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Abstract: Schizophrenia (SZ) is a devastating psychiatric disorder affecting about 1% of the world’s
population. Social-cognitive impairments in SZ prevent positive social interactions and lead to
progressive social withdrawal. The neurobiological underpinnings of social-cognitive symptoms
remain poorly understood, which hinders the development of novel treatments. At the whole-
brain level, an abnormal activation of social brain regions and interregional dysconnectivity within
social-cognitive brain networks have been identified as major contributors to these symptoms. At
the cellular and subcellular levels, an interplay between oxidative stress, neuroinflammation and
N-methyl-D-aspartate receptor hypofunction is thought to underly SZ pathology. However, it is not
clear how these molecular processes are linked with interregional dysconnectivity in the genesis
of social-cognitive symptoms. Here, we aim to bridge the gap between macroscale (connectivity
analyses) and microscale (molecular and cellular mechanistic) knowledge by proposing impaired
myelination and the disinhibition of local microcircuits as possible causative biological pathways
leading to dysconnectivity and abnormal activity of the social brain. Furthermore, we recommend
electroencephalography as a promising translational technique that can foster pre-clinical drug
development and discuss attractive drug targets for the treatment of social-cognitive symptoms in SZ.

Keywords: schizophrenia; social cognition; functional connectivity/dysconnectivity; structural
connectivity/dysconnectivity; oxidative stress; inflammation; N-methyl-D-aspartate receptor

1. Introduction

Schizophrenia (SZ) is a devastating neuropsychiatric disorder affecting around 1%
of the world’s population [1]. SZ patients have a complex phenotype that can be divided
into positive (e.g., delusions and hallucinations), negative (e.g., anhedonia and reduced
motivation) and cognitive (e.g., planning and concentration problems) symptoms [1].
Social-cognitive deficits, the focus of this review and part of negative symptoms, include
affected mental processes underlying the perception of, interpretation of, and response to
social stimuli [2]. These impairments result in an inability to adapt one’s behavior to match
the social context, leading to negative social interactions, reduced social functioning and
progressive social withdrawal [2]. Deficits in social cognition start in the prodromal phase
of SZ before the onset of the first psychotic episode [3–5]. These symptoms not only affect
SZ patients and their caregivers but also contribute significantly to the economic burden of
SZ [6]. Yet, the neurobiological processes underlying social-cognitive impairments in SZ
remain largely unknown.
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Social cognition is governed by several brain structures forming the ‘social brain’ [7].
The social brain includes the amygdala (AMY), prefrontal cortex (PFC), orbitofrontal
cortex (OFC) and the anterior cingulate cortex (ACC), which serve as substrates for social
processing through a number of social-cognitive networks [8]. For instance, the perception
network detects social stimuli, relying on the AMY, PFC and the sensory system. In
SZ patients, abnormal brain activity and connectivity within the social brain have been
observed [2,8,9]. Additionally, in both SZ patients and animal models of SZ, molecular
and cellular abnormalities (e.g., oxidative stress, inflammation and N-methyl-D-aspartate
(NMDA) receptor hypofunction) have been reported in brain structures that play a key
role in the social brain network such as the PFC, ACC and AMY [10–14]. However, the
manner in which microscale molecular and cellular abnormalities lead to macroscale brain
activity and connectivity deficits within the social brain remains unknown. This leaves a
knowledge gap that together with the limited application of translational research methods
complicates treatment development [15–18]. Indeed, the treatment of social–cognitive
symptoms of SZ continues to represent an unmet medical need.

In this review, we first describe macroscale scientific knowledge by detailing which
brain structures and neural networks contribute to social-cognitive dysfunction in SZ. Next,
we discuss the link that exists between key microscale neurobiological factors and impaired
social-cognitive behavior in SZ. Importantly, we then connect the current macro- and
microscale knowledge about social-cognitive symptoms of SZ and propose that impaired
myelination of white-matter tracts and disinhibition of local microcircuits might lead
to dysconnectivity within as well as abnormal activity of the social brain, ultimately
causing the social-cognitive symptoms of SZ. Finally, we discuss potential drug targets and
identify promising translational research techniques that could facilitate the development
of medicines for the treatment of social-cognitive dysfunction in SZ.

2. Macroscale Knowledge—Brain Structures and Networks That Regulate Social
Cognition Are Affected in SZ
2.1. Impairments in the Recruitment of the Social Brain during Social-Cognitive Behavior in SZ

Neuroimaging and neuropsychological studies suggest that more than fifteen brain
regions contribute to social-cognitive deficits in SZ, including the PFC, OFC, AMY, ACC,
superior temporal gyrus and occipital cortex [2,9]. Specifically, increased PFC activation
and abnormal PFC control of the AMY are associated with defects in emotion regulation,
which complicates social interactions [19,20]. In turn, hypoactivation of the superior
temporal sulcus is linked to defects in motor resonance, further hindering social interactions
by preventing patients to match to other people’s behavior [21]. Moreover, decreased
activation of the medial PFC and OFC is thought to contribute to impairments during
theory of mind tasks, likely leading to the inability to infer the mental states of others,
which is a process essential for proper social behavior [22–24]. Furthermore, the sensory
processing of faces and voices is affected in SZ patients, and research suggest this might
be associated with a decreased activation of the AMY, ACC, PFC and occipital cortex
(for face perception) [25–28] and abnormal activation of the superior temporal gyrus
and insula (for voice perception) [29,30], hindering social interaction. On top of that,
attributional style defects in SZ, for instance mistakenly perceived hostility, correlate with a
decreased activation of the primary motor cortex, middle cingulate cortex and AMY [31].
What causes these numerous structures within the social brain to malfunction in the
process of initiating and maintaining normal social behavior remains unclear, but abnormal
connectivity between regions of the social brain might play a role [2,9].

2.2. Reduced Structural Connectivity within the Social Brain Affects Social Cognition in SZ

In addition to differences in the activation of brain regions involved in social cognition,
evidence points to abnormal structural connectivity within the social brain of SZ patients.
Integration of the activity of brain regions in the social brain depends on the transmission
of neural information from one region to another via bundles of white matter (WM). WM



Int. J. Mol. Sci. 2023, 24, 7680 3 of 24

within the social brain is therefore an important determinant of social-cognitive behavior
(see references [32,33] for reviews on major WM tracts involved in social cognition), and ab-
normal structural connectivity is a key feature of SZ [34–36]. Diffusion magnetic resonance
imaging (MRI) studies reveal abnormal frontal WM in SZ patients (e.g., in the PFC) [37]
that is independent of medication use [38,39], which is evident already in the prodromal
phase of SZ and advances to caudal brain regions as the disease progresses [39–44]. The
integrity of WM in the PFC, a key region for social-cognitive behavior, is decreased in
SZ patients [45–47], which is associated with poorer socio-functional outcomes [48,49].
Similar associations were found in studies investigating other regions of the social brain.
For instance, reduced sociability has been associated with reduced WM integrity within
and between the OFC, and anterior and posterior cingulate cortices [50–52]. In addition,
decreased integrity of the longitudinal fasciculus, a WM bundle supporting theory of mind
and perception of social stimuli, predicts the deterioration of social functioning in adoles-
cents who are at a high risk to transition to psychosis [53], highlighting the importance of
WM tracts for the emergence of social deficits in SZ. Indeed, reduced WM integrity in the
corpus callosum, occipital cortex and anterior corona radiata of SZ patients, supporting
theory of mind, mirroring and perception networks, is correlated with impaired social
functioning [54–56]. Moreover, abnormal integrity of the inferior fronto-occipital fasciculus,
whose fibers contribute to face perception and mentalizing, is correlated with social deficits
in 22q11.2 deletion syndrome, which is a genetic condition conferring increased risk for
SZ [57]. Likewise, decreased integrity of the cingulum, which allows connection within the
mentalizing network, and the longitudinal fasciculus have both been associated with lower
performance in the theory of mind task in SZ patients [58]. Additionally, reduced integrity
of the uncinate fasciculus, a bundle of WM connecting the AMY to the OFC and PFC, and
important for the regulation of emotions, was correlated with decreased ability to process
emotions in SZ patients [59–61]. Taken together, these studies support the idea that reduced
WM integrity throughout the social brain is a major contributor to the incorrect activation
of and communication between regions of the social brain, resulting in social-cognitive
deficits in SZ patients. Yet, the quality of the functional connections within social brain
networks may also play a role in generating social-cognitive symptoms in SZ.

2.3. Abnormal Properties of Functional Social Brain Networks in SZ

Functional connectivity studies employ functional MRI, electroencephalography (EEG)
or magnetoencephalography (MEG) to establish brain activation patterns. Subsequently,
statistical associations between activation patterns in distinct regions of the brain are
determined, revealing a matrix containing all pairwise connectivity values between brain
regions. Functional network analysis of the social brain in SZ patients might therefore
provide us with more insight into how differential functional connectivity and reduced
structural connectivity of social brain regions might integrate to disrupt social cognition in
SZ. Social brain networks in SZ patients are characterized by a lower functional connectivity
between social brain regions, and the functional connections between social brain regions
are often not direct but go via more other brain regions than in healthy individuals. This
indicates less efficient communication within the social brain of SZ patients [62]. Notably,
AMY and putamen are less centrally connected within the social brain network of SZ
patients, and this was correlated with social-cognitive deficits in SZ [62]. When looking
at the theory of mind brain network specifically, the PFC was found to be the major
disconnected brain region, indicating that the PFC likely receives less input from other
brain regions within the theory of mind network in SZ patients. Lower connectivity
within the theory of mind network in SZ patients correlated with worse interpersonal
behavior [63,64]. Interestingly, in healthy individuals, a correlation exists between the
functional social brain network and the real-life social network (i.e., the number of social
interactions and social connections someone maintains), and this correlation is reduced in
SZ patients [64], which is a notion that was confirmed in a second study [65]. Functional
network analysis of the social brain in SZ patients thus tells us that particularly, the regions
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of the social brain are less efficiently connected. Abnormalities in WM connecting social
brain regions in SZ patients are therefore of interest in the search for novel treatment
strategies for social-cognitive impairment in SZ.

In conclusion, aberrant activity and connectivity throughout the social brain of SZ
patients causes social-cognitive deficits. Social-cognitive training, aiming at improving
social cognition in SZ patients, has been shown to slightly improve specific domains of
social cognition such as emotion recognition [66,67]. However, social-cognitive training
comes with a high burden of treatment. The development of medication or therapy that
directly targets the dysconnectivity within the social brain of SZ patients depends on the
identification of biological treatment targets. As such, it is important to investigate the
molecular and cellular features that lead to changes in the development and functioning of
connections within the SZ social brain.

3. Microscale Knowledge—Molecular and Cellular Mechanisms Underlying
Social-Cognitive Dysfunction in SZ

It is thought that a combination of genetic and environmental factors leads to a series
of pathological processes including oxidative stress, neuroinflammation and NMDA re-
ceptor hypofunction that disrupt brain development and ultimately cause SZ [10,11,68].
These pathological processes are interconnected, aggravate one another [68] and affect
neurotransmitter systems, the activation of brain regions, and interregional brain connec-
tivity [10,11]. Therefore, it is likely that these mechanisms contribute to the abnormal
connectivity within the social brain, leading to social-cognitive dysfunction in SZ. In this
section, we describe the link between social-cognitive dysfunction in SZ and oxidative
stress, immune irregularities and a decrease in NMDA receptor signaling.

3.1. Oxidative Stress Is Associated with Social-Cognitive Impairments in SZ

Oxidative stress is an imbalance between the production and the clearance of reactive
oxygen species (ROS). ROS can damage cells and cause cell death [69], but they are also
essential for cellular processes such as immune functions [70]. Therefore, maintaining
a balance between the production and clearance of ROS is essential for proper physio-
logical functioning. In SZ, oxidative stress is thought to result from a combination of
mitochondrial dysfunction producing elevated ROS levels [71–75] and decreased capacity
for clearance of ROS due to lower glutathione antioxidant levels [76–80]. This may result
from both genetic factors such as single nucleotide polymorphisms (SNPs) and copy num-
ber variations involved in genes responsible for maintaining the redox balance [76–78], and
environmental insults such as maternal immune activation (MIA), prenatal malnutrition
and social stress, which all increase ROS production [81–83]. Oxidative stress is a key
feature of SZ, and it is observed throughout the brain (including the social-brain regions
PFC, occipital cortex and ACC) [84–87], the blood [88] and the cerebral spinal fluid [84]
of patients. Moreover, oxidative stress is already present in the prodromal phase of SZ
and is therefore thought to importantly contribute to the disorder (see references [89,90]
for reviews). Social-cognitive deficits in SZ have been correlated with oxidative stress.
For instance, lower plasma total antioxidant status was associated with poorer emotional
management in SZ patients [91], and a magnetic resonance spectroscopy study revealed a
correlation between lower glutathione levels in the frontal cortex and severity of social dys-
function in SZ patients [92,93]. In agreement, it was found that in SZ patients, serum redox
imbalance was strongly associated with social withdrawal [94]. However, other studies
measuring specific components of the redox system, e.g., super oxide dismutase, did not
find associations with social-cognitive measures [95,96], suggesting that the total oxidative
balance rather than the dysregulation of specific components of the redox system dictates
association with social-cognitive deficits in SZ. In line with this, N-acetylcysteine (NAC), a
direct precursor of the brain’s main antioxidant glutathione, ameliorates indices of social
functioning in SZ [97–100], indicating a causal link between oxidative stress and social
dysfunction. In addition to social improvement, NAC treatment also reversed pathological



Int. J. Mol. Sci. 2023, 24, 7680 5 of 24

electrophysiological brain features associated with social cognition deficits. For example,
mismatch negativity (MMN), an EEG paradigm in which a specific electrophysiological pat-
tern is triggered upon detecting a deviant stimulus within a sequence of standard cues and
a measure associated with SZ patient’s impaired social cognition [101–104], was improved
in SZ patients undergoing NAC treatment [105]. These studies suggest that oxidative stress
contributes to social-cognitive dysfunction in SZ and that rescuing oxidative stress might
improve social cognition in SZ patients.

Studies in various rodent models of SZ strengthen the notion that oxidative stress
affects social cognition in SZ. For instance, impairment of the glutathione pathway in-
duced by L-buthionine-(S, R)-sulfoximine reproduces key aspects of SZ in rats including
impaired social behavior [106,107], which is rescued by NAC administration [108]. Further-
more, rats socially isolated from birth onwards, a model for studying SZ since post-natal
psychosocial stress is a risk factor for SZ [109,110], have higher levels of oxidative stress
in the frontal cortex, which was associated with decreased social interactions [111]. In
addition, in rodents treated with the NMDA receptor antagonists ketamine, phencycli-
dine or MK-801 (a well-characterized model of SZ; see reference [112]), oxidative stress
is induced in the brain and accompanied by deficits in social behavior [113–115] that are
ameliorated by NAC [116,117]. NAC treatment also reverses oxidative stress and social
interaction deficits (as well as other behavioral manifestations relevant to SZ) induced by
MIA and methamphetamine exposure during adolescence in rats [118], which is a rele-
vant neurodevelopmental model of SZ since both adolescent drug exposure and MIA are
known to contribute to SZ susceptibility [119–122]. Similarly, oxidative stress in the PFC of
rats exhibiting social deficits induced by perinatal infection and adolescent psychological
stress is rescued by NAC treatment [123]. Interestingly, oxidative stress has also been
found in the AMY in a model of MIA and is reduced by the administration of minocycline
(7-dimethylamino-6-dimethyl-6-deoxytetracycline), which is an anti-inflammatory antibi-
otic also displaying antioxidant properties [124]. Evidence from rodent studies is thus in
line with clinical findings suggesting a link between oxidative stress in the social brain and
social-cognitive impairments in SZ.

3.2. Immune Dysregulation Is Associated with Social-Cognitive Impairments in SZ

Another main pathological process in SZ is immune dysregulation and neuroinflam-
mation. Inflammation occurs when immune cells (i.e., white blood cells or microglia)
become activated upon the identification of potential bodily threats. The activation of
immune cells leads them to secrete pro-inflammatory cytokines that regulate the immune
response. Immune dysregulation and neuroinflammation are key components of SZ patho-
physiology [125]. SZ patients exhibit abnormal levels of pro-inflammatory cytokines in the
blood, cerebral–spinal fluid and brain (including the PFC) [126–128], microglia are abnor-
mally activated in SZ patients’ brains [129–131], and genetic and genome-wide association
studies have identified major histocompatibility complex genes involved in inflammatory
processes as major contributors to SZ genetic susceptibility [132–135]. In addition, early-life
exposure to environmental stressors such as MIA or social stress induces microglial activa-
tion and neuroimmune dysregulation, contributing to the development of SZ [129–131].
Like oxidative stress, heightened inflammatory processes are observed from the prodromal
phase of SZ onwards, suggesting a major contribution of immune dysregulation to the
development of SZ [129–131].

Social behavior strongly depends on inflammatory status [136,137], and it has even
been suggested that impaired social interactions prevent the exposure to bacteria necessary
for a proper development of the immune system, highlighting the interdependence of social-
cognitive behavior and the immune system [138]. Therefore, a contribution of immune
dysregulation to social-cognitive impairments in SZ patients is to be expected. Indeed,
higher plasma levels of inflammatory components such as interleukin 10 (IL-10) predict
social-functioning impairments [139]. Another study even found that higher IL-10 levels
lead to misinterpretation of social cues and that elevated IL-2 correlates with other social-
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cognitive measures in SZ patients [140,141]. Likewise, plasma levels of interferon (IFN)-γ,
IL-1β and IL-12 negatively correlate with indices of social cognition (e.g., theory of mind) in
SZ patients [142]. In addition, the anti-inflammatory antibiotic minocycline benefits social
functioning in SZ patients [143–148], which is an effect thought to be mediated by its action
on pro-inflammatory cytokines [148]. Taken together, these studies point to an association
between immune dysregulation and social-cognitive symptoms in SZ patients.

A causal link between immune dysregulation and social deficits appears to exist in
SZ rodent models as well. Immune activation models are among the most commonly
used SZ rodent models and associated with social deficits. For instance, in a rat juvenile
immune activation model of SZ, deficits in social recognition and interactions have been
found [149], and MIA in rats induces communication and social interaction deficits [150].
Notably, MIA SZ models induce neuroinflammation and microglia activation in regions
of the social brain including AMY and PFC [124,151]. Several other studies suggest that
prenatal and early-life inflammation are key to inducing social deficits in SZ [152–154], but
we should note that NMDA-antagonism models also present with neuroinflammation in
the social brain (e.g., in the PFC), which is a component that may also contribute to the
social deficits observed in this model (see reference [113] and paragraph below). This body
of evidence prompts the idea that prenatal and early-life inflammation might impact brain
development of the social brain, notably in the AMY and PFC, leading to social deficits
later in life.

3.3. NMDA Receptor Hypofunction Is Associated with Social-Cognitive Impairments in SZ

Next to oxidative stress and neuroinflammation, NMDA receptor hypofunction is
considered a key contributor to the development of SZ based on the fact that the admin-
istration of NMDA receptor antagonists in healthy individuals induces psychosis-like
states [155] and that SNPs in glutamate-associated genes carry genetic susceptibility for
SZ [132,156]. Additionally, post-mortem brain tissue from SZ patients displays reduced
levels of NMDA receptors (see reference [157] for review) and SZ animal models induced
by NMDA receptor antagonists cause SZ-like behaviors including decreased cognitive
performance and sensory processing as well as persistent social deficits [112,158].

In patients with SZ, low ACC glutamate levels correlate with decreased social func-
tioning [159], and thalamus glutamate levels show a negative correlation with social func-
tioning [160]. To our knowledge, these are the only studies that have investigated a possible
correlation between glutamatergic signaling and social cognition in SZ patients. Yet, post-
mortem studies have identified a reduced expression of NMDA receptors in multiple
areas of the social brain in SZ patients, including the ACC and PFC [161–163], strength-
ening the notion that NMDA receptor hypofunction may contribute to social-cognitive
impairments in SZ. Furthermore, auditory steady-state response (ASSR) and MMN, two
EEG event-related potentials that are dependent on glutamatergic activity, are reduced
in SZ patients [104,164] and predictive of SZ socio-functional deficits [101–103,165–173],
highlighting a possible link between glutamatergic hypofunction and social cognition
in SZ. In line with this, studies in SZ animal models demonstrate a clear association
between glutamatergic hypofunction and social deficits. SZ rodent models induced by
NMDA receptor antagonism present with deficits in social interactions [112,158], as do
rodents in which NMDA receptor subunit genes are knocked down [174,175]. Interestingly,
in NMDA-receptor-antagonism-induced SZ models, aberrant activity of glutamatergic
fibers projecting from the AMY to the ACC has been recently shown to contribute to this
deficit [176]. Furthermore, in SZ patients and animal models, drugs stimulating glutamater-
gic transmission through metabotropic receptors (e.g., mGluR2/3) or by increasing the
synaptic concentration of the NMDA receptor co-agonists glycine or D-serine improve
symptoms of SZ including deficits in social interactions [177–185], thus establishing that
NMDA receptor hypofunction is a significant factor contributing to social deficits in SZ.

Taken together, oxidative stress, neuroinflammation and NMDA receptor hypofunc-
tion are considered the main pathological processes in the development of SZ, and all three
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processes contribute to social-cognitive impairments in SZ patients and rodent models.
However, it remains unclear how these microscale mechanistic contributors can cause
dysconnectivity within the social brain of SZ patients. In the next section, we will discuss
how the three molecular and cellular mechanisms might contribute to the whole-brain
abnormalities that cause social-cognitive disturbances in SZ.

4. Connecting the Macro- and Microscales in SZ Social-Cognitive Research

As indicated by the neuroimaging and network studies highlighted above, there
appears to be a reduced structural connectivity as well as functional dysconnectivity within
the social brain in SZ patients, and this may impact social cognition. Since oxidative stress,
immune dysregulation, neuroinflammation and NMDA receptor hypofunction are also
associated with social-cognitive deficits in SZ, exploring how these microscale factors
impact local cortical circuit output as well as interregional connectivity may shed light on
the underpinnings of SZ social deficits.

4.1. The Effects of Oxidative Stress, Neuroinflammation and NMDA Receptor Hypofunction on
Local Brain Circuits

Oxidative stress can affect all brain cell types, but parvalbumin interneurons (PVIs)
and oligodendrocytes are particularly vulnerable to this type of cellular stress. Notably,
PVIs, their integration in local neural circuits (e.g., in the PFC, hippocampus or occipital
cortex) and their interaction with oligodendrocytes are essential for proper social-cognitive
processes and could contribute to the development of social deficits in SZ [186–190]. PVIs
are fast-spiking cells with a correspondingly high metabolic rate and high numbers of
mitochondria, thus producing more ROS than other interneuron types and their excitatory
counterparts [191]. Therefore, PVIs are more vulnerable to oxidative insults than other
neuronal cell types. Indeed, in SZ, post-mortem PFC tissue PV and GAD67 mRNA and
protein expression are reduced [192–196], while PVI numbers remain unchanged [197,198]
as do synapse numbers [199,200]. Furthermore, in the PFC of an SZ rat model, increased
oxidative stress leads to reduced glutamic acid decarboxylase 67 (GAD67) mRNA and
protein expression but unchanged numbers of γ-Aminobutyric acid (GABA)ergic interneu-
rons [201–203]. Reduced PV and GAD67 expression indicates a lower activity of these
interneurons in the SZ PFC, which has been confirmed in SZ rodent models [203]. A
lower activity of fast-spiking interneurons leads to a disinhibition of the local circuit and a
reduction of cortical gamma-band oscillations that has been observed both in SZ patients
and in oxidative stress-related animal models of SZ [204–206]. Strengthening the notion
that oxidative stress affects PVIs is the fact that in both rat and mouse models of SZ with di-
minished antioxidative capacity, decreased numbers of PVIs have been identified [204,207].
Importantly, disturbing the excitation/inhibition balance by modulating PVI functioning
or the specific knock-down of PVIs in the PFC has been shown to disrupt social behavior in
laboratory animals [208,209].

In addition to detrimental effects on interneurons, oxidative stress also heavily affects
oligodendrocytes. Oligodendrocytes are glial cells that form myelin sheaths around neu-
ronal axons, which not only enhances conduction velocity of action potentials but also
provides metabolic support to axons. Myelin is an extension of the oligodendrocyte cell
membrane, and one oligodendrocyte can myelinate up to 40–50 axons. This action comes
with a high metabolic rate, and high lipid and protein production rates, which are pro-
cesses that produce ROS and make oligodendrocytes vulnerable to oxidative insults [10,11].
Considering the role of oxidative stress in SZ, it is therefore not surprising that myelina-
tion abnormalities represent also an important feature of this disorder [210–215], which
is a circumstance mainly mediated during brain development and notably affecting the
PFC [10,11]. In a recent series of publications, we indeed demonstrated that in a rat model
of SZ, oxidative stress during brain development impairs oligodendrocyte maturation and
leads to a reduced PVI myelination rate in the PFC [201,202]. Interestingly, it has been
proposed that the hypomyelination of PVIs may further contribute to the reduced PVI func-
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tionality observed in SZ [216]. Taken together, oxidative stress contributes to a disinhibition
of local cortical circuits through detrimental effects on PVIs and oligodendrocytes, which
might affect the activation of the social brain and social behavior in patients.

The exact effects of neuroinflammation on local cortical circuits in SZ remain largely un-
known. However, insights from the MIA model of SZ suggest effects on both interneurons
and dopaminergic neurons. The MIA model of SZ causes a decreased number of PVI in the
frontal cortex [150] and decreased forebrain and hippocampal expression of genes involved
in PVI development [217,218]. Reduced PVI transmission due to lower release probability
was confirmed by another rodent MIA study in which the impaired PVI functionality was
shown to lead to abnormalities in gamma band oscillations [219], while the deficits in
social behavior displayed by this model seem to depend on incorrect GABAergic-mediated
ACC function [220]. Moreover, in the hippocampus of the MIA SZ model, reduced GAD67
protein expression per interneuron but no changes in interneuron numbers have been
observed and were accompanied by a lower coherence in all EEG frequencies between PFC
and hippocampus, indicating that local intraneuronal changes might impact interregional
activity in regions important for social cognition [221]. The effect of neuroinflammation on
interneurons was further shown in a study in which activated microglia caused long-lasting
metabolic changes in interneurons derived from induced pluripotent stem cells from SZ
patients that led to decreased mitochondrial function and reduced arborization [222]. These
studies highlight that, like oxidative stress, neuroinflammation might lead to reduced
interneuron functioning in forebrain circuits and likely beyond to subcortical areas. Inter-
estingly, an interplay between neuroinflammation and dopamine has also been suggested.
For example, in an MIA SZ model, reduced numbers and firing rates of ventral tegmental
area dopamine neurons were reported [223]. Another MIA study confirmed reduced firing
rates of vental tegmental area dopamine neurons and additionally reported increased
baseline dopamine levels in the nucleus accumbens but not the PFC [224]. The interplay
between neuroinflammation and dopamine is further highlighted by the fact that dopamine
signaling through the dopamine D1 receptor downregulates inflammasome activity [225].
These last studies make the link with the dopaminergic hypothesis of SZ indicating lower
mesocortical and higher mesolimbic dopaminergic activity [226] and suggest that neu-
roinflammation could cause a dopaminergic imbalance further contributing to improper
local neural network functioning. Therefore, neuroinflammation has detrimental effects
on interneurons in local cortical circuits and on dopaminergic transmission, which might
influence regional neural activity and consequently social behaviors.

In addition to oxidative stress and neuroinflammation, NMDA receptor hypofunction
in SZ also has effects on local neural circuitry. It is thought that NMDA receptor hypofunc-
tion mainly affects cortical interneurons, resulting in a lower excitation rate [227]. All types
of cortical interneurons express NMDA receptors, which confers on them a central role in
social cognition as they determine the activity of local pyramidal neurons that project to
other parts of the brain [228]. NMDA receptor hypofunction in (PV) interneurons leads to
a disinhibition of cortical pyramidal neurons, increasing the output of cortical regions and
potentially inducing glutamate spillover from synapses, which could lead to spine degener-
ation [229]. Indeed, in SZ, a decreased expression of synaptic genes in the post-mortem
frontal cortex and hippocampus has been reported [230]. Similar findings suggest the PFC
from animal models of SZ involving NMDA receptor hypofunction exhibits decreased
synapse numbers [231,232] as well as an excitation/inhibition imbalance [233].

Taken together, oxidative stress, neuroinflammation and NMDA receptor hypofunc-
tion all contribute to abnormalities in PVIs that lead to a disinhibition of local cortical
circuits and potentially to abnormal neural activity in brain regions of crucial importance
for social behavior. In the long term, local disinhibition could lead to excitotoxicity, dam-
aging neural cells and connections between brain regions and ultimately causing the
dysconnectivity that is observed in SZ neuroimaging studies.
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4.2. Oxidative Stress, Neuroinflammation and NMDA Receptor Hypofunction Might Impact
Interregional Connectivity through WM Damage within the Social Brain

Having established that oxidative stress, neuroinflammation and NMDA receptor
hypofunction affect local cortical circuits, we next wondered whether any direct and indirect
effects of these pathological processes could impair connections between regions of the
social brain. As discussed above, a disconnection within the social brain of SZ patients has
consistently been observed, and the connections between brain regions depend largely on
WM bundles. These bundles contain myelinated and unmyelinated axons as well as glial
cells. Redox imbalance causes myelination deficits in the PFC of a rat SZ model [202] as well
as decreased structural integrity of the anterior commissure and fornix WM in mice [234],
suggesting that oxidative stress has a direct effect on myelination and WM tracts. In line
with this, NAC antioxidant treatment can ameliorate myelin abnormalities not only in a
rat model of SZ associated with redox imbalance [202] but also in demyelination mouse
models induced by cuprizone [235] that exhibit SZ-like features including reduced social
interactions [236–239]. Interestingly, NAC also reversed social deficit in these demyelination
models, further highlighting a possible contribution of oxidative stress-induced myelin
defects to SZ social deficits [235]. In fact, in SZ patients, NAC treatment also benefits neural
connections by increasing functional connectivity within the cingulate cortex [240] and by
increasing the structural connectivity of the fornix [241], suggesting that restoring redox
imbalance might benefit myelin and WM bundles important for social cognition in SZ.

Inflammatory markers have also been associated with WM quality measures, notably
that of corpus callosum, both in SZ patients and controls [242]. In SZ, the levels of the
pro-inflammatory cytokine IL-6 were correlated with lower integrity of the genus of the
corpus callosum and the anterior limb of the internal capsule [243]. Similarly, increased
levels of IL-10 pro-inflammatory cytokines were also associated with the disruption of
WM integrity of, amongst other regions, the corpus callosum in SZ patients [244]. IL-6
and C-reactive protein inflammatory markers also correlated with WM integrity in the
inferior longitudinal fasciculus and the inferior fronto-occipital fasciculus in SZ patients
but not controls [245]. As for oxidative stress, neuroinflammation could cause WM defi-
ciency via its effect on oligodendrocytes that are particularly susceptible to inflammatory
processes [246]. In line with this idea, altered WM is recapitulated in MIA rodent models
in which disruptions in WM integrity within the social brain were found to arise from
oligodendrocyte changes (e.g., reduced expression of myelin-related enzyme 2′,3′-cyclic
nucleotide 3′-phosphodiesterase) [247]. Other studies on the MIA SZ model confirmed
the occurrence of lower mRNA expression levels of myelin- and oligodendrocyte-related
genes [248] and reduced myelination [249]. Furthermore, a systematic review concluded
that microglial activation is associated with SZ in white- rather than gray-matter brain
areas [250], while activated microglia containing myelin debris were found in SZ WM along-
side apoptotic oligodendrocytes [12,250]. It therefore seems likely that oxidative stress
and neuroinflammation damage oligodendrocytes and myelin in WM bundles connecting
social brain regions in SZ. The demyelination observed in WM between (among others)
the PFC [12] and the cingulum from SZ patients further strengthens this notion [251]. In
addition, corpus callosum proteomics studies found a dysregulation of proteins involved
in myelination as well as energy metabolism in SZ patients [252]. Interregional connectiv-
ity within the social brain through WM bundles might therefore be directly affected by
oxidative stress and neuroinflammation.

NMDA receptor hypofunction may also play a role in mediating hypomyelination
in the social brain of SZ patients. For instance, in rodent studies, MK-801 exposure was
found to induce demyelination, decrease WM volume as well as the expression of myelin
and oligodendrocyte markers, induce myelin sheath degeneration in the corpus callo-
sum [253,254] and decrease myelin-related gene expression in the AMY [255]. This leads to
the speculation that the disinhibition of local cortical circuits caused by oxidative stress,
neuroinflammation as well as NMDA receptor hypoactivation may lead to an increased
glutamatergic activity of axons in WM bundles connecting social brain regions. In line
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with this idea, increased glutamate release by axons might exert excitotoxic effects on
oligodendrocytes [256], thereby damaging myelination and leading to dysconnectivity in
the long term.

In summary, microscale pathological processes may have both direct and indirect
detrimental effects on the myelin of WM bundles connecting brain regions and cause the
disinhibition of local circuits. Figure 1 illustrates how such pathological processes could
damage WM connecting the main regions of the social brain such as the AMY and PFC.
This highlights the need for a pre-clinical investigation of both macro- and microscale brain
networks instead of singular brain regions in the disruption of social cognition in SZ.
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Figure 1. Schematic representation of the deleterious effects of neurobiological processes involved
in schizophrenia on WM tracts supporting social-cognitive networks; example of altered PFC-AMY
connectivity. Oxidative stress, neuroinflammation and NMDA receptor hypofunction may damage
WM by reducing myelination and inducing oligodendrocyte (OL) death, for instance at the level of
the uncinate fasciculus and cingulum that both allow connections between the social-brain regions
PFC and AMY. This mechanism may also occur within social brain regions (e.g., PFC) and at the
whole social-brain level and may consequently impact social cognition and associated behaviors.

5. Implications for Translational Research and Drug Development
5.1. Promising Pharmacological Candidates for the Treatment of Social-Cognitive Impairments
in SZ

In view of the above, drug developers could consider molecules impacting key pillars
of SZ pathophysiology to target social-cognitive deficits. Among the most-promising
candidates are first and foremost drugs targeting oxidative stress such as NAC that displays
beneficial effects on key aspects of SZ (e.g., connectivity) and several symptoms of SZ
patients including emotional management and social deficits [97–100,240]. In addition,
pharmacological modulators of glutamatergic transmission should be considered. For
example, metabotropic glutamate receptor modulators and compounds modulating the
synaptic concentration of the NMDA receptor co-agonists glycine and D-serine show
promising pre-clinical and clinical outcomes in SZ [177–185]. Aiming at restoring a normal
inhibitory control of local microcircuits could also be of interest for drug developers trying
to treat SZ social dysfunction. For instance, the use of positive allosteric GABA receptor
modulators recovers social deficits as well as other symptoms in animal models of the
disorder [257,258]. Other compounds such as serotonin type-3 receptor blockers may be of
interest because of their potential to ameliorate the excitation/inhibition imbalance though
actions on interneurons and have already shown positive effects on the MMN response
in SZ [259]. Molecules rescuing immune dysregulations and neuroinflammation may be
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considered as well. One example concerns the anti-inflammatory antibiotic minocycline,
whose benefits for social functioning in SZ patients have been described [143–148]. As there
seems to be an important interplay between oxidative stress, neuroinflammation and the
local disinhibition of neural circuits, drug developers could also aim at targeting multiple
aspects of the pathophysiology at the same time. This could be the case for drugs similar to
pregnenolone, a neurosteroid and anti-inflammatory compound that also modulates the
excitation/inhibition imbalance [260] and significantly decreases negative symptoms of
SZ patients [260,261]. As network analysis studies suggest that disconnection within the
social brain is a key determinant affecting social cognition in SZ patients, novel strategies
may involve the improvement of WM integrity impairments by stimulating the survival of
oligodendrocytes and production of myelin, which is a strategy notably employed in drug
development for multiple sclerosis whose pathophysiology shares several similarities with
SZ (e.g., inflammation and myelination deficits as well as cognitive symptomatology; see
reference [262] for a review). However, to the best of our knowledge, there are no reports
yet on the possible amelioration of social deficits in SZ by drugs acting on myelination.
It is nonetheless worth noting that a number of pathways involved in oligodendrocyte
proliferation and differentiation, including one that contains the mammalian target of
rapamycin, have been proposed as attractive targets because of their potential roles in
oligodendrocyte malfunctioning in SZ [11,263]. Therefore, focusing on such molecular
pathways may lead to positive outcomes in SZ drug development. Drug development
studies may also benefit from improved translational approaches, which is discussed next.

5.2. Better Translational Methods Could Improve Drug Development for Social-Cognitive
Impairments in SZ: EEG as an Example

Despite the promising drug candidates described above, there is still no effective
pharmacological treatment available that ameliorates the social-cognitive symptoms of SZ.
This is partly due to the fact that drugs effective in pre-clinical settings often lack efficacy
in clinical trials, which is an outcome that is probably due to the limited translation of
output parameters from pre-clinical to clinical investigations [15–18]. Indeed, the leading
strategy in pre-clinical drug development research over the past decades has been to
evaluate drug candidates targeting SZ symptoms by assessing rodent behavior with limited
translational potential and without clear neurobiological measures [18]. An additional
problem is that most of the behavioral characterizations performed in rodents do not
align with the complex panel of ethological responses and their neurological substrates in
humans [18,264]. This strategy thus leaves a translational gap in treatment development
that is likely responsible for the limited success of SZ drug development. Hence, robust,
quantitative and translational methods to characterize disease neurobiology are needed
for more prolific drug development. An example of a promising translational technique
is EEG. EEG can be used to identify evolutionarily conserved neural activity patterns
in both animals and humans. This technique therefore has an exceptional translational
value [18,265] and could be used to assess the therapeutic efficacy of investigational drugs
on specific neural circuits relevant to SZ pathophysiology. For instance, ASSR and MMN
are EEG-recordable neural activity patterns triggered upon the detection of sensory cues
by subjects and highly similar in humans and rodents [18,265]. Importantly, ASSR and
MMN rely on proper local neural microcircuit functioning and neural pathway integrity
and are therefore considered a measure of local neural network functioning. Correct
NMDA receptor functioning and inhibitory control exerted by PVIs are indeed crucial in
the genesis of ASSR and MMN responses [170,266–269], which is a process disrupted in
SZ and thought to affect social behaviors (see paragraphs above and refs [186,187,208].
In addition, preserved WM integrity appears to be important to elicit a normal MMN
response [270]. The MMN and ASSR EEG-evoked potentials are disrupted in SZ [104,164],
correlate with social symptoms and are therefore proposed as robust translational windows
into impaired social-cognitive processes [101–103,165–167]. The translational potential of
EEG readouts has been confirmed in the context of SZ drug development [164,271], and as a
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result, molecules targeting key aspects of SZ neurobiology (e.g., NAC addressing oxidative
stress or NMDA modulators inducing glutamatergic signaling) generate strong interest
from drug developers. Such molecules have shown beneficial effects in patients on both
electrophysiological measures and social symptoms [97,105,177,181–183,272,273], while a
number of traditional antipsychotics such as clozapine or olanzapine (ineffective against
social-cognitive symptoms) fail to produce similar EEG effects [274–278], highlighting
the need for better translational output measures in drug development. Furthermore,
future drug development studies might consider combining EEG with structural and/or
functional MRI. Adding MRI outcome measures will further enhance the translational value
of such studies, as it will allow assessing both the structure and function of whole-brain
networks in both humans and animals [279]. Hence, the implementation of structural and
functional MRI as well as EEG-based event-related potential analyses in both pre-clinical
and clinical studies represents a promising avenue for the development of medicines
targeting social-cognitive deficits in SZ.

6. Conclusions

Although further investigations are necessary to fully understand the neurobiologi-
cal origins of social-cognitive impairments in SZ, current scientific knowledge indicates
that oxidative stress, neuroinflammation, NMDA receptor hypofunction, as well as their
interplay may contribute. These microscale pathological processes may cause the disin-
hibition of local neural circuits and have both direct and indirect detrimental effects on
myelinated fibers in WM bundles connecting regions of the social brain. This could explain
the dysconnectivity that has been observed in the SZ social brain and why social behavior
is affected in SZ (Figure 2). As such, there is a need for pre-clinical investigation of local
brain microcircuits as well as large-scale neural networks instead of single brain regions
with respect to their role in the disruption of social cognition in SZ. We propose EEG as a
promising translational measure that together with identified drug targets has the potential
to increase the likelihood of success in drug development endeavors to treat social-cognitive
deficits of SZ.
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