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Abstract: In the present work, synthesis and characterization of 15 ionic liquids (ILs) derived from
quaternary ammonium and carboxylates were carried out in order to proceed to their evaluation
as corrosion inhibitors (CIs) of API X52 steel in 0.5 M HCl. Potentiodynamic tests confirmed the
inhibition efficiency (IE) as a function of the chemical configuration of the anion and cation. It was
observed that the presence of two carboxylic groups in long linear aliphatic chains reduced the IE,
whereas in shorter chains it was increased. Tafel-polarization results revealed the ILs as mixed-type
CIs and that the IE was directly proportional to the CI concentration. The compounds with the best IE
were 2-amine-benzoate of N,N,N-trimethyl-hexadecan-1-ammonium ([THDA+][−AA]), 3-carboxybut-
3-enoate of N,N,N-trimethyl-hexadecan-1-ammonium ([THDA+][−AI]), and dodecanoate of N,N,N-
trimethyl-hexadecan-1-ammonium ([THDA+][−AD]) within the 56–84% interval. Furthermore, it was
found that the ILs obeyed the Langmuir adsorption isotherm model and inhibited the corrosion of
steel through a physicochemical process. Finally, the surface analysis by scanning electron microscopy
(SEM) confirmed less steel damage in the presence of CI due to the inhibitor–metal interaction.

Keywords: ionic liquids; API X52; corrosion inhibitors; hydrochloric acid; inhibition mechanism

1. Introduction

Not only due to its physicochemical properties but also to economic factors and easy
access, carbon steel is widely used in different sectors of the oil-and-gas industry. Despite
displaying good mechanical resistance in the case of different shear-stress sources, this
material is susceptible to suffering corrosion damage when exposed to corrosive media. API
X52 is a type of carbon steel that is employed in the production of pipelines for transporting
oil and gas [1]. At the industrial level, there are different aggressive media for API X52
steel, which have been classified as sweet, sour, and acid, where organic and inorganic
substances, salts, and gases, among other compounds, can be found [2–4]. In this context,
acid media are employed to increase the amount of extracted oil; this technique is known
as stimulation through acidification, where acid solutions ranging from 5 to 28 wt.% of
HCl are injected in order to modify the permeability of the reservoir rock, thus easing the
oil flow [5]. Notwithstanding, the use of such a technique provokes a significant problem
of internal corrosion in oil pipelines due to the presence of HCl [6]. In acid media, the
medium aggressiveness depends on variables such as pH, temperature, flow regime, steel
composition, pressure, etc. [7,8]. For this reason, steel corrosion is a complex process that is
hard to control and understand [9,10].
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Because of the importance of extending the useful life of steel, different methods
against corrosion have been developed [11]. In this context, the synthesis and application of
organic-type corrosion inhibitors (CIs) in different corrosive media is very common due to
their easy use and low cost [12–14]. Notwithstanding, their employment is reduced to polar
electrolytes because of their limited solubility, high volatility, non-biodegradability, and
environment-hazardous features [15]. These disadvantages and present environmental reg-
ulations have promoted the implementation of new Cis known as ionic liquids (Ils), which
have earned a well-deserved place due to their versatile structures, where heteroatoms such
as nitrogen and oxygen define electronic densities and, at the same time, either aliphatic
chains or aromatic rings provide hydrophobic features. Within the large number of possible
combinations, halide-free Ils are specially promising as environmentally friendly Cis due
to their green properties [16]. Among the different Ils, imidazolium-based compounds
have been employed to mitigate the corrosion effects on metallic surfaces in different
processes related to oil, desalination, and acid-cleaning applications [17,18]. In most cases,
halogen-containing anions form part of ILs, and only a few works have reported on the
use of halogen-free ILs, like the one by Chen et al., where compounds with ammonium-
dibutyl-dithiophosphate anions displayed anti-corrosion performance [19,20]. Recently,
ammonium-based ILs have reached the vanguard position thanks to their excellent inhibi-
tion properties, chemical stability, biodegradability, and low-cost production [21–24]. In
general, tertiary amines are used to synthesize ammonium-based ILs, where the length
of cationic aliphatic chains plays a major role in the inhibition process, without discard-
ing the influence of the anionic part. Heteroatoms and π electrons of dimeric quaternary
ammonium salts have been identified as favorable factors for efficient corrosion protec-
tion in strong acid media [25]. For instance, Likhanova et al. showed that the molecular
orientation to metallic surfaces through high-density zones, represented either by organic
(adipate) or inorganic (ethyl-sulfate) anionic structures of ammonium-based ILs, enhanced
the anticorrosion effect (70–80%) [26]. In this context, another research work compared
the aliphatic chains [22,27] of anionic parts formed by different dicarboxylic acids and
found Gibbs-adsorption energy values equal to 37.2, 37.2, and 35.1 kJ mol−1, which were
attributed to mixed adsorption (physicochemical) [21]. As for triethyl-methyl-ammonium
ILs with different anions (either with long aliphatic chains or aromatic rings), they dis-
played anticorrosion activity in acid medium (H2SO4) above 70% [28]. At this point, it
is worth emphasizing that ammonium-based ILs with organic anions are in the trend of
green-chemistry conceptuality to diminish the corrosion effect [29]. Zhu et al. synthesized
tetrabutyl-ammonium ILs with 14 different amino-acid anions and evaluated their corro-
sion resistance, finding that the ILs exhibited remarkable friction reduction and anti-wear
features [30]. In this context, Aslam et al. reported that amino-acid-ester-salt/saccharine-
based ILs worked as powerful green Cis of mild steel in acidic media [31]. From the
different types of Ils that have been employed as Cis, most contain heteroatoms (phos-
phorus, nitrogen, oxygen, and nitrogen), functional groups (–C=N–, –NH2, –OH, –OCH3,
–SH, etc.), and alkyl chains with different lengths. As a whole, this IL chemical configura-
tion will define the hydrophilic and nucleophilic parts and establish the interface energy
barrier due to either physical or chemical adsorption [32]. Based on the aforementioned,
the search for new CIs for the industry is fundamental in order to extend the useful life
of steel alloys employed in the transport and refining of oil. As part of these efforts, the
present work deals with the synthesis, characterization, and evaluation of a series of 15 new
ammonium-derived ILs as CIs of API X52 steel in 0.5 M HCl. The evaluated ILs are different
from conventional ones because they present carboxylates and not halides in their anionic
structure. The present study emphasized the importance of the chemical configuration of
the cation and anion in the ILs, which consisted of different alkyl-chain lengths and func-
tional groups such as amine, ammonium, benzoate, and carboxyl. A corrosion-inhibition
mechanism supported by techniques such as polarization resistance (Rp), potentiodynamic
polarization (PDP), electrochemical impedance spectroscopy (EIS), scanning electron mi-
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croscopy/energy dispersive spectroscopy (SEM/EDS), and DFT theoretical calculations
(B3LYP/6-311G) was proposed.

2. Results and Discussion
2.1. Characterization of ILs

Table 1 shows the ILs that were synthesized to be evaluated as CIs.

Table 1. Structures of the synthesized ILs.

Abbreviation Name Chemical Structure Yield (%)

[THDA+][−MC] Methyl-carbonate of
N,N,N-trimethyl-hexadecan-1-ammonium
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[THDA+][−AB] Butyrate of
N,N,N-trimethyl-hexadecan-1-ammonium
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N,N,N-trihexyl-N-methyl-ammonium
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N,N,N-trihexyl-N-methyl-ammonium
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Prior to the evaluation as CIs, the ILs were characterized by the proton (1H) and car-

bon (13C) nuclear magnetic resonance (NMR) technique by employing a piece of JEOL 

Eclipse-300 equipment, which uses trimethylsilane (TMS) as a standard for the chemical 

displacements (ppm) and deuterated chloroform as solvent at ambient temperature. The 

synthesis of the ILs was confirmed by the FT-IR technique by means of a Nicolet Nexus 

470 FT-IR spectrophotometer in attenuated-total-reflection (ATR) mode. The signals ob-

tained for the studied compounds were the following: 

Methyl-carbonate of N,N,N-trimethyl-hexadecan-1-ammonium ([THDA+][−MC]; 

C21H45NO3; pasty brown dough; 98.7% yield): IR (KBr, cm−1): 3427, 2920, 2851, 2797, 2663, 

1665, 1472, 961, 721. 1H NMR (CDCl3) δH (ppm): 0.88 (t, 3H, CH3), 1.25 (m, 26H, CH2), 1.80 

(d, 2H, CH2), 2.67 (s, 2H, CH2), 3.22 (s, 3H, CH3-O), 4.49 (s, 9H, CH3-N). 13C NMR (CDCl3) 

δH (ppm): 14.04 (CH3), 22.61 (CH2), 23.13 (CH2), 26.75 (CH2), 29.63 (CH2), 31.85 (CH2), 53.33 

(O-CH3), 58.10 (CH3-N), 66.83 (CH2-N), 162.59 (C=O).  

Butyrate of N,N,N-trimethyl-hexadecan-1-ammonium ([THDA+][−AB]; C23H49NO2; 

brown powder; 51.5% yield): IR (KBr, cm−1): 3401, 2929, 1560, 1486, 1417, 966, 717. 1H NMR 

(CDCl3) δH (ppm): 0.89 (m, 6H, CH3), 1.25 (m, 26H, CH2), 1.55 (m, 2H, CH2), 1.68 (s, 2H, 

CH2), 2.12 (t, 2H, CH2), 3.24 (s, 9H, CH3-N), 3.33 (t, 2H, CH2-N). 13C NMR (CDCl3) δH 

(ppm): 14.42 (CH2), 19.91 (CH2), 22.82 (CH2), 23.27 (CH2), 29.85 (CH2), 32.06 (CH2), 40.04 

(CH2), 53.30 (CH3-N), 66.79 (CH2-N), 179.28 (C=O). 

3-Carboxybut-3-enoate of N,N,N-trimethyl-hexadecan-1-ammonium ([THDA+][−AI]; 

C24H47NO4 brown powder; 51.1% yield): IR (KBr, cm−1): 3248, 2918, 1702, 1435, 1216, 915. 
1H NMR (CDCl3) δH (ppm): 0.88 (t, 3H, CH3), 1.26 (m, 26H, CH2), 1.83 (d, 2H, CH2), 2.85 

(s, 2H, CH2), 3.02 (s, 2H, CH2), 3.31 (m, 9H, CH3-N), 5.33 (s, 2H, H2C=C). 13C NMR (CDCl3) 

δH (ppm): 14.09 (CH3), 22.66 (CH2), 29.34 (CH2), 31.90 (CH2), 43.05 (CH2), 53.37 (CH3-N), 

66.92 (CH2-N), 128.35 (C=C), 134.91 (C=C), 168.48 (COOH), 173.18 (COO−).  

3-Carboxy-2,2-dimethylpropanoate of N,N,N-trimethyl-hexadecan-1-ammonium 

([THDA+][−2,2-DSA]; C25H51NO4; brown powder; 54.3% yield): IR (KBr, cm−1): 3100, 2920, 

2848, 2675, 1699, 1432, 1311, 1220, 1141, 933, 627. 1H NMR (CDCl3) δH (ppm): 0.88 (t, 3H, 

CH3), 1.25 (m, 26H, CH2), 1.34 (m, 6H, CH3), 1.81 (d, 2H, CH2) 2.59 (s, 2H, CH2-N), 2.85 (s, 

2H, CH2), 3.25 (s, 9H, CH3-N). 13C NMR (CDCl3) δH (ppm): 14.11 (CH3), 22.68 (CH2), 24.25 

(CH2), 26.59 (CH3), 29.07 (CH2), 29.50 (CH2), 31.91 (CH2), 40.16 (CH2), 44.23 (CH2), 53.35 

(CH3-N), 66.88 (CH2-N), 174.72 (COOH), 181.19 (COO−).  

2-Amine-benzoate of N,N,N-trimethyl-hexadecan-1-ammonium ([THDA+][−AA]; 

C26H48N2O2; brown powder; 52.7% yield): IR (KBr, cm−1): 3473, 3375, 3196, 2920, 1671, 1484, 

1418, 1303, 1243, 917, 751. 1H NMR (CDCl3) δH (ppm): 0.88 (t, 3H, CH3), 1.25 (m, 26H, 

CH2), 1.82 (d, 2H, CH2), 3.0 (m, 2H, CH2), 3.3 (s, 9H, CH3-N), 6.64 (t, 1H, Ar), 6.69 (d, 1H, 

Ar), 6.81 (s, 1H, Ar), 7.28 (t, 2H, Ar-NH2), 7.90 (d,1H, Ar). 13C NMR (CDCl3) δH (ppm): 
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2663, 1665, 1472, 961, 721. 1H NMR (CDCl3) δH (ppm): 0.88 (t, 3H, CH3), 1.25 (m, 26H,
CH2), 1.80 (d, 2H, CH2), 2.67 (s, 2H, CH2), 3.22 (s, 3H, CH3-O), 4.49 (s, 9H, CH3-N). 13C
NMR (CDCl3) δH (ppm): 14.04 (CH3), 22.61 (CH2), 23.13 (CH2), 26.75 (CH2), 29.63 (CH2),
31.85 (CH2), 53.33 (O-CH3), 58.10 (CH3-N), 66.83 (CH2-N), 162.59 (C=O).

Butyrate of N,N,N-trimethyl-hexadecan-1-ammonium ([THDA+][−AB]; C23H49NO2;
brown powder; 51.5% yield): IR (KBr, cm−1): 3401, 2929, 1560, 1486, 1417, 966, 717. 1H
NMR (CDCl3) δH (ppm): 0.89 (m, 6H, CH3), 1.25 (m, 26H, CH2), 1.55 (m, 2H, CH2), 1.68 (s,
2H, CH2), 2.12 (t, 2H, CH2), 3.24 (s, 9H, CH3-N), 3.33 (t, 2H, CH2-N). 13C NMR (CDCl3) δH
(ppm): 14.42 (CH2), 19.91 (CH2), 22.82 (CH2), 23.27 (CH2), 29.85 (CH2), 32.06 (CH2), 40.04
(CH2), 53.30 (CH3-N), 66.79 (CH2-N), 179.28 (C=O).

3-Carboxybut-3-enoate of N,N,N-trimethyl-hexadecan-1-ammonium ([THDA+][−AI];
C24H47NO4 brown powder; 51.1% yield): IR (KBr, cm−1): 3248, 2918, 1702, 1435, 1216, 915.
1H NMR (CDCl3) δH (ppm): 0.88 (t, 3H, CH3), 1.26 (m, 26H, CH2), 1.83 (d, 2H, CH2), 2.85
(s, 2H, CH2), 3.02 (s, 2H, CH2), 3.31 (m, 9H, CH3-N), 5.33 (s, 2H, H2C=C). 13C NMR (CDCl3)
δH (ppm): 14.09 (CH3), 22.66 (CH2), 29.34 (CH2), 31.90 (CH2), 43.05 (CH2), 53.37 (CH3-N),
66.92 (CH2-N), 128.35 (C=C), 134.91 (C=C), 168.48 (COOH), 173.18 (COO−).

3-Carboxy-2,2-dimethylpropanoate of N,N,N-trimethyl-hexadecan-1-ammonium
([THDA+][−2,2-DSA]; C25H51NO4; brown powder; 54.3% yield): IR (KBr, cm−1): 3100,
2920, 2848, 2675, 1699, 1432, 1311, 1220, 1141, 933, 627. 1H NMR (CDCl3) δH (ppm): 0.88 (t,
3H, CH3), 1.25 (m, 26H, CH2), 1.34 (m, 6H, CH3), 1.81 (d, 2H, CH2) 2.59 (s, 2H, CH2-N),
2.85 (s, 2H, CH2), 3.25 (s, 9H, CH3-N). 13C NMR (CDCl3) δH (ppm): 14.11 (CH3), 22.68
(CH2), 24.25 (CH2), 26.59 (CH3), 29.07 (CH2), 29.50 (CH2), 31.91 (CH2), 40.16 (CH2), 44.23
(CH2), 53.35 (CH3-N), 66.88 (CH2-N), 174.72 (COOH), 181.19 (COO−).

2-Amine-benzoate of N,N,N-trimethyl-hexadecan-1-ammonium ([THDA+][−AA];
C26H48N2O2; brown powder; 52.7% yield): IR (KBr, cm−1): 3473, 3375, 3196, 2920, 1671,
1484, 1418, 1303, 1243, 917, 751. 1H NMR (CDCl3) δH (ppm): 0.88 (t, 3H, CH3), 1.25 (m,
26H, CH2), 1.82 (d, 2H, CH2), 3.0 (m, 2H, CH2), 3.3 (s, 9H, CH3-N), 6.64 (t, 1H, Ar), 6.69
(d, 1H, Ar), 6.81 (s, 1H, Ar), 7.28 (t, 2H, Ar-NH2), 7.90 (d,1H, Ar). 13C NMR (CDCl3) δH
(ppm): 14.12 (CH3), 22.68 (CH2), 24.24 (CH2), 26.60 (CH2), 29.71 (CH2), 31.92 (CH2), 53.46
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(CH3-N), 67.04 (CH2-N), 110.07 (C-Ar), 116.35 (C-Ar), 116.83 (C-Ar), 132.03 (C-Ar), 134.78
(C-Ar), 150.92 (C-Ar), 172.61 (C=O).

Hexanoate of N,N,N-trimethy-lhexadecan-1-ammonium ([THDA+][−AH]; C25H53NO2
brown powder; 51.7% yield): IR (KBr, cm−1): 3405, 2933, 2850, 1718, 1461, 1267, 962, 721.
1H NMR (CDCl3) δH (ppm): 0.87 (m, 6H, CH3), 1.25 (m, 30H, CH2), 1.55 (m, 2H, CH2), 1.68
(m, 2H, CH2), 2.12 (t, 2H, CH2), 3.23 (s, 9H, CH3-N), 3.32 (t, 2H, CH2-N). 13C NMR (CDCl3)
δH (ppm): 13.82 (CH3), 22.58 (CH2), 23.11 (CH2), 26.26 (CH2), 29.67 (CH2), 31.95 (CH2),
32.03 (CH2), 37.94 (CH2), 53.13 (CH3-N), 66.64 (CH2-N), 179.70 (C=O).

Pentanoate 5-carboxy of N,N,N-trimethyl-hexadecan-1-ammonium ([THDA+][−AAD];
C25H51NO4; brown powder; 38% yield): IR (KBr, cm−1): 3425, 2919, 1691, 1467, 1282, 966,
719. 1H NMR (CDCl3) δH (ppm): 0.88 (t, 3H, CH3), 1.25 (m, 26H, CH2), 1.29 (m, 2H,
CH2), 1.35 (m, 2H, CH2), 1.74 (m, 2H, CH2), 2.66 (s, 2, CH2), 2.85 (s, 2H, CH2), 3.02 (m, 2H,
CH2-N), 3.37 (s, 9H, CH3-N). 13C NMR (CDCl3) δH (ppm): 14.07 (CH3), 22.64 (CH2), 23.14
(CH2), 24.21 (CH2), 29.08 (CH2), 29.67(CH2), 31,88(CH2), 32.85(CH2), 42.82 (CH3-N), 67.07
(CH2-N), 175.98 (C=O).

Dodecanoate of N,N,N-trimethy-lhexadecan-1-ammonium ([THDA+][−AD]; brown
powder; C31H65NO2; 45.8% yield): IR (KBr, cm−1): 3487, 2851, 1697, 1432, 1217, 910, 729.
1H NMR (CDCl3) δH (ppm): 0.88 (t, 6H, CH3), 1.25 (m, 44H, CH2), 1.61 (m, 2H, CH2), 2.32
(t, 2H, CH2), 2.87 (s, 2H, CH2), 3.37 (s, 9H, CH3-N). 13C NMR (CDCl3) δH (ppm): 14.04
(CH3), 22.63 (CH2), 23.13 (CH2), 24.80 (CH2), 27.93 (CH2), 29.57 (CH2), 31.86 (CH2), 34.17
(CH2), 42.97 (CH3-N), 66.94 (CH2-N), 178.23 (C=O).

Undecanoate 11-carboxy of N,N,N-trimethyl-hexadecan-1-ammonium ([THDA+]
[−A2D];C31H63NO4; brown powder; 42.7% yield): IR (KBr, cm−1): 3442, 2915, 2852, 1697,
1434, 1282, 927, 723. 1H NMR (CDCl3) δH (ppm): 0.86 (t, 3H, CH3), 1.23 (m, 40H, CH2),
1.55 (m, 4H, CH2), 2.21 (t, 4H, CH2), 3.24 (s, 9H, CH3-N), 3.36 (t, 2H, CH2-N). 13C NMR
(CDCl3) δH (ppm): 14.09 (CH3), 22.62 (CH2), 25.63 (CH2), 29.28 (CH2), 31.85 (CH2), 36.03
(CH2), 53.10 (CH3-N), 66.68 (CH2-N), 178.27 (COOH, COO−).

3-Carboxybut-3-enoate of N,N,N-trihexyl-N-methyl-ammonium ([TXMA+][−AI];
C24H47NO4; brown viscous liquid; 96.1% yield): IR (KBr, cm−1): 3423, 3100, 2958, 2861,
1710, 1566, 1466, 1251, 942, 727, 556. 1H NMR (CDCl3) δH (ppm): 0.87 (t, 9H, CH3), 1.30 (m,
18H, CH2), 1.66 (m, 6H, CH2), 3.10 (s, 3H, CH3-N), 3.26 (m, 6H, CH2-N), 3.29 (s, 2H, CH2),
5.34 (s, 1H, C=CH2), 5.92 (s, 1H, C=CH2). 13C NMR (CDCl3) δH (ppm): 13.77 (CH3), 22.29
(CH2), 25.88 (CH2), 31.08 (CH2), 42.93 (CH2), 48.95 (CH3-N), 61.69 (CH2-N), 123.5 (H2C=C),
139.17 (C=CH2), 172.54 (COOH), 174.32 (COO−).

3-Carboxy-2,2-dimethylpropanoate of N,N,N-trihexyl-N-methyl-ammonium ([TXMA+]
[−2,2-DSA]; C25H51NO4; brown viscous liquid; 96% yield): IR (KBr, cm−1): 3432, 2964, 2861,
1713, 1592, 1474, 1304, 1207, 977, 706. 1H NMR (CDCl3) δH (ppm): 0.87 (t, 9H, CH3), 1.20 (t,
6H, CH3), 1.30 (m, 18H, CH2), 1.66 (m, 6H, CH2), 2.47 (s, 2H, CH2), 3.12 (s, 3H, CH3-N),
3.30 (t, 6H, CH2-N), 3.64 (m, 1H, COOH). 13C NMR (CDCl3) δH (ppm): 13.76 (CH3), 22.29
(CH2), 25.89 (CH2), 26.65 (CH3), 31.08 (CH2), 40.91 (CH2), 48.47 (CH3-N), 61.65 (CH2-N),
176.26 (COOH), 181.93 (COO−).

2-Amine-benzoate of N,N,N-trihexyl-N-methyl-ammonium ([TXMA+][−AA];
C26H48N2O2; brown viscous liquid; 95.7% yield): IR (KBr, cm−1): 3408, 2952, 2864, 1610,
1527, 1471, 1374, 1260, 1157, 753. 1H NMR (CDCl3) δH (ppm): 0.87 (t, 9H, CH3), 1.24 (m,
18H, CH2), 1.51 (m, 6H, CH2), 3.09 (s, 3H, CH3-N), 3.10 (t, 6H, CH2-N), 6.55 (m, 2H, Ar),
7.05 (t, 1H, Ar), 7.33 (s, 2H, Ar-NH2), 7.92 (d, 1H, Ar). 13C NMR (CDCl3) δH (ppm): 13.79
(CH3), 18.34 (CH2), 22.32 (CH2), 25.82 (CH2), 31.15 (CH2), 48.61 (CH3-N), 61.33 (CH2-N),
115.69 (C-Ar), 115.99 (C-Ar), 130.58 (C-Ar), 132.14 (C-Ar), 149.37 (Ar-NH2), 173.12 (COO−).

3-Carboxybut-3-enoate of N,N,N-tripentyl-N-methyl-ammonium ([TPMA+][−AI];
C21H41NO4; brown viscous liquid; 81% yield): IR (KBr, cm−1): 3432, 2955, 2870, 1919,
1704, 1574, 1466, 1248, 942, 733, 562. 1H NMR (CDCl3) δH (ppm): 0.89 (t, 9H, CH3), 1.34 (m,
12H, CH2), 1.66 (m, 6H, CH2), 3.09 (m, 3H, CH3-N), 3.26 (m, 6H, CH2-N), 3.28 (s, 2H, CH2),
5.35 (s, 1H, C=CH2), 5.92 (s, 1H, C=CH2). 13C NMR (CDCl3) δH (ppm): 13.70 (CH3), 21.89
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(CH2), 28.24 (CH2), 42.82 (CH2), 48.46 (CH3-N), 61.68 (CH2-N), 123.44 (C=CH2), 139.03
(C=CH2), 172.54 (COOH), 174.36 (COO−).

3-Carboxy-2,2-dimethylpropanoate of N,N,N-tripentyl-N-methyl-ammonium ([TPMA+]
[−2,2-DSA]; C22H45NO4; brown viscous liquid; 85.6% yield): IR (KBr, cm−1): 3432, 3091,
2955, 2867, 1710, 1577, 1251, 942, 736, 544. 1H NMR (CDCl3) δH (ppm): 0.89 (t, 9H, CH3),
1.20 (s, 6H, CH3), 1.34 (m, 12H, CH2), 1.66 (m, 6H, CH2), 3.11 (s, 3H, CH3-N), 3.29 (t, 6H,
CH2-N), 3.64 (m, 2H, CH2). 13C NMR (CDCl3) δH (ppm): 13.69 (CH3), 21.90 (CH2), 26.61
(CH3), 28.25 (CH2), 40.91 (CH2), 47.05 (CH2), 48.46 (CH3-N), 61.63 (CH2-N), 176.32 (COOH),
181.95 (COO−).

2-Amine-benzoate of N,N,N-tripentyl-N-methyl-ammonium ([TPMA+][−AA]; C23H42N2O2;
brown viscous liquid; 98% yield): IR (KBr, cm−1): 3405, 3064, 2952, 2873, 1919, 1616, 1533,
1371, 1262, 859, 753, 659. 1H NMR (CDCl3) δH (ppm): 0.85 (t, 9H, CH3), 1.18 (m, 6H, CH2),
1.26 (m, 6H, CH2), 1.48 (m, 6H, CH2), 2.98 (s, 3H, CH3-N), 3.08 (m, 6H, CH2-N), 6.54 (m, 2H,
Ar), 7.02 (m, 1H, Ar), 7.33 (s, 2, NH2), 7.92 (m, 1H, Ar). 13C NMR (CDCl3) δH (ppm): 13.71
(CH3), 18.44 (CH2), 21.86 (CH2), 28.16 (CH2), 48.49 (CH3-N), 61.28 (CH2-N), 115.55 (C-Ar),
115.93 (C-Ar), 120.66 (C-Ar), 130.56 (C-Ar), 132.15 (C-Ar), 149.45 (Ar-NH2), 172.82 (COO−).

2.2. Rp- and Tafel-Polarization Analysis

Figure 1 shows the polarization-resistance (Rp) and corrosion-current-density (icorr)
behavior of API X52 steel employing the ILs as CIs at 100 ppm in 0.5 M HCl by the Rp-
and Tafel-polarization techniques, respectively. It can be observed that the presence of all
the ILs in the corrosive medium increased the polarization resistance and decreased the
corrosion-current density in the metal–electrolyte interface. The charge-transfer processes
in the presence of ILs were affected by the formation of a protecting film that reduced the
steel-mass loss, which is in good agreement with what has been reported on the evaluation
of other ILs as CIs [13].
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Figure 1. Rp and icorr values of API X52 steel in 0.5 M HCl and ILs at 100 ppm by the Rp- and Tafel-

polarization techniques, respectively. 
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compounds, thus evidencing less protection of the steel surface. These ILs possess pend-

ing groups in their chemical structure that are capable of forming coordinate bonds with 

the metal surface [33]; despite this fact, there was no synergistic effect between their ions 

favoring affinity toward the steel surface, which could be related mainly to the short ali-

phatic chain that promoted a higher degree of inhibitor-covered surface, which displaced 

water molecules. This fact reveals that the cation and anion chemical structures play a 
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Figure 1. Rp and icorr values of API X52 steel in 0.5 M HCl and ILs at 100 ppm by the Rp- and
Tafel-polarization techniques, respectively.

The group of ILs featuring the cation N,N,N-tripentyl-N-methyl-ammonium [TPMA+]
reached the lowest Rp values of 522, 424, and 287 Ω cm2 for [−AI, −2,2-DSA and −AA],
respectively, and accordingly, higher corrosion-current density than the rest of the com-
pounds, thus evidencing less protection of the steel surface. These ILs possess pending
groups in their chemical structure that are capable of forming coordinate bonds with the
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metal surface [33]; despite this fact, there was no synergistic effect between their ions favor-
ing affinity toward the steel surface, which could be related mainly to the short aliphatic
chain that promoted a higher degree of inhibitor-covered surface, which displaced water
molecules. This fact reveals that the cation and anion chemical structures play a major role
during the adsorption mechanism of CIs on the steel active sites in the corrosive medium.

By comparing the group of ILs with cation [TPMA+] with respect to the cation
[TXMA+], the importance of the molecular size of the IL cation becomes evident, for the dif-
ference between both cations is of one carbon atom in their three aliphatic chains, with five
and six carbon atoms, respectively. However, this slight cation difference allowed for the fol-
lowing Rp (Ω cm2) relationships: 684 [TXMA+][−AI] > 522 [TPMA+][−AI], 646 [TXMA+][−2,2-
DSA] > 424 [TPMA+][−2,2-DSA], and 794 [TXMA+][−AA] > 287 [TPMA+][−AA]. These
results indicate that the increase in aliphatic-chain length favors the CI molecule orienta-
tion and adsorption on the steel active sites, giving higher Rp and lower current-density
values, which implies a slowing down of the corrosion rate and a reduction in the resistive
processes in the metal–solution interface. The interaction between [TPMA+] and [TXMA+]
and the API X52 steel surface was limited by the molecular orientation of the hydrophilic
part toward the steel surface. Some research works have confirmed that the length of the
aliphatic chains in the inhibitor structure is an important factor for its IE [21,34].

Furthermore, in the ILs with cation [THDA+], it was observed that the number of
carboxyl groups in the anions positively promoted the CI behavior of these compounds as
follows: For anions with very long aliphatic chains, higher Rp values were obtained when
there was just one carboxylic group, [−AD] > [−A2D]. However, this was not the case for an-
ions with short aliphatic chains, where the presence of two carboxylic groups improved the
Rp response, [−AI] > [−AB] and [−AAD] > [−AH]. The compound [THDA+][−AD] revealed
the importance of the aliphatic chain (12 carbon atoms), whereas the IL [THDA+][−AI] con-
firmed that in short chains, the presence of two carboxyl groups, improves the performance of
the ILs as CIs. According to the structures of the studied ILs, the Rp and icorr behavior is related
to the distribution of the electron density in the molecule structure, mainly in the anions.

Figure 2 shows the Rp and Tafel curves of API X52 steel in 0.5 M HCl at 100 ppm of
some ILs; similar curves were obtained for the rest of the studied compounds. Regarding
the ILs with cation [THDA+], they feature a significant difference with respect to the other
ILs, for they had just a single 16-C-aliphatic chain; this change led to a decrease in the Rp
slopes and the current density of the Tafel curves with respect to the cations [TXMA+] and
[TPMA+], which led to a more efficient blocking of the active sites due to their adsorption
on the steel surface, which promoted better properties as CIs [35]. From this group, the ILs
with anions [−AI] and [−AA] presented outstanding results with the lower-current-density
Tafel curves. However, the IL with the anion [−AA] could be adsorbed more easily on the
steel surface due to the presence of heteroatoms such as nitrogen and oxygen (amine and
carboxyl groups) and molecule double bonds, which could contribute with higher electron
density, and with it, to a higher capacity to interact with the metal surface, thus forming
more stable bonds [36]. The CI properties of these ILs with cation [THDA+] depend mainly
on the anion chemical structure.

Table 2 presents the electrochemical parameters calculated by linear regression of Rp
and linear extrapolation of the Tafel polarization curves of API X52 steel in 0.5 M HCl at
100 ppm of ILs: Rp, corrosion potential (Ecorr), anodic and cathodic Tafel slopes (βa and βc),
and icorr. The inhibition efficiency by Rp (IERp) and Tafel curves (IETafel) of the ILs are also
reported in Table 2, which were calculated with Equations (1) and (2), respectively:

IERp =

(
RpCI − Rp0

RpCI

)
× 100 (1)

IETa f el =

(
i0corr − iCI

corr

i0corr

)
× 100 (2)

where the superindexes 0 and CI represent the absence and presence of inhibitor, respectively.
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Figure 2. Rp and Tafel polarization of API X52 steel in 0.5 M HCl at 100 ppm of ILs with cations 

[TPMA+], [TXMA+], and [THDA+] and anions: (a,b) [−AI], (c,d) [−2,2-DSA], and (e,f) [−AA]. 
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Figure 2. Rp and Tafel polarization of API X52 steel in 0.5 M HCl at 100 ppm of ILs with cations
[TPMA+], [TXMA+], and [THDA+] and anions: (a,b) [−AI], (c,d) [−2,2-DSA], and (e,f) [−AA].

In Table 2, it can be observed that in the presence of ILs the icorr value was lower
than that of the blank. Due to the presence of inhibitor, the redox reactions in the metal–
corrosive-medium interface were affected by the blocking of the active sites by IL molecules
on the steel surface. The displacement of the steel Ecorr in the presence of ILs with respect to
the blank was of −8 mV toward the cathodic zone and of +15 mV toward the anodic zone.
The Ecorr displacement range with inhibitor indicates that the inhibition process occurred
through either a mass-transfer phenomenon in the metal–solution interface or geometrical
blocking. In both cases, the active sites are occupied by IL molecules and the rate of the
redox reactions is affected by the inhibition process [4,37]. This fact confirms the adsorption
of the ILs on the surface of the API X52 steel in both active zones. For this reason, these
new ILs can be classified as mixed-type CIs at the evaluated concentration.
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Table 2. Electrochemical parameters for API X52 steel in 0.5 M HCl at 100 ppm of ILs.

IL Rp
(Ω cm2)

IERp
(%)

Ecorr
(mV)

βa
(mV dec−1)

βc
(mV dec−1)

icorr
(µA cm−2)

IETafel
(%)

Blank 243 ± 9 −478 ± 1 89 ± 1 113 ± 2 82 ± 0.7 -
[THDA+][−MC] 619 ± 33 60.5 ± 4.0 −463 ± 7 106 ± 16 159 ± 13 40 ± 0.1 51.2 ± 0.4
[THDA+][−AB] 442 ± 0 45.1 ± 0 −478 ± 9 112 ± 9 144 ± 19 39 ± 0.4 52.4 ± 0.6
[THDA+][−AI] 1263 ± 26 80.9 ± 0.5 −482 ± 2 99 ± 6 214 ± 8 17 ± 0.8 79.2 ± 1

[THDA+][−2,2-DSA] 1013 ± 27 75.9 ± 1.9 −473 ± 2 98 ± 5 227 ± 3 23 ± 0.4 71.9 ± 0.5
[THDA+][−AA] 1397 ± 36 81.6 ± 2.3 −485 ± 2 81 ± 3 105 ± 8 13 ± 0.6 84.1 ± 0.7
[THDA+][−AH] 630 ± 31 61.4 ± 1.9 −476 ± 8 106 ± 15 137 ± 4 35 ± 0.4 57.3 ± 0.6

[THDA+][−AAD] 962 ± 32 74.7 ± 1.8 −486 ± 3 100 ± 1 223 ± 12 23 ± 0.6 71.9 ± 0.8
[THDA+][−AD] 1203 ± 37 79.8 ± 1.9 −481 ± 0 81 ± 5 231 ± 15 18 ± 0.2 78 ± 0.3

[THDA+][−A2D] 841 ± 29 71.0 ± 1.8 −474 ± 0 93 ± 2 224 ± 3 27 ± 0.1 67.1 ± 0.3
[TXMA+][−AI] 684 ± 39 63.9 ± 6.8 −480 ± 2 84 ± 8 110 ± 21 32 ± 0.5 60.9 ± 0.7

[TXMA+][−2,2-DSA] 646 ± 33 62.1 ± 4.0 −479 ± 4 88 ± 8 125 ± 7 34 ± 0.3 58.5 ± 0.5
[TXMA+][−AA] 794 ± 6 69.4 ± 0.2 −480 ± 3 83 ± 3 117 ± 10 26 ± 0.3 68.2 ± 0.5
[TPMA+][−AI] 522 ± 29 53.1 ± 3.3 −476 ± 6 75 ± 6 126 ± 2 35 ± 0.1 57.3 ± 0.4

[TPMA+][−2,2-DSA] 424 ± 15 38.6 ± 2.5 −477 ± 0 89 ± 16 125 ± 18 52 ± 0.8 36.5 ± 1.1
[TPMA+][−AA] 287 ± 0.7 15.3 ± 0.2 −477 ± 5 86 ± 12 134 ± 19 65 ± 1.4 20.7 ± 1.8

Table 2 shows that from the ILs with cation [THDA+], the compounds that displayed
the lowest efficiencies were those featuring the anions [−MC], [−AB], and [−AH], which
were below 54 ± 3%; the three anions had a short aliphatic-chain length and a single
carboxyl group. As for the [THDA+] compounds with anions [−2,2-DSA], [−AAD], and
[−A2D], the efficiencies were equal to 72, 72, and 68%, respectively; in comparison with
the cation [TXMA+] and anion [−AA], whose efficiency was equal to 68%, the IEs were
very similar, confirming that both ions affected the corrosion-inhibition properties of the
ILs. The highest IE values of 79, 84, and 78% for [THDA+] with [−AI], [−AA], and [−AD],
respectively, are related to the chemical structure of the cation and anion. These ion
combinations in the ILs allowed their adsorption on surface-active sites and the formation
of a physical barrier with nucleophilic and hydrophilic properties capable of repelling
medium aggressive ions (O−2, OH−, and Cl−, among others) that promote the redox
reactions of API X52 steel in 0.5 M HCl [38].

Table 3 shows the electrochemical parameters of the ILs with cation [THDA+] and
anions [−AI], [−AA], and [−AD] at different concentrations. It can be observed that the
icorr values diminished with the increasing concentration of the three evaluated ILs; this
phenomenon is associated with higher availability of the CI molecules in the aqueous
medium, affinity and orientation toward the metallic surface, and their interaction with
corrosion-complex products. These phenomena control the steel redox reactions [39].
Furthermore, the βa and βc values at different CI concentrations do not present a well-
defined trend, and some authors have related this behavior to mixed-type CIs [40]. Likewise,
the Ecorr displacements of the ILs with respect to the blank toward more negative values
confirm the behavior of the compounds as mixed-type CIs with cathodic preference [41].

Figure 3 shows the inhibition-efficiency (IE) behavior as a function of the concentration
of the ILs with cation [THDA+] and anions [−AI], [−AA], and −AD] as CIs of API X52 steel
in 0.5 M HCl. It can be observed that the IE was directly proportional to the concentration;
however, it is clear that at concentrations above 100 ppm, the IE fell slightly. Similar
behavior patterns have been reported for ILs featuring carboxylic groups [33].

Even when the carboxylic groups have a rich electronic density and affinity for the
metallic surface, an increase in the CI concentration (greater than 100 ppm) does not imply
the growth of the EI, since the kinetics of the physicochemical phenomena between the IL
chemical structure and steel surface is limited by the active sites of the metallic surface and
CI geometric arrangement on this surface.
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Table 3. Electrochemical data for [THDA+] and the anions [−AI], [−AA], and [−AD] at different
concentrations.

IL Concentration
(ppm)

Ecorr
(mV)

βa
(mV dec−1)

βc
(mV dec−1)

icorr
(µA/cm−2)

IE
(%)

Blank 0 −478 ± 1 89 ± 1 113 ± 2 82 ± 0.7 -

[THDA+][−AI]

25 −495 ± 1 130 ± 23 253 ± 6 29 ± 0.3 64.6 ± 0.5
50 −499 ± 1 116 ± 3 240 ± 9 27 ± 0.1 67.1 ± 0.3
75 −492 ± 1 102 ± 1 223 ± 3 24 ± 0.2 70.7 ± 0.3

100 −482 ± 2 99 ± 6 214 ± 8 17 ± 0.8 79.2 ± 1
200 −466 ± 7 78 ± 3 193 ± 6 18 ± 0.1 78.0 ± 0.2

[THDA+][−AA]

25 −491 ± 1 83 ± 1 98 ± 1 17 ± 0.2 79.3 ± 0.3
50 −483 ± 5 80 ± 9 115 ± 8 14 ± 0.1 82.9 ± 0.2
75 −483 ± 1 78 ± 2 111 ± 5 13 ± 0.3 84.1 ± 0.4

100 −484 ± 2 81 ± 3 105 ± 8 13 ± 0.6 84.1 ± 0.7
200 −466 ± 7 78 ± 3 112 ± 6 18 ± 0 78 ± 0.2

[THDA+][−AD]

25 −487 ± 1 93 ± 3 178 ± 18 22 ± 0.1 73.1 ± 0.3
50 −489 ± 1 103 ± 3 187 ± 14 21 ± 0 74.4 ± 0.2
75 −482 ± 0 89 ± 1 207 ± 19 19 ± 0.1 76.8 ± 0.2

100 −481 ± 0 81 ± 5 231 ± 15 18 ± 0.2 78 ± 0.3
200 −468 ± 5 76 ± 6 198 ± 8 18 ± 0.6 78 ± 0.8

Int. J. Mol. Sci. 2023, 24, x FOR PEER REVIEW 10 of 22 
 

 

[THDA+][−AA] 

25 −491 ± 1 83 ± 1 98 ± 1 17 ± 0.2 79.3 ± 0.3 

50 −483 ± 5 80 ± 9 115 ± 8 14 ± 0.1 82.9 ± 0.2 

75 −483 ± 1 78 ± 2 111 ± 5 13 ± 0.3 84.1 ± 0.4 

100 −484 ± 2 81 ± 3 105 ± 8 13 ± 0.6 84.1 ± 0.7 

200 −466 ± 7 78 ± 3 112 ± 6 18 ± 0 78 ± 0.2 

[THDA+][−AD] 

25 −487 ± 1 93 ± 3 178 ± 18 22 ± 0.1 73.1 ± 0.3 

50 −489 ± 1 103 ± 3 187 ± 14 21 ± 0 74.4 ± 0.2 

75 −482 ± 0 89 ± 1 207 ± 19 19 ± 0.1 76.8 ± 0.2 

100 −481 ± 0 81 ± 5 231 ± 15 18 ± 0.2 78 ± 0.3 

200 −468 ± 5 76 ± 6 198 ± 8 18 ± 0.6 78 ± 0.8 

Figure 3 shows the inhibition-efficiency (IE) behavior as a function of the concentra-

tion of the ILs with cation [THDA+] and anions [−AI], [−AA], and −AD] as CIs of API X52 

steel in 0.5 M HCl. It can be observed that the IE was directly proportional to the concen-

tration; however, it is clear that at concentrations above 100 ppm, the IE fell slightly. Sim-

ilar behavior patterns have been reported for ILs featuring carboxylic groups [33]. 

0 25 50 75 100 125 150 175 200 225
60

65

70

75

80

85

 I
E

 (
%

)

Concentration (ppm)

 [THDA+][ −AI]

 [THDA+][ −AA]

 [THDA+][ −AD]

 

Figure 3. Corrosion IE behavior for API X52 steel in 0.5 M HCl at different concentrations of ILs with 

cation [THDA+]. 

Even when the carboxylic groups have a rich electronic density and affinity for the 

metallic surface, an increase in the CI concentration (greater than 100 ppm) does not imply 

the growth of the EI, since the kinetics of the physicochemical phenomena between the IL 

chemical structure and steel surface is limited by the active sites of the metallic surface 

and CI geometric arrangement on this surface. 

For the ILs with cation [THDA+] and anions [−AI], [−AA], and [−AD], the IE is a func-

tion of the length of the cation (hexadecyl) aliphatic chain and anion pending groups, 

which provide the nucleophilic and hydrophilic parts [42]. Although the [THDA+][−AD] 

compound has a longer linear chain, its IE was lower than those of [THDA+][−AI and −AA], 

evidencing the importance of the anion chemical configuration during the steel corrosion-

inhibition process. Finally, it can be concluded that two carboxyl groups in short-chain 

anions (2 amino-benzoate) and a very long alkyl chain improved the inhibition properties 

of the ILs with cation [THDA+]. 

2.3. Electrochemical Impedance Spectroscopy (EIS) 

Figure 4a shows the Nyquist diagram obtained from the EIS tests for API X52 steel in 

0.5 M HCl with and without [THDA+][−AA] at different concentrations. The presence of a 

semicircle can be observed, which suggests that the corrosion mechanism was controlled 

by charge transfer [43]. Likewise, all the systems presented capacitive loops with similar 
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cation [THDA+].

For the ILs with cation [THDA+] and anions [−AI], [−AA], and [−AD], the IE is a
function of the length of the cation (hexadecyl) aliphatic chain and anion pending groups,
which provide the nucleophilic and hydrophilic parts [42]. Although the [THDA+][−AD]
compound has a longer linear chain, its IE was lower than those of [THDA+][−AI and
−AA], evidencing the importance of the anion chemical configuration during the steel
corrosion-inhibition process. Finally, it can be concluded that two carboxyl groups in
short-chain anions (2 amino-benzoate) and a very long alkyl chain improved the inhibition
properties of the ILs with cation [THDA+].

2.3. Electrochemical Impedance Spectroscopy (EIS)

Figure 4a shows the Nyquist diagram obtained from the EIS tests for API X52 steel in
0.5 M HCl with and without [THDA+][−AA] at different concentrations. The presence of a
semicircle can be observed, which suggests that the corrosion mechanism was controlled
by charge transfer [43]. Likewise, all the systems presented capacitive loops with similar
shapes, indicating that the addition of different inhibitor concentrations does not modify
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the adsorption mechanism [44]. Furthermore, an in increase in the semicircle size with the
inhibitor concentration was evidenced, suggesting higher protection as a consequence of
the growing resistance to charge transfer due to the formation of a film on the steel surface
in acid medium [41,45].
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Figure 4. Impedance spectra of API X52 steel in 0.5 M HCl in the absence and presence of
[THDA+][−AA] at different concentrations: (a) Nyquist and (b) Bode diagrams.

With respect to the Bode diagram from the impedance module, it can be observed
that at low frequencies, the impedance grew with the CI concentration, which indicates
better protection against corrosion [46], whereas the phase angle increased in the presence
of [THDA+][−AA] due to its adsorption on the steel surface, producing a surface covering
in the metal–medium interface [37,47]. The presence of a single time constant, observed in
the Bode diagram within a frequency interval ranging from 102 to 103 Hz, shows that the
charge-transfer resistance is the phenomenon that prevails in the corrosion process in the
presence of inhibitor [48].

Due to the fact that the Nyquist diagrams exhibited depressed semicircles, which are
related to the roughness and heterogeneity of the metal surface, the experimental data
were fitted by means of an equivalent electrical circuit with one constant phase element
(Figure 5) [49]. The equivalent electrical circuit, known as a Randles circuit, presents one
resistance to the solution (Rs), one resistance to the charge transfer (Rct), and one constant
phase element related to the electrical double layer (CPEdl) [48,49].
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Figure 5. Equivalent electrical circuit of the API X52 steel system in corrosive medium in the presence
of [THDA+][−AA].

The results obtained from fitting the spectra to the circuit are reported in Table 4.
It can be observed that the Rs values displayed a slightly significant variation from 2 to
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17 Ω cm2, which suggests that the ohmic fall of the experimental tests was minimal [37].
The n values indicate the homogeneity of the surface, where values close to 1 refer to a com-
pletely homogeneous surface [48,50]. In this study, n values from 0.86 a 0.9 were obtained,
which suggests non-ideal capacitive behavior that is associated with the heterogeneity
(irregularity) of the steel surface [7].

Table 4. EIS parameters for the corrosion of API X52 steel in 0.5 M HCl in the absence and presence
of [THDA+][−AA].

Concentration Rs
(Ω cm2)

Y
(µΩ−1 sncm−2) n Rct

(Ω cm2) IEEIS

− 17 ± 0.2 53 ± 2.2 0.90 134 ± 3.4 −
25 3 ± 0 31 ± 5.1 0.88 889 ± 7.7 85.0 ± 1.0
50 3 ± 0.1 35 ± 2.7 0.86 1290 ± 15.3 89.7 ± 0.9
75 2 ± 0.1 32 ± 1.3 0.87 1149 ± 37.6 88.4 ± 1.2
100 3 ± 0.1 35 ± 11.9 0.86 1319 ± 88.6 89.9 ± 1.8

As observed in Table 4, Rct was directly proportional to the concentration, which
reveals a diminution of the corrosion rate at high concentrations [51]. The highest Rct value
was 1319 Ω cm2 at 100 ppm of [THDA+][−AA] with respect to that of the blank, which
was 134 Ω cm2, indicating the formation of a protecting film on the steel surface due to the
adsorption of IL capable of protecting the metal from the corrosive medium [52].

The inhibition efficiency by the EIS (IEEIS) technique was calculated by means of
Equation (3) [53]:

IEEIS =

(
Rct − R0

ct
Rct

)
× 100 (3)

where Rct and R0
ct correspond to the charge-transfer resistance with and without CI,

respectively. Table 4 shows a maximal inhibition percentage of 89.9% at 100 ppm of
[THDA+][−AA].

2.4. Adsorption Isotherm

Different studies on the evaluation of CIs for the protection of alloys in corrosive media
have reported that the CI molecules are adsorbed on the steel surface by means of a physical
or chemical phenomenon [35]. In order to understand which kind of adsorption mechanism
is involved, adsorption isotherm models are employed, where the CI surface-coverage
degree (θ) is a function of the affinity that the IL molecules have with the steel surface
through physical- and chemical-adsorption processes [13,54]. The θ values at different
concentrations of the ILs [THDA+][−AI, −AA, and −AD] were calculated (θ = IE/100) from
the data of the Rp and Tafel techniques and fitted with the Frumkin, Temkin, and Langmuir
adsorption isotherm models [35,55]. The best fit was obtained with the Langmuir isotherm,
expressed by Equation (4):

C
θ
=

1
Kads

+ C (4)

where C is the IL concentration and Kads is the adsorption equilibrium constant. The Kads
values were obtained by plotting C/θ vs. C, as shown in Figure 6, producing a good fit
of the experimental data with a correlation coefficient (R2) close to unity. The obtained
Kads values were 131.8, 179.9, and 34.6 M−1 for the ILs [THDA+][−AD, −AA, and −AI],
respectively. These values confirm the spontaneous adsorption of the IL molecules on the
metallic surface [56].
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Figure 6. Langmuir adsorption isotherm for API X52 steel in 0.5 M HCl with ILs.

Kads is associated with the standard Gibbs free energy of adsorption (∆G0
ads), expressed

in Equation (5), which is a thermodynamic parameter that is frequently employed to elicit
the interaction type between a CI and metallic surface [57]:

∆G0
ads = −RT ln(55.5 × Kads) (5)

where R is the universal gas constant and T is the absolute temperature (298.15 K). The
∆G0

ads values obtained for the ILs [THDA+][−AD, −AI, and −AA] were −29.2, −26.5, and
−29.9 kJ mol−1, respectively. The negative ∆G0

ads values are related to spontaneous-
adsorption processes between the IL molecules and metallic surface [1]. It has been
widely reported that ∆G0

ads values between −40 kJ mol−1 and −20 kJ mol−1 imply a
physicochemical-adsorption process. The anion in these ILs features a carboxylic group
with rich electron density, and for this reason, they can work as active centers that make
possible the adsorption on a steel surface [58]. In addition, their π electrons and free
electrons of the oxygen atoms can form stable chemical bonds [27]. Notwithstanding, the
additional combination of pending groups such as -NH2 and aromatic rings, like in the case
of the IL [THDA+][−AA], can contribute to electron-density synergy and to the formation of
π-type coordination bonds with the metallic surface [12]. Furthermore, thanks to a suitable
orientation and position of the carboxyl group, a physical-adsorption process can occur
through Van der Waals electrostatic-attraction forces [27,58].

2.5. Surface-Morphology Analysis

To confirm the protection of API X52 steel in 0.5 M HCl by the ILs evaluated as CIs,
SEM-EDS surface analyses were carried out. The micrograph in Figure 7a corresponds
to the steel surface in the absence of IL, where uniform corrosion damage and irregular
topography can be observed; the O and Cl EDS signals were also higher than those in
Figure 7b,c, which reveals the steel oxidation through medium aggressive ions (O−2, OH−

and Cl−) that provoke the formation of corrosion products such as oxyhydroxides, iron
oxides, and iron chlorides. Figure 7b,c correspond to steel protected with 100 ppm of the ILs
[THDA+][−AA and −AD], respectively. In both micrographs, a regular topography with a
slight presence of corrosion products can be observed. The protection of the metallic surface
is evident due to the blocking of the active sites and displacement of water molecules by
the adsorption of IL molecules on the steel surface, thus reducing the corrosion rate.
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(a) without IL and in the presence of (b) [THDA+][−AA] and (c) [THDA+][−AD].

2.6. Computer-Simulation Analysis

The quantum chemical calculations of the ILs with the best IE helped better understand
the adsorption mechanism through analysis of the reactive sites in each optimized structure,
the energy of the molecular orbitals, and other quantum parameters. The inhibiting
behavior of the ILs was studied by employing MEP charge distribution and the energy
values of the highest occupied molecular orbital (EHOMO) and the lowest unoccupied
molecular orbital (ELUMO).

Table 5 shows the optimized structures and molecular-electrostatic-potential (MEP)
map of the selected ILs. The structures of the IL anions presented characteristic double
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bonds (-COO− and -COOH) with resonance, as obtained in other theoretical studies of
similar structures based on different carboxylic acids, benzene rings, and/or combina-
tions [59,60]. In the case of [−AA], it displayed a “flat” benzene ring due to the presence of
two functional groups, [-COO− and -NH2] [59]. For [−AI], the carboxylic groups yielded
similar conformations to those described for some acids comparable to those employed
during the synthesis [61]. As for the anion [−AD], the alkyl chain presented the linear-
conformation characteristic of C > 10 chains [62,63]. In the case of cations, the alkyl chains
showed the common conformation of ammonium groups that has been reported in other
studies [63–65]. Regarding the interactions, the -COO− bonds in the anions oriented them-
selves preferably toward the front of the cation methyl groups, as has been found for other
anionic species interacting with alkylammonium structures [64,66,67].

Table 5. Optimized structures and molecular-electrostatic-potential (MEP) mapping of the ILs
obtained at B3LYP/6-311G level in aqueous medium.

IL Optimized Structure MEP

[THDA+][−AA]
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chains, and particularly in [−AD].

The data obtained from the MEP can be complemented by the analysis of molecular
orbitals. Since HOMO is the external occupied orbital, it participates as an electron donor
due to the presence of elements such as oxygen, which has a free electron pair and is, in
general, located at the anion, which was the case of the three ILs analyzed in this work
(Table 6). On the other hand, LUMO is the empty internal orbital that works as electron
acceptor and is, in most cases, found in ammonium groups and the first adjacent carbon
atoms [63]; however, in the particular case of [−AA], it was located in the same group
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Table 6. Molecular orbitals of the ILs obtained at the B3LYP/6-311G level in aqueous medium.

IL HOMO LUMO
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Table 7 shows the quantum parameters obtained for the IL optimized structures. As
for the molecule donor–acceptor activity, it was estimated by means of the energy difference
between HOMO and LUMO, which is referred to as the energy gap (∆GL-H):

∆GL−H = ELUMO − EHOMO (6)

Table 7. IL quantum parameters at the B3LYP/6-311G level in aqueous medium.

IL EHOMO
(eV)

ELUMO
(eV)

∆GL-H
(eV)

µ
(D)

[THDA+][−AA] −8.67 −5.37 3.31 15.39
[THDA+][−AI] −9.96 −5.51 4.45 14.33
[THDA+][−AD] −10.10 −3.63 6.46 14.37

According to the literature, low ∆GL-H values suggest higher donor–acceptor activity.
Based on the values shown in Table 7, ∆GL-H displayed the following trend based on the
anion: [−AA] < [−AI] < [−AD]. Such behavior is related to the number of heteroatoms and
the anion complexity. The previous results obtained with respect to the ∆GL-H values are
directly associated with the IE, for a low ∆GL-H value implies higher adsorption capacity of
a molecule on a steel surface [63].

On the other hand, the highest values of the dipole moment (µ) displayed by the three
ILs, in contrast with that of water (1.85 D), are associated with a higher tendency to replace
water molecules adsorbed on a steel surface by means of dipole–dipole interactions [63,69].

2.7. Inhibition Mechanism

An inhibition mechanism occurring between the ILs and the metallic surface was
proposed to explain the protection action (Figure 8). It should be noted that steel-oxidation
products, salts, and molecular hydrogen were formed at the anodic and cathodic centers
during the normal corrosion process. The situation changed with the presence of ILs.
Probably, the anodic centers of the steel surface interacted with the functional groups of the
anionic part of the ILs, where specifically, the carboxylic groups formed either weak bonds
or were exchanged with hydroxyl, chlorine, or oxygen ions present in the aqueous solution.
At the same time, the cationic part succeeded in forming a precipitation complex with
steel-oxidation products, helping diminish the active centers and mitigate the corrosion
process. The characteristics of the IL ions that improve their properties for inhibiting metal
corrosion are the following: (i) very long aliphatic chains in both anions and cations, (ii) the
presence of two carboxyl groups in the anion, and (iii) heteroatoms such as nitrogen and
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oxygen present in the amine and carboxyl functional groups and double molecular bonds
that increase the electron density in the ions, thus forming more stable bonds. Based on
the points mentioned above, the synergistic effect exerted by ammonium cations with long
aliphatic chains and carboxyl groups in the anionic part of the obtained ILs produced good
inhibition results.
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Figure 8. Inhibition mechanism carried out by the ILs evaluated as CIs of API X52 steel in 0.5 M HCl.

3. Materials and Methods
3.1. Synthesis of ILs

For the synthesis of the ILs, analytic-grade reagents with purity above 98%
(Sigma-Aldrich, CDMX, Mexico) were used. The ILs were divided into 3 main groups based
on the base tertiary amine: dimethyl hexadecyl amine, trihexyl-amine, and tripentyl-amine.
The synthesis took place in two stages: (a) A trialkylammonium-methylcarbonate-derived
IL was produced by the reaction between a tertiary amine and dimethyl carbonate with a
1:2 molar ratio using methanol as the reaction medium in a Parr ® 4848 reactor at 160 ◦C for
6 h, and (b) the exchange of the methylcarbonate anion for any of the following carboxylic
acids was carried out: 2,2-dimethylsuccinic acid (2,2-DSA), anthranilic acid (AA), hexanoic
acid (AH), butyric acid (AB), itaconic acid (AI), dodecanoic acid (AD), dodecanedioic acid
(A2D), or adipic acid (AAD). For this purpose, equimolar quantities of the methylcarbonate
IL and corresponding acid were stirred using 40 mL of methanol as reaction medium at
40 ◦C for 30 min. Finally, methanol was removed under vacuum. The synthesis procedure
was followed as in previous works [70].

3.2. Materials and Test Solutions

Analytic-grade hydrochloric acid and deionized water were employed to prepare
the corrosive medium (0.5 M HCl). Initially, all the ILs were evaluated at a concentration
of 100 ppm. Afterward, the compounds with the best IE were further evaluated at 25,
50, 75, and 200 ppm. The selected metallic material was API X52 steel. Prior to each
electrochemical test, the metal surface was abraded with SiC emery paper No. 600-1200,
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followed by a cleaning and drying treatment [71]. In addition, the metal samples used in
the SEM surface analyses were polished with 0.05 µm alumina to obtain a mirror-finish
surface. The morphology of the surface with and without CI was analyzed using a JEOL-
JSM-6300 microscope.

3.3. Electrochemical Techniques

A conventional glass cell was used in the electrochemical tests. This cell consisted of
three electrodes: (a) a working electrode (API X52 steel) with a working area of 0.289 cm2,
(b) a reference electrode (Ag/AgCl) placed within a Luggin capillary to reduce the ohmic
drop, and (c) a counter electrode (high purity platinum, 99.9%). The performed electro-
chemical tests were Rp and Tafel, both from the open circuit potential (EOCP) obtained after
15 min. For Rp [72], the potential interval ranged from −25 mV to +25 mV vs. EOCP, and
for Tafel [73], the interval ranged from −250 mV to +250 mV vs. EOCP, with both tests at a
scanning rate of 0.166 mV/s. All the potentiodynamic tests were carried out in triplicate
at 298 K (25 ◦C) in an aerated solution in a potentiostat/galvanostat model PGSTAT302N
and employing the software NOVA 2.1.4. EIS tests were carried out at steady state at room
temperature with a frequency range of 100 kHz to 10 mHz using a 5 mV sinusoidal signal
once the EOCP was stabilized [74].

3.4. DFT Calculations

The inhibitory behavior of ILs was supported by quantum calculations. The three
ILs with the best inhibitory behavior were structurally optimized by checking the optimal
position without symmetry restriction and in the singlet state (M = 1). The computational
calculations were developed under the density-functional theory (DFT) using the Gaussian
09W [75] software based on the B3LYP/6-311G level of the theory. Gauss view v6.0 was
used for visualization and generation of input files. When obtaining the optimal structure,
the molecular orbitals (MOs) and the dipole moment (µ) of each IL were analyzed.

4. Conclusions

The electrochemical results confirmed the importance of the chemical structure of the ILs
and their role as mixed-type CIs. The obtained ∆Gads values suggested a physicochemical-
adsorption process on the steel active sites, which diminished the damage of the steel surface.

The cation chemical configuration played a major role in the properties of the ILs
evaluated as CIs, obtaining the following cation-based IE order relationship: [THDA+] >
[TXMA+] > [TPMA+]. It became evident that the length of the aliphatic chain was a relevant
factor in the inhibition of the corrosion of API X52 steel in 0.5 M HCl.

The carboxyl group and the size of the anions were also important variables for good
IE: two carboxyl groups in a short linear structure and just a single carboxyl group in longer
linear structures improved the inhibiting properties of the ILs as CIs.

The best IE results were displayed by the ILs [THDA+][−AA > −AI > −AD] because
the anions, in addition to a carboxyl group, featured two amino-benzoate groups, which
represented an additional carboxyl group and a very long linear alkyl chain. These features
favored the interaction with the steel surface by forming chemical-type coordinate bonds.
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