cases with
mild illness, suggesting that most patients with early-stage COVID-19 infection show only
platelet activation with hypofibrinolysis, and that severe COVID-19 causes even further
hypercoagulability [69] through a thrombin burst induced by platelet activation (Figure 4).

Table 4. Differences and similarities between COVID-19 and severe sepsis bacterial infections.

COVID-19 Infection Severe Sepsis Due to Bacterial Infections

Activation of platelets +++++ +++

Activation of leukocytes + +++++

Tissue factor generation ++++ +++++

Cytokine generation +++++ ++++

Lung injury +++++ +++

Organ failure excluding lung + +++

Development of atheroma +++ +

Development of venous thrombosis +++++ ++

Fibrinolysis + +++++

Table 5. Differences and similarities between COVID-19 and severe sepsis bacterial infections.

COVID-19 Infection Severe Sepsis Due to Bacterial Infections

Venous thromboembolism frequent not frequent

Arterial thrombosis relatively frequent not frequent

Mortality rate approximately 2% 20–45% in severe sepsis

Incidence of infection markedly high relatively high

Death number markedly high relatively high

Microangiopathy positive positive

Coagulation mild or hypercoagulable states hypercoagulable state

Fibrinolysis hypofibrinolytic state hyperfibrinolytic state

DIC not frequent frequent

DIC, disseminated intravascular coagulation; COVID-19, coronavirus disease 2019.
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7. Treatment and Prophylaxis for Thrombosis

Although antithrombotic agents such as heparin reduce the risk of thromboembolism
in severely ill patients, there are a few recommendations for patients with COVID-19 in
the ISTH guidelines on antithrombotic treatment [85]. Among non-critically ill patients
hospitalized for COVID-19, there is a strong recommendation for the use of prophylactic
doses of low molecular weight heparin (LMWH) or unfractionated heparin (UFH) and
for select patients in this group; the use of therapeutic doses LMWH/UFH is preferred
over prophylactic doses, but without the addition of an antiplatelet agent. There are
weak recommendations for adding an antiplatelet agent to prophylactic LMWH/UFH in
select critically ill patients and prophylactic rivaroxaban for select patients after discharge.
A recent review of RCTs [86] in critically ill patients demonstrated that a therapeutic
dose of anticoagulation does not improve outcomes and results in more bleeding than a
prophylactic dose of anticoagulant in these patients. Trials in noncritically ill hospitalized
patients showed that anticoagulation at a therapeutic dose with a heparin formulation
might improve clinical outcomes. Anticoagulation with a direct oral anticoagulant may
improve outcomes of posthospital discharge; the results of a large RCT that is currently in
progress are awaited [87]. There is not sufficient evidence that therapeutic anticoagulant
can be recommended in critically ill patients at the present time.

8. Conclusions

A hypercoagulable state, platelet activation (observed as the marked elevation of
sCLEC-2), and hypofibrinolysis due to vascular injuries are observed in patients with
COVID-19, suggesting that SARS-CoV-2 may cause thrombogenicity via a mechanism
different from that involved in bacterial infection.
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