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The intention of this Special Issue is to highlight the peculiarities of low-intensity/low-
concentration exposures for organisms and to examine the molecular mechanisms of the
organismal responses.

Low-intensity exposures are the most unexplored field of modern molecular toxicology.
A lack of knowledge on the mechanisms of low-intensive factors causes problems in
(1) the prediction of biological effects, (2) overcoming negative consequences, and (3)
the application of positive results. Therefore, the analysis of low impacts is topical from
both fundamental and applied standpoints, particularly important for ecology, biology,
and medicine.

Studies of the biological effects of low-dose exposures have been conducted since the
1960s [1]. The works of Calabrese (Laboratory of Toxicology, University of Massachusetts
Settlement, USA) are widely known [2,3]. Modern toxicology uses three dose–response
models: linear, threshold, and hormesis. The latter implies an activation of physiological
functions at low-dose exposures and their inhibition at higher doses; the model describes
these effects in terms of ‘adaptive response’ and ‘toxicity’, respectively. It is supposed that
the hormesis model can be applied as a basic one, transforming to the other models under
definite restrictions.

Studies of biological responses to various bioactive compounds and the radiation of
different types under the conditions of low-intensity exposures were encouraged in this
Special Issue. A chemical and biochemical basis for these responses was of interest. The
results presented contribute to understanding the molecular mechanism of “hormetic”
responses to low concentrations of bioactive compounds and low-intensity radioactivity.
One of the findings of this Special Issue is that the time of low-intensity exposure is a critical
parameter in hormetic responses, along with the dose and type of active compounds [4].
Similar conclusions were reported previously by Sthijns and coauthors [5].

The biomedical aspect of low-intensity exposure is the most evident in the papers
published in the Special Issue. For example, antimicrobial, anti-inflammatory, and tissue-
stimulating effects of cold argon atmospheric plasma (CAAP) accelerate its use in various
fields of medicine. Ermakov and coworkers [6] investigated the effects of CAAP of different
radiation doses on mesenchymal stem cells and human osteosarcoma cells. The effects of
low and high doses of CAAP treatment on normal and cancer cells were considered in
terms of hormesis phenomenon. The authors found that the low dose of cold argon plasma
irradiation stimulated the vital processes in stem cells, and they attributed this effect to the
slight generation of reactive oxygen species. Oppositely, in cancer cells, the same doses
lead to the formation of oxidative stress, which was accompanied by cell death. It is hoped
that such a selective effect of cold argon atmospheric plasma can be used in the combined
therapy of oncological diseases.

The work of Hanson and coworkers [7] focuses on hyper-radiosensitivity in cell
lines. It was stated previously that the hyper-radiosensitivity of cells is decreased due
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to preliminary low-dose exposures; the mechanism of this phenomenon was supposed
to be dependent on transforming growth factor β3. The current results contribute to the
understanding of the mechanism of the transforming-growth-factor-β3-mediated removal
of hyper-radiosensitivity.

Kovel [8] and Sushko [9] studied the bioeffects of perspective antioxidants and cat-
alyzers, fullerenols, and water-soluble polyhydroxylated derivatives of fullerene. The
toxicity and antioxidant activity of the fullerenols were under consideration. The authors
demonstrated the advantages of a bacteria-bioluminescence-based bioassay to monitor
and compare the properties of fullerenols; Gd-containing fullerene derivative and “emply”
fullereno were applied as examples. Hormetic effects were found when bacterial cells were
exposed to low-concentration solutions of fullerenols, involving conditions of model oxida-
tive stress. The bioluminescence activation stage (stage II) in the presence of Gd-containing
fullerenol is evident in Figure 1.
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Figure 1. (A) Relative bioluminescence intensity, Irel, at different concentrations of Gd-containing
fullerenol in bacterial suspension (1) and enzymatic system (2). (B) Scheme of hormesis dose–
effect model is presented according to Rozhko et al. [10]. Hormetic stages: I—stress recognition,
II—physiological activation, III—inhibition of vital functions. The figure was reproduced from
Sushko et al. [9].

The advantages of bacterial bioluminescent bioassays were applied while studying the
bioactivity of iron oxide nanoparticles [11] and different types of low-dose radioactivity [4].

Under the conditions of model oxidative stress, the bacterial bioassay revealed proox-
idant activity, with a corresponding decay in the content of reactive oxygen species [11].
The results also indicated that cell membrane processes are responsible for the bioeffects
and bacterial generation of reactive oxygen species.

The review by Kolesnik and coauthors [4] focused on low-dose bioeffects of a se-
ries of alpha and beta emitting radionuclides (americium-241, thorium-232, uranium-
(235 + 238), and tritium), as well as gamma radiation. The applicability of hormetic and
threshold models was discussed for radionuclides and gamma radiation, respectively. De-
pendences of the bacterial luminescence response on the irradiation intensity and exposure
time were reviewed under the conditions of low-dose exposures. Several aspects of molecu-
lar intracellular mechanisms under low-intensity irradiation were analyzed: changes in the
rates of enzyme processes in the bacterial cells, the consumption of intracellular reducers,
the active role of reactive oxygen species, and DNA repairing. The radioprotector’s function
of humic substances is also discussed in the review.
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As an outline, the current Special Issue combined successfully research works which
elucidated the molecular mechanisms of organismal low-dose/low-intensity responses
to different physico-chemical factors, such as cold argon atmospheric plasma, low-dose
radiation, and nanomaterials of different structures.
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