
Citation: Colombage, R.; Singh, M.B.;

Bhalla, P.L. Melatonin and Abiotic

Stress Tolerance in Crop Plants. Int. J.

Mol. Sci. 2023, 24, 7447. https://

doi.org/10.3390/ijms24087447

Academic Editor: Hunseung Kang

Received: 14 March 2023

Revised: 6 April 2023

Accepted: 15 April 2023

Published: 18 April 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

 International Journal of 

Molecular Sciences

Review

Melatonin and Abiotic Stress Tolerance in Crop Plants
Roshira Colombage , Mohan B. Singh and Prem L. Bhalla *

Plant Molecular Biology and Biotechnology Laboratory, Faculty of Science, The University of Melbourne,
Parkville, Melbourne, VIC 3010, Australia; rcolombage@student.unimelb.edu.au (R.C.);
mohan@unimelb.edu.au (M.B.S.)
* Correspondence: premlb@unimelb.edu.au

Abstract: Increasing food demand by the growing human population and declining crop productivity
due to climate change affect global food security. To meet the challenges, developing improved crops
that can tolerate abiotic stresses is a priority. Melatonin in plants, also known as phytomelatonin, is
an active component of the various cellular mechanisms that alleviates oxidative damage in plants,
hence supporting the plant to survive abiotic stress conditions. Exogenous melatonin strengthens this
defence mechanism by enhancing the detoxification of reactive by-products, promoting physiological
activities, and upregulating stress-responsive genes to alleviate damage during abiotic stress. In
addition to its well-known antioxidant activity, melatonin protects against abiotic stress by regulating
plant hormones, activating ER stress-responsive genes, and increasing protein homoeostasis, heat
shock transcription factors and heat shock proteins. Under abiotic stress, melatonin enhances the
unfolded protein response, endoplasmic reticulum-associated protein degradation, and autophagy,
which ultimately protect cells from programmed cell death and promotes cell repair resulting in
increased plant survival.
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1. Introduction

Climate change is adversely affecting global agricultural productivity. Rapid and/or
frequent changes in temperature and rainfall patterns result in heat waves, cold waves,
floods, and drought conditions. Based on the 2007 FAO report, single or multiple stress
conditions are encountered on 96.5% of the global cultivated lands [1]. Further, the predic-
tions that global climate change will accelerate sharply over the next decade will result in a
severe increase in abiotic stress-induced crop yield reduction in the near future [2].

Developing strategies to reduce crop damage due to abiotic stresses caused by climate
change is imperative [3]. Developing genetically modified stress-tolerant plants, using
microorganisms, and the chemical pre-treatments of seeds are some approaches being
developed to enhance crop plants’ tolerance to abiotic stress.

Abiotic stress is associated with the induction of oxidative stress. Extreme and/or fre-
quent abiotic stress conditions disturb cellular redox homeostasis, creating high oxidative
stress levels, which can cause irreversible damage to the plant [4,5]. Reactive oxygen species
(ROS), such as hydrogen peroxide, superoxide anions, hydroxyl radicals, and singlet and
triplet oxygen, are by-products of plant cellular metabolism. As the excessive accumulation
of ROS is toxic to the cell, there are in-built enzymatic and non-enzymatic scavenging mech-
anisms for ROS detoxification in plants. The antioxidant enzyme system includes enzymes
such as superoxide dismutase, guaiacol peroxidase, catalase, ascorbate peroxidase, thiore-
doxins, peroxiredoxins, glutathione peroxidase, and glutathione reductase. Non-enzymatic
defensive mechanisms utilise ascorbic acid, glutathione, vitamin E, and flavonoids [6].
When the rate of ROS generation is higher than detoxification, its accumulation in the
cell leads to oxidative stress. Exposure to abiotic stress conditions leads to the elevation
of reactive oxygen species production. ROS participate in signal transduction in minute
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quantities, help the plant adjust its metabolism for proper stress response, and support
seed germination, photosynthesis, flowering, and delay senescence [7,8]. However, abiotic
stress conditions disturb the balance between ROS production and detoxification. Cellular
ROS accumulation beyond a threshold level triggers oxidative stress resulting in membrane
lipid peroxidation and generating malondialdehyde, electrolyte leakage, and, ultimately,
programmed cell death [9,10]. Oxidative DNA damage is another consequence of cellular
ROS accumulation. This damage is caused by DNA base modification and strand breaks
which change the coding ability and cellular processes [11]. Oxidative stress-induced
damage and the destruction of cellular components and genetic material lead to retarded
plant growth, development, reproduction, and yield loss.

Accumulated evidence reveals that oxidative stress is one of the primary causes of
abiotic stress-induced damage in plant growth, development, and reproduction [5,7,12–15].
Sessile plants cannot avoid environmental stress; thus, their defensive mechanisms depend
on adjusting their metabolism to survive adverse conditions. These protective mechanisms
include the production of the chemical melatonin, which supports the cell in neutralizing
ROS by acting as a free oxygen radical scavenger and enhancing the other existing enzy-
matic and non-enzymatic antioxidant activities, increasing the abiotic stress tolerance [16].
Melatonin, a natural product in plants and animals, has emerged as a novel plant growth
regulator. Applying melatonin in crop plants can potentially increase food production.
Its effect may be related to increased antioxidant activity, photosynthetic efficiency, and
adaptability to environmental stress conditions. A recent study showed melatonin applica-
tion increases the crop yield by 20% under environmental stress conditions and 18% under
drought stress conditions alone. Furthermore, the photosynthetic rate of melatonin-treated
plants shows an increase of 44% under drought, 42% under salt, and 48% under cold stress
conditions, which ultimately translates into yield [17].

Seed priming with melatonin has been used as an effective method to increase the
yield of corn, mung bean, and cucumber under organic farming without fertilizer [18]. In
rice, melatonin application could enhance the genes related to sucrose transporter and
nitrogen uptake under a 15% reduction in nitrogen application [19]. Accordingly, exogenous
melatonin application is a promising approach to minimising the use of fertilisers in
conventional and organic farming. Soybean is a major oil crop with high economic value.
Abiotic stress during the seedling and seed-filling stage reduces the sustainability of
soybean production. Melatonin application successfully obtains higher soybean yield with
improved fatty acid contents under drought and salt stress conditions [20,21]. Similarly, in
maize, seed priming with melatonin results in greater yield and better salt tolerance [22,23].

This review discusses the involvement of melatonin and phytomelatonin in stress
tolerance and successful approaches in using exogenous melatonin to minimise abiotic
stress-induced damage in crop plants at different stages of plant development. Furthermore,
the possible involvement of melatonin in the ER stress response and a potential mechanism
that could explain the increased protein homeostasis promoted by melatonin under abiotic
stress conditions are also discussed.

2. What Is Melatonin?

In the early 1900s, cow pineal gland extract that could lighten tadpole skin was
discovered. Forty years later, the active compound which causes this skin-lightening effect
was isolated and the compound was named melatonin because it can aggregate the melanin
pigments in frogs’ melanocytes [24]. N-acetyl-5-methoxytryptamine, commonly known as
melatonin, is an indolamine with the chemical formula of C13H16N2O2 (Figure 1).

Melatonin was considered present only in animals and humans for a long time. Mela-
tonin was first discovered in plants in 1995 (Dubbels et al., 1995), reporting the presence
of melatonin in nine plants in different concentrations [25]. The fact that potato does not
contain melatonin suggests that exceptions are possible [26]. Considering the importance
and endogenous presence of melatonin in plants, the term “Phytomelatonin” was coined
in 2004 [27,28].
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Melatonin in photosynthetic prokaryotes suggests that melatonin has been present
in living organisms since the beginning of life [29]. According to endosymbiotic theory,
eukaryotic plant cells evolved from an archaeal cell engulfing photosynthetic cyanobacteria;
which later became chloroplast, and proteobacteria capable of aerobic respiration; which
later became mitochondria [30]. Because the location of melatonin biosynthesis in plants
is chloroplasts and mitochondria, it has been proposed that plants gained their ability to
synthesise melatonin from endosymbionts [31].

2.1. Melatonin Biosynthesis in Plants

In animals, melatonin is synthesised in the pineal gland. However, in plants, there is
no specific location for melatonin synthesis; therefore, varying levels of melatonin have
been detected in different organs of plants [32]. While flowers are reported to have the
highest amount of melatonin, fruits and roots have the lowest levels [33]. Even though
the melatonin synthesis pathway in plants is slightly different from animals, both plants
and animals use tryptophan as the precursor for melatonin biosynthesis. For melatonin
synthesis, While plants use tryptophan synthesised through the shikimic acid pathway as a
precursor, animals obtain tryptophan through dietary sources [34].

There are two known pathways in plant melatonin synthesis (Figure 2). Pathway
I (Tryptophan→Tryptamine→Seratonin→N-acetylseratonin→Melatonin) is most com-
mon under usual conditions, while Pathway II (Tryptophan→Tryptamine→Seratonin→5-
methylhydroxytryptamine→Melatonin) is believed to become prominent during stress
conditions [33,35]. There are six enzymes involved in melatonin biosynthesis in plants: Tryp-
tophan decarboxylase (TDC), Tryptophan Dihydroxylase (TPH), Tryptamine 5-hydroxylase
(T5H), Serotonin N-acetyltransferase (SNAT), acetylserotonin O-methyltransferase (ASMT),
and Caffeic acid 3-O-methyltransferase (COMT) [36].
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The enzymes for the respective steps are TDC, tryptophan decarboxylase; TPH, Trypto-
phan Dihydroxylase; T5H, tryptamine 5-hydroxylase; SNAT, serotonin N-acetyltransferase;
ASMT, acetylserotonin O-methyltransferase; COMT, caffeic acid 3-O-methyltransferase.
Pathway I shows greater activity under optimum conditions while Pathway II becomes
prominent under stress.

2.2. Functions of Melatonin

Melatonin is a scavenger for reactive oxygen species (ROS) produced during metabolism
in bacteria. In plants, the principal function of melatonin as a ROS scavenger remains
conserved with added roles in plant growth, circadian rhythm, and stress response [29].
Considering the chemical similarity in structure and common precursor with indole acetic
acid and functions in seed germination, root and shoot growth, fruiting, and senescence, it
was predicted that melatonin could also function as a phytohormone [37]. The theory was
confirmed by identifying the first melatonin receptor CAND2/PTMR1, which regulates the
stomatal closure in Arabidopsis [38]. Recent studies have revealed in addition to its general
functions in redox homeostasis, plant growth, and development, melatonin also regulates
plant hormone levels and the expression of stress-responsive genes under unfavourable
conditions. [39,40]. However, the exact mechanism of this multifunctional molecule in plant
abiotic stress response remains to be discovered.

2.3. Endogenous Melatonin in Abiotic Stress

When the same species of plants grown in different environmental conditions exhib-
ited a difference in their melatonin content, it was realised that melatonin has a role in
responding to environmental changes. Further research showed that plants increase their
endogenous melatonin levels in response to abiotic stress [41]. These elevated melatonin
levels likely help the plant cope with external stress and adjust its metabolism to survive
through it.

Melatonin directly improves plant tolerance towards oxidative stress by scavenging
ROS, inducing existing enzymatic and non-enzymatic antioxidant activities [16,42]; indi-
rectly, by promoting physiological functions, root development, shoot development, and
activating seed germination in association with plant growth regulators [39] and photosyn-
thesis [43]. Melatonin also decreases membrane lipid peroxidation during oxidative stress,
resulting in low malondialdehyde levels and electronic leakage in plant cells, protecting the
cell from programmed cell death [44]. The combined effect of all the protective metabolic al-
terations mediated by elevated melatonin levels reduces the abiotic stress-induced damage
to the plant (Figure 3).

Abiotic stress enhances the accumulation of ROS, which creates oxidative stress. Ox-
idative stress damages plant cells by membrane lipid peroxidation and cell death, resulting
in retarded growth, reduced yield, and/or plant death. Melatonin alleviates oxidative
stress in plants and improves physiology resulting in enhanced abiotic stress tolerance.

To confirm that phytomelatonin mediated enhancement of stress tolerance in plants,
scientists exposed transgenic plants that either overexpress or silence gene encoding en-
zymes involved in the final step of phytomelatonin biosynthesis to different stresses. These
studies revealed that overexpressing phytomelatonin biosynthesis genes enhances abiotic
stress tolerance. Melatonin-deficient plants created through silencing phytomelatonin
biosynthesis genes show enhanced susceptibility toward abiotic stress (Table 1).
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Table 1. A summary of the transgenic approaches to modulate the phytomelatonin biosynthesis
pathway in abiotic stress tolerance. COMT—caffeic acid 3-O-methyltransferase, SNAT—serotonin
N-acetyltransferase, ASMT—acetylserotonin O-methyltransferase.

Gene Transgenic Plant Transgenic Approach Stress Results Reference

COMT

Arabidopsis
(Arabidopsis thaliana) and

Watermelon (Citrullus
lanatus)

Overexpression—COMT gene
(CICOMT from watermelon)

driven by 35S promoter

Salt
Significant increase in melatonin content.

Increased survival rate under salt, freeze and mannitol-induced
drought stress.

[45]
Cold

Drought

Tomato
(Solanum lycopersicum)

Overexpression—SICOMT1
driven by 35S promoter. Salt

Elevated melatonin levels.
Reduced drooping and wilting of leaves.

Reduced superoxide and hydrogen peroxide levels.
Increased proline levels.

[46]

Arabidopsis
(Arabidopsis thaliana)

Overexpression—COMT
(TaCOMT from wheat) driven

by 35S promoter
Drought Elevated melatonin levels.

Increased fresh weight, lateral root number, and total root length. [47]

SNAT

Tomato
(Solanum lycopersicum)

Overexpression—SlSNAT
gene driven by 35S promoter. Heat

Elevated melatonin levels.
Increased chlorophyll fluorescence (Fv/Fm).

Reduced wilting after 1 day recovery.
[48]

Arabidopsis
(Arabidopsis thaliana)

Overexpression—SNAT gene
(MsSNAT from alfalfa) driven

by 35S promoter.
Cadmium

Slightly elevated melatonin levels.
Reduced root length decline and lowered cadmium deposition

in roots.
Reduced levels of miR398, indicating low oxidative stress

[49]

Overexpression—SNAT gene
(VvSNAT1 from grapes)
driven by 35S promoter.

Salt Significantly elevated melatonin content.
Improved growth potential and greener leaves. [50]

Overexpression—AtSNAT
gene
And

SNAT mutant (SALK_032239)

UVB

Overexpression:
Early and increased response in positive UV-B signalling

regulatory genes.
SALK_032239:

Slow response under high and prolonged UVB treatment.

[51]

Cucumber
(Cucumis sativus)

Overexpression—CsSNAT
And

Silencing—CsSNAT (RNAi)
Salt

Overexpression:
Elevated melatonin content

Less ROS accumulation and upregulation of antioxidant enzymes.
Increased maximum photochemical efficiency of PSII (Fv/Fm).

Silencing:
Lowered melatonin content.

Increased ROS accumulation and decreased antioxidant
enzyme activity.

Lowered maximum photochemical efficiency of PSII (Fv/Fm).

[52]

ASMT

Tomato
(Solanum lycopersicum)

Overexpression—SlASMT
gene driven by 35S Heat

Reduced wilting
Reduced electrolyte leakage.

Improved photosynthesis (Fv/Fm).
Decreased insoluble and ubiquitinated proteins.

Enhanced expression of heat shock protein genes and several
autophagy genes.

Decrease in accumulation of aggregated proteins.

[53]

Tobacco
(Nicotiana tabacum)

Overexpression—ASMT
(MzASMT1 from crab apple)

driven by 35S promoter
Salt

Elevated melatonin contents.
Lowered leaf wilting.

Increased fresh weight, plant height, root length and relative
water content.

Higher chlorophyll content and improved photosynthesis (Fv/Fm).

[54]

Arabidopsis
(Arabidopsis thaliana)

MzASMT driven by 35S
promoter has been

transformed into Arabidopsis.
Drought

Elevated melatonin levels.
Enhanced lateral roots.
Increased fresh weight.

[55]
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3. Exogenous Melatonin Application Enhances Abiotic Stress Tolerance

With the drastic changes in climate conditions, endogenous mechanisms operating
in plants for stress tolerance are not strong enough to protect crop productivity. Based
on the knowledge of the activity of phytomelatonin against abiotic stress, scientists have
focused on applying exogenous melatonin before stress to enhance abiotic stress tolerance in
plants. Exogenous melatonin pre-treatment has been demonstrated to reduce the damage
due to cold, heat, heavy metals, drought, water logging, and salt stresses in plants (Table 2).
The external application has been performed by soaking seed priming and adding to an
irrigation/growth medium or foliar spray during the most sensitive stages in plant growth
and development. In a meta-analysis conducted by Muhammad et al. (2022) using 32 studies
across the globe, the exogenous application of melatonin increased the activity of SOD, POD,
CAT, and APX significantly. Melatonin-induced improvement in antioxidant activity is a
major underlying reason for improved plant physiology and enhanced survival under abiotic
stress [56]. In most cases, 100 µM melatonin is used for foliar applications [57–59]. Melatonin
pre-treatment in alfalfa against water logging has an optimal concentration of 100 µM, where
500 µM shows a slight decline in germination rate, CAT, and T-SOD contents [60]. However,
some studies show that concentrations above optimal could be toxic to the plant [61]. In
Brassica juncea, 0.1 µM melatonin stimulates root growth, while 100 µM shows an inhibitory
effect [62]. Similarly, in red cabbage, 1 µM and 10 µM melatonin treatment show increased
seed germination under copper stress, while 100 µM shows a toxic effect [63].

Table 2. A summary of exogenous melatonin application before abiotic stress treatment in enhancing
abiotic stress tolerance.

Stress Plant Growth Stage
Melatonin Application Activity under Stress

(Compared to Plants without Exogenous
Melatonin Stressed)

ReferenceOptimised
Concentration Application Method

Cold

Pepper
(Capsicum annuum)

Seedling 5 µM

Soil drench with
25 mL melatonin
solution one day

before chilling stress

Decreased hydrogen peroxide,
malondialdehyde contents and

membrane permeability.
Increased photosynthesis, water relation

and antioxidant enzyme activity.

[64]

Flowering 5 µM
Soil drench with

100 mL melatonin
solution

Increased the yield when applied
during flowering. [64]

Tea
(Camellia sinensis)

Seedling
(two-year-old) 100 µM

Foliage spray—three
times with five-day

intervals.
(last treatment—24 h

before the stress)

Increased antioxidant enzyme activity
and stimulate photosynthesis. [65]

Barley
(Hordeum vulgare) Seeds 1 µM

Soaked the seeds for
12 h before

germination.

Decreased malondialdehyde and soluble
sugar content.

Promoted seedling growth, increased
chlorophyll content.

[66]

Drought

Rapeseed
(Brassica napus) Seedling 100 µM

Irrigation with 200 mL
melatonin solution per

pot each day for
seven days.

Decreased malondialdehyde and
hydrogen peroxide.

Regulated leaf stomatal activity.
Increased root growth and

catalase activity.

[67]

Tomato
(Solanum lycopersicum)

Young plants
(5 weeks old) 20 ppm Foliar application

Decreased malondialdehyde and
hydrogen peroxide.

Increased yield and ascorbic acid content
in fruits.

[68]

Alfalfa
(Medicago sativa) Seedlings 100 µM

Sprayed at dark, two
days before the stress
and repeated every

three days up to
20 days.

Increased chlorophyll and carotenoid
contents, photosynthetic rate and

stomatal conductance, soluble sugar and
proline content.

Decreased malondialdehyde, hydrogen
peroxide, electrolyte leakage and

superoxide anion.

[69]

Coffee
(Coffea arabica) Seedlings 100 µM

Foliar spray of 20 mL
and soil application of
30 mL three times per

week.

Suppressed chlorophyll degradation and
increased photosynthesis.

Decreased malondialdehyde and
electrolyte leakage.

Increased enzymatic antioxidant activity.

[70]

Soybean
(Glycine max) Seedlings 100 µM Rhizosphere

application

Increased chlorophyll content,
photosynthetic activity, shoot and root

growth, enzymatic antioxidation.
Increased salicylic and jasmonic

acid content.
Decreased malondialdehyde, electrolyte

leakage and hydrogen peroxide.

[71]
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Table 2. Cont.

Stress Plant Growth Stage
Melatonin Application Activity under Stress

(Compared to Plants without Exogenous
Melatonin Stressed)

ReferenceOptimised
Concentration Application Method

Cotton
(Gossypium hirsutum) Seeds 100 µM

Soaked the seeds for
24 h prior to
germination.

Increased soluble sugar and proline
content. Increased stomatal regulation,
germination rate, germination potential

and fresh weight.
Decreased the hydrogen peroxide,

superoxide anion and malondialdehyde.

[72]

Water Logging

Soybean
(Glycine max) Seedling 10 µM Root application at the

same time of flood.

Increased root growth and development,
increased root cell wall lignification.

Increased alkaloid metabolism and ROS
scavenging.

[73]

Alfalfa
(Medicago sativa) Seedling 100 µM Foliar spray one day

before to the stress

Increased plant growth and
photosynthesis. Increased endogenous
melatonin levels. Increased polyamines

and decreased ethylene.
Decreased membrane damage and leaf

senescence.

[60]

Peach
(Prunus persica) seedlings 200 µM

Applied to soil every
other day during

the stress.

Increased root and shoot development.
Positive development in photosynthetic

and stomatal apparatus. Increased
antioxidant activities.

Increased anaerobic respiration through
enhanced aerenchyma.

[74]

Salt

Tomato
(Solanum lycopersicum) Seedling 1 µM

Applied to the
medium mixed with

saline treatment

Increased photosynthesis and
antioxidant enzyme activity.

Decreased malondialdehyde and
hydrogen peroxide content.

[75]

Olive
(Olea europaea) Seedling 100 µM Foliar spray

Increased shoot and root growth,
photosynthetic pigments, proline and
soluble sugars. Increased enzymatic

antioxidation.
Decreased hydrogen peroxide,

malondialdehyde and
electrolyte leakage.

[76]

Alfalfa
(Medicago sativa)

Seeds 10–100 µM
Seeds immersed and

air-dried prior to
germination

Increased seed germination, root length,
seedling growth and enzymatic

anti-oxidation.
[77]

One-month-old plants 50 µM Foliar spray
every night

Decreased hydrogen peroxide,
malondialdehyde and electrolyte leakage

Rice
(Oryza sativa) Seedlings 20 µM Applied for 24 h prior

to salt stress

Increased root and shoot growth.
Increased the expression of

stress-responsive genes.
[78]

Rapeseed
(Brassica napus) Seeds 50 µM Seed primed for 8 h

prior to germination

Decreased hydrogen peroxide and
superoxide anions.

Increase the regulation of antioxidant
enzymes, chlorophyll content,

photosynthetic rate and proline content.
Improved the oil quality.

[79]

Cadmium Wheat
(Triticum aestivum) Seedling 0.5–100 µM

Applied directly to the
roots of seedlings

growing in
Petri dishes

Increased root and shoot growth,
Increased enzymatic and non-enzymatic

anti-oxidants.
Decreased hydrogen peroxide content.

[80]

Aluminium Wheat
(Triticum aestivum) Seedling 10 µM Treated for 12 h prior

to the stress
Increased enzymatic and non-enzymatic

antioxidant activity [81]

Nickel Tomato
(Solanum lycopersicum Seedling 100 µM

Foliar sprayed with
80 mL solution with

3 days interval during
the stress

Improved photosynthesis and gas
exchange. Increased enzymatic

anti-oxidation.
Upregulation of stress-responsive genes.

Decreased hydrogen peroxide,
malondialdehyde and electrolyte leakage

[59]

Heat

Tomato
(Solanum lycopersicum) Seedling 100 µM

Foliar sprayed every
two days for seven

days one week before
the stress

Increased photosynthesis and stomatal
activity.

Decreased hydrogen peroxide,
malondialdehyde and electrolyte leakage.
Downregulation of genes encoding ROS

accumulation.

[82]

Wheat
(Triticum aestivum) Seedling 100 µM

Sprayed 80 mL of
melatonin solution on

leaves each day for
seven days one week

before the stress.

Increased chlorophyll content, enzymatic
and non-enzymatic antioxidant activity

and proline content.
Decreased hydrogen peroxide and

malondialdehyde.

[58]

Cherry radish
(Raphanus sativus) Seedling 29.0 mg/L

Applied on roots
mixed with Hogland’s

nutrient solution.

Increased chlorophyll, carotenoid content
and enzymatic antioxidation.
Decreased malondialdehyde.

[83]

Strawberry
(Fragaria × ananassa)

Young plants
(3 weeks old) 100 µM

Foliar spray three
times at one-day

intervals
(last treatment—10 h

prior to the stress)

Increased enzymatic and non-enzymatic
antioxidant activity.

Upregulation of stress-responsive genes.
Decreased hydrogen peroxide, and

malondialdehyde.

[57]
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Table 2. Cont.

Stress Plant Growth Stage
Melatonin Application Activity under Stress

(Compared to Plants without Exogenous
Melatonin Stressed)

ReferenceOptimised
Concentration Application Method

Rice
(Oryza sativa) Flowering 200 µM

Sprayed one day
before the

stress treatment.

Increased chlorophyll content and
stomatal conductance. [84]

Tomato
(Solanum lycopersicum Flowering 20 µM

Applied on roots on
each day for 7 days

followed by the
heat stress.

Alleviated pollen abortion.
Increased stability of tapetum cells and

avoid pollen deformity by inducing
stress-responsive genes.

Increased ROS scavenging and
enzymatic antioxidant activity.

[85]

Soybean
(Glycine max) Seedling 100 µM

Applied on root zone
(30 mL) twice daily for
6 days prior to stress.

Increased chlorophyll content and
non-enzymatic anti-oxidation.
Decreased hydrogen peroxide,

superoxide, malondialdehyde and
electronic leakage.

[86]

Kiwifruit
(Actinidia deliciosa) Seedling 200 µM

Treated five times
every two days prior

to stress.

Increased proline, enzymatic and
non-enzymatic antioxidant activity.

Reduced hydrogen peroxide.
[87]

Tall fescue
(Festuca arundinacea

Schreb.)
Seedling 20 µM

Seedlings were
transferred to MS

medium containing
melatonin two days
prior to the stress.

Increased antioxidant enzyme activity
and chlorophyll content.

Changed stress-responsive gene
regulation.

Reduced hydrogen peroxide, superoxide
anion, malondialdehyde and

electronic leakage.

[88]

3.1. Melatonin Pre-Treatment for High-Temperature Stress

Temperature determines plant growth. Temperatures below the optimum range cause
cold stress, while higher temperatures cause heat stress [89,90] Melatonin has been demon-
strated to lower the adverse effect on plants during cold and heat stress conditions. Pepper
(Capsicum annum) is an important crop plant with 25–30 ◦C as the optimal temperature, and
temperatures below 15 ◦C reduce seed development and fruit set. Applying 5 µM mela-
tonin through roots results in increased seed biomass with increased photosynthetic and
antioxidant activities while reducing membrane permeability, malondialdehyde (MDA),
hydrogen peroxide, and membrane permeability [64]. Melatonin pre-treatment doubled
the early yield in pepper plants under chilling stress. In addition, melatonin foliar spray
reduces oxidative damage and increases the net photosynthesis in two-year-old tea (Camel-
lia sinensis) plants under chilling stress [65]. The optimum melatonin concentration of
100 µM for foliar spray results in a 99.5% increase in net photosynthetic rate under cold
stress. Further, priming hulless barley seeds with 1 µM melatonin for 12 h before sowing
could alleviate the growth inhibition caused by the cold stress [66]. Similarly, melatonin
pre-treatment increased the protection towards photosynthetic pigments and reduced
the membrane peroxidation in hulless barley under cold stress. In addition, melatonin
treatment restored the function of circadian clock genes, which were interrupted by cold
stress. Thus, it can be concluded that exogenous melatonin application can reduce cold
stress damage in crop plants. Heat stress occurs in plants when the environmental tem-
perature increases more than the optimum temperature of the plant. With the optimum
concentration of 100 µM, foliar spray of melatonin on three-day-old seedlings for seven
days can increase wheat thermotolerance by reducing malondialdehyde and hydrogen
peroxide levels and by increasing photosynthetic pigments, proline, and enzymatic and
non-enzymatic antioxidant levels [58].

Furthermore, melatonin pre-treatment induces the expression of ROS-related TaSOD,
TaPOD, and TaCAT genes and stress-responsive TaMYB80, TaWRKY26, and TaWRKY39
genes. The cold season crop cherry radish accumulates increased biomass when mela-
tonin is added to the nutrient solution under heat stress [83]. The study suggests that
adding an appropriate melatonin concentration to the nutrient solution can alleviate the
high-temperature damage to chloroplasts and thylakoids. According to Manafi et al.
(2021), 100 µM melatonin foliar spray treatment reduces the heat-induced damage to the
heat-sensitive strawberry cultivar, Ventana, through an increase in the antioxidative mech-
anisms [57]. Moreover, increased photosynthesis and increased stress-responsive gene,
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FaTHsfA2a and HSP90, expression was observed. Tall fescue (Festuca arundinacea), a cool-
season turfgrass is considered one of the most important grasses in the world and shows
high susceptibility toward heat during the seedling stage. According to Alam et al. (2018),
adding 20 µM melatonin to the growth medium of tall fescue at the eight-day-old seedling
stage led to increased heat tolerance with increased fresh weight, plant height, chlorophyll
content, protein content, and antioxidant enzymes (SOD, POD, and CAT) activities with
decreased electrolyte leakage, MDA, superoxide anion, and hydrogen peroxide levels. In
addition, FaAWPM, FaCYTC-2, FaHSFA3, FaHSP18.2, and FaCML38 were upregulated, and
FaF-box, FaHSFA6B, and FaCYP710A were downregulated with melatonin treatment under
heat stress [88].

Similarly, kiwifruit (Actinidia deliciosa) seedlings pre-treated 5 times with 200 µM
melatonin every two days could alleviate the heat-induced damage to the seedlings by
increasing antioxidant enzyme activity (SOD, CAT, and POD) and reduce hydrogen per-
oxide levels. In addition, melatonin promotes non-enzymatic antioxidation under heat
stress by increasing the ascorbic acid levels and the enzyme activities related to ascorbic
acid–glutathione cycles such as ascorbate peroxidase (APX), monodehydroascorbate reduc-
tase (MDHAR), dehydroascorbate reductase (DHAR), and glutathione reductase (GR) with
upregulation of more than 90% glutathione transferase (GST) genes [87].

Soybean (Glycine max), an important oilseed crop worldwide, is highly susceptible to
stress [91], including heat-induced oxidative stress during the seedling stage. Imran et al.
(2021) found that the melatonin pre-treatment works the same way in soybean seedlings
under heat stress to prevent heat-induced oxidative damage with increased photosynthetic
pigments and gene expression involved in enzymatic and non-enzymatic antioxidation.
Furthermore, the study also showed that melatonin increases phenolics, flavonoids, proline,
endogenous melatonin, salicylic acid, and polyamines (spermine, spermidine, and pu-
trescine). Melatonin pre-treatment also reduces the abscisic acid (ABA) content in soybean
seedlings by downregulating ABA biosynthesis genes and upregulating ABA catabolic
genes. Further, the study also found that melatonin pre-treatment upregulated gmHSFA2
and gmHSP90A1 under heat stress [86].

3.2. Melatonin Pre-Treatment Reduces Heat-Induced Damage during Reproduction

The plant reproduction stage is highly vulnerable to temperature stress. The stress
conditions occurring through the flowering and seed set stage affect the fertility and quality–
quantity of the yield [92]. However, limited studies have focused on applying exogenous
melatonin to minimise the adverse effects of abiotic stress during plant reproductive stages.
Melatonin pre-treatment can alleviate pollen abortion in tomatoes under heat stress [85].
High temperature can alter bud morphology and pollen infertility, leading to declined
yield [93]. Under heat stress, reactive oxygen species accumulate in the tapetum, which
leads to pre-mature degeneration of the tapetum resulting in abnormal or infertile pollen
grains [93]. The treatment of tomato plants with 50 µM melatonin enhanced the heat
tolerance of the anther tissues by enhancing the expression of genes encoding antioxidant
enzymes [85]. Further, the heat-induced damage to the tapetal cells is alleviated, leading
to reduced damage to the unicellular microspores in tomato anthers. The mature pollen
grains from the untreated heat-stressed plant show 24.8% viability and a 38.7% germination
rate. In contrast, melatonin-treated plants show 45.7% viability and a 50.5% germination
rate after a 3-h heat stress treatment. The study concluded that the melatonin pre-treatment
alleviates pollen damage by minimising ROS accumulation in anthers, and hence can be
used to protect crop plants during reproduction from abiotic stress.

Similarly, the application of melatonin as a foliar spray once, one day before the
heat stress, increased the heat tolerance in rice plants during the reproductive stage [84].
However, the study focused on the chlorophyll content and photosynthesis rate, which are
reported to increase in the melatonin-pre-treated plants under heat stress.
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3.3. Melatonin Pre-Treatment for Water Stress

The amount and water quality are critical factors for plant growth and development.
Water shortage leads to drought stress; excess water creates water logging/flood stress,
while excessive water salinity leads to salt stress. With the appropriate concentration and
proper application methods, melatonin can minimise the adverse effects on plants caused
by all these three types of stress. In soybean (Glycine max) seedlings, melatonin application
through roots produced better results than the foliar spray, while 100 µM provides better
protection than 50 µM against drought stress [71]. According to the study, the reason
behind this protection is increased plant biomass, photosynthetic activity, enzymatic and
non-enzymatic antioxidant activity, proline and sugar content, salicylic acid, and jasmonic
acid contents. The reduction in ABA, ROS, electrolyte leakage, and MDA also contributed
to alleviating drought-induced oxidative damage in soybean seedlings. In contrast, ap-
plying 10 µM melatonin protects soybean seedlings from flooding stress by preventing
flood-induced cell death in roots and increasing seedling length [73]. Proteomic studies
have revealed that the abundance of the 13-hydroxylupanine O-tigloyltransferase, a protein
involved in alkaloid metabolism and ROS scavenging, decreases with flooding, and com-
paratively increases in melatonin-treated plants during flooding stress. Further, melatonin
promotes soybean seedlings under flood stress by minimising protein degradation, RNA
modification, and cell wall metabolism. Like soybean, alfalfa (Medicago sativa) seedlings
show melatonin-mediated protection in drought and waterlogging stress. A foliar spray of
100 µM melatonin increased the plant carbon, nitrogen, potassium, and calcium content
under drought stress. The treatment also increased the soluble sugar, proline, and enzy-
matic antioxidant activity. Melatonin also reduces the levels of hydrogen peroxide, MDA,
superoxide anion, and electrolyte leakage in alfalfa seedlings under drought stress [69].
Under waterlogging conditions, 100 µM melatonin foliar spray reduced the damage to
six weeks old alfalfa plants by enhancing the expression of polyamine synthesis genes. It
decreased the expression of ethylene synthesis genes, leading to increased polyamines and
decreased ethylene, resulting in increased photosynthesis, enhanced membrane stability,
and reduced leaf senescence [60]. In addition to drought and waterlogging, melatonin helps
alfalfa survive through salt stress. Priming alfalfa seeds with 50 µM melatonin increases the
germination rate, root and shoot growth enzymatic and non-enzymatic antioxidant activity,
and decreases the hydrogen peroxide content, electrolyte leakage, and MDA content [77].
In addition, seedlings germinated from melatonin-primed seeds show relatively enhanced
expression in phytomelatonin biosynthesis genes, TDC, SNAT, and ASMT. The sodium
content of melatonin-treated seedlings was low, even without salt stress. This response can
be considered as melatonin priming the plant for salt stress before the occurrence of the
stress condition. Metabolome analysis of melatonin-treated rice plants shows an increased
abundance of endogenous melatonin and its intermediates (5-hydroxy-L-tryptophan, N1-
acetyl-N2-formyl-5-methoxykynuramine) [94]. Increased photosynthesis with melatonin
supports plants in surviving water stresses. Recently, Cherono et al. (2021) showed that in
coffee (Coffea arabica) seedlings under drought, melatonin can enhance the expression of the
photosynthetic gene RBSC2, which encodes Rubisco protein, and suppresses the expression
of chlorophyll degradation gene PAO encoding pheophorbide—an oxygenase [70].

3.4. Melatonin for Heavy Metal Stress

Heavy metals are toxic contaminants in the soil that, even in small quantities, cause
adverse effects on plant growth, development, and yield [95]. In a study on wheat, cad-
mium stress damages wheat seedling roots and increases root hydrogen peroxide levels.
As an endogenous defence system, cadmium stress induces melatonin biosynthesis gene
TaASMT and TaTDC expression along with HSFA expression. Exogenous application of
melatonin enhanced root and shoot growth, increased enzymatic and non-enzymatic antiox-
idant activity, and enhanced the tolerance of wheat seedlings toward cadmium stress [80].
Similarly, the application of exogenous melatonin in wheat seedlings also enhanced alu-
minium tolerance by reducing ROS levels, lipid peroxidation, and cell wall damage in
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roots [81]. In tomato seedlings, melatonin pre-treatment can minimise the negative effect
caused by nickel stress [59]. According to the study, melatonin enhances nutrient uptake
under nickel stress, enhances osmotic adjustment, stimulates secondary plant metabolism,
increases antioxidant defence, and increases membrane integrity. In addition, it increases
photosynthesis efficiency and upregulates genes involved in photosynthesis.

3.5. Melatonin Pre-Treatment for Combined Stresses

While many studies have shown that melatonin pre-treatment can protect plants from
different abiotic stresses, plants might simultaneously face more than one abiotic stress in
field conditions. However, very few studies have been conducted to evaluate the effect of
melatonin pre-treatment on combined abiotic stresses. The tomato plant showed better
survival with a foliar spray of 100 µM melatonin before being subjected to combined heat
and salt stresses [96]. According to this study, melatonin treatment can maintain high levels
of stomatal conductance and carbon dioxide assimilation and regulate the transpiration
rate under heat and salinity. It also increases photosynthesis and antioxidant capacity;
reduces hydrogen peroxide, lipid peroxidation, and protein oxidation.

Likewise, melatonin-pre-treated pepper plants demonstrate greater tolerance to salt
stress combined with iron deficiency [97]. Similarly, melatonin treatment reduces hy-
drogen peroxide, MDA, and electrolyte leakage and increases the antioxidant enzyme
catalase (CAT) level under individual and combined salt and iron deficiency. When pepper
seedlings are subjected to low light intensity combined with low temperature, it reduces
photosynthesis efficiency and negatively affects the plant biomass. Melatonin pre-treatment
helps to alleviate these effects by regulating CaPsb genes involved in photosynthesis and
increases overall biomass and plant survival under combined stresses [98]. Crop plants
could come across biotic stresses overlapping with abiotic stress. Melatonin pre-treatment
also effectively protects plants against biotic stress, including viral, fungal and bacterial
pathogens, insects, and nematodes. It has been demonstrated that melatonin can be used as
a substitute for pesticides [99]. Moreover, combining with melatonin increases the effect of
pesticides, reducing the amount of pesticide used [100]. Biotic stress resistance provided by
melatonin involves defence gene activation, ROS and NO scavenging, hormonal cross-talk
and cell wall thickening of plants, and pathogen weakening.

Phytopthera infestants is the fungal pathogen that causes potato late blight, the great-
est threat to potato growth. Applying 10 µM melatonin on leaves and tuber slices could
prevent the occurrence of potato late blight by disrupting the fungal structure. In addition,
the synergistic effect of melatonin and fungicide combination significantly enhances the in-
hibitory effect of fungicide or melatonin alone. It is demonstrated that melatonin increases
fungicide susceptibility and virulence and drug resistance in P. infestants through differential
gene expression [100]. Leaf application of 100 µM melatonin in cucumber alleviates downy
mildew caused by Pseudoperonospora cubensis, activating antioxidant genes [101]. Arabidopsis
thaliana exhibits enhanced resistance against the bacterial pathogen Pseudomonas syringae with
exogenous application of melatonin by ROS and NO-mediated defence signalling, cell wall
strengthening, phytohormone signalling, and pathogenesis-related gene regulation [102–104].
Similarly, in the crop plant cucumber, applying melatonin on leaves has improved the resis-
tance against Pseudomonas syringae pv. Lachrymans differential expression of genes involved
in signal transduction pathways [105]. Moreover, ROS scavenging mechanism provided by
exogenous melatonin enhances the resistance against alfalfa mosaic virus in eggplant [106]. It
has also been demonstrated that melatonin has a possible safener activity towards plants with
different herbicides [107].

Collectively, it is evident that melatonin pre-treatment acts on increasing endogenous
melatonin levels and regulates stress-responsive and metabolic genes resulting in decreased
hydrogen peroxide, superoxide, malondialdehyde, and electronic leakage in plants under
abiotic stress. Moreover, it increases osmotic regulation by increasing proline and soluble
protein levels, regulating non-enzymatic antioxidants such as glutathione (GSH) and
ascorbic acid (AsA); and antioxidant enzyme activity such as superoxide dismutase (SOD),
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peroxidase (POD), and catalase (CAT). In addition, melatonin also increases plant biomass,
photosynthesis, and gas exchange under abiotic stress conditions. Recent studies showed
that melatonin helps with repairing oxidative DNA damage. Overexpression of AANAT
and HIOMT, genes encoding melatonin biosynthetic enzymes in mammals, makes Nicotiana
sylvestris protoplasts less susceptible to UV-B-induced DNA damage. [108]. Exogenous
melatonin alleviates the root DNA damage in Ardisia mamillata and Ardisia crenata under
lead stress. The study shows that DNA protection is provided by the parallel to the
enhanced antioxidant activity [109]. However, a recent study showed this antioxidant
activity is not the sole mechanism underlying the defensive action of melatonin. It also has
a role in gene regulation of endoplasmic reticulum stress (ER stress) response and protein
protection [40].

4. Role of Melatonin in Cellular Function
4.1. ER Stress Response and Protein Homeostasis

Even though the antioxidant role of melatonin in protecting plants from stress is widely
discussed, not enough attention has been given to the direct involvement of melatonin
in the regulation of stress-responsive genes. The endoplasmic reticulum stress response
is a natural mechanism that helps plants to survive stress conditions. The endoplasmic
reticulum (ER) is a subcellular organelle responsible for protein folding [110]. Proper
folding of a newly synthesised protein is essential for its function. Unfolded/misfolded
proteins cannot perform their designated function and are toxic to the cell. ER has a quality
control system to ensure that unfolded proteins do not leave ER. Under biotic and abiotic
stress conditions, protein folding demand exceeds its capacity, which leads to ER stress.
Unfolded protein response (UPR) ER’s stress response protects the cell and the whole
organism [110–112]. Upon ER stress, UPR upregulates stress-responsive genes and enables
additional rounds of protein folding to repair misfolded proteins with the help of molecular
chaperones. In plants, the UPR pathway has two main arms. The bZIP28/bZIP17 arm and
IRE/bZIP60 arm are ER stress signalling pathways. Improperly folded proteins beyond
repair are degraded through ER-associated cell degradation (ERAD). If these actions are
not enough to alleviate ER stress, it leads to autophagy, a self-degradation of cellular
components mediated by autophagosomes.

In some cases, cells become highly damaged due to the accumulation of misfolded
proteins that any of the protective mechanisms could not repair. Such a situation leads
to programmed cell death (PCD) for the integrity of the whole organism. In addition to
classical UPR pathways, mitogen-activated protein kinase (MAPK) signalling pathways
also have a role in ER stress response.

Melatonin increases the protein folding capacity of cells under ER stress. As detailed
by Malhotra and Kaufman (2007), ER lumen is an oxidative environment where protein
oxidation occurs and releases ROS as by-products. Activation of UPR upon oxidative
stress suggests the close relationship between protein folding and ROS [113]. In this case,
melatonin, an endogenous chemical with known antioxidation ability, can aid ER stress
response and protein protection by ROS scavenging. However, melatonin’s role in ER
stress response goes beyond its antioxidant actions. In 2004, Lei et al. discovered that
melatonin pre-treatment weakened cold-induced apoptosis in carrot suspension cells [114].
As the levels of ROS generation remained unaffected by melatonin pre-treatment, the
study suggested that the protective role of melatonin is not directly related to its ROS
scavenging ability. Instead, the “polyamines”, which were elevated with melatonin pre-
treatment, were suggested to be the reason behind melatonin-induced cellular protection.
In plants, polyamines, putrescine, spermidine, and spermine increase with exogenous
melatonin [115,116]. Spermine induces the UPR by enhancing the expression of bZIP17,
bZIP28, and bZIP60 and activating the splicing of bZIP60 mRNA in Arabidopsis, which are
essential steps in UPR [117,118].

Considering the evidence that melatonin increases the spermine level and enhances
ER stress response, melatonin may involve ER stress response and protein protection in
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plants independent of its antioxidant activity. In favour of this hypothesis, Lee and Back
(2018) found a close relationship between melatonin and the IRE/bZIP60 arm of UPR
in Arabidopsis.

According to Lee and Back (2018), melatonin confers ER stress tolerance in Arabidopsis
by increasing ER chaperones for antioxidant defence. To confirm this action, they used
transgenic Arabidopsis lines with overexpression and knockdown of the SNAT gene; a gene
that encodes an essential enzyme in melatonin biosynthesis in plants. Under ER stress,
molecular chaperones involved in protein protection, BIP2, BIP3, and CNX1, are highly
upregulated in SNAT overexpressed lines and downregulated in knockdown lines. In
contrast, there was no marked difference in superoxide and antioxidant levels between
wild-type and SNAT transgenic lines under ER stress [119]. According to the study, mela-
tonin increases the transcription of these molecular chaperones even without ER stress,
indicating that melatonin-mediated UPR is a regular activity in plants. Furthermore, Ara-
bidopsis mutant plants lacking bZIP60 genes show low levels of upregulation in molecular
chaperones under ER stress and melatonin treatment. In contrast, none of the molecu-
lar chaperone levels showed much difference between wild-type and bZIP28 knockout
mutants, suggesting that endogenous melatonin-mediated ER stress response is mainly
related to the IRE/bZIP60 arm of UPR. Upon the activation of this arm, bZIP60 undergoes
nonconventional splicing to produce an active transcription factor, bZIP60s. This study
also showed that the splicing of bZIP60 occurs at a higher rate in the SNAT overexpressed
line and a lower rate in the SNAT knockdown line of Arabidopsis compared to the wild type.
This suggests the positive involvement of melatonin in activating the IRE/bZIP60 arm of
UPR in plants. In addition, exogenous melatonin repairs the damage to the ER network
induced by tunicamycin, an ER stress inducer. The study further showed that melatonin
treatment could fully restore ER-resident immune response chaperones, BRI1 and FLS2, in
N. benthamiana leaves damaged by tunicamycin-induced ER stress.

The involvement of melatonin in ER stress pathways is further explored by studying
the expression levels of ER stress genes under tunicamycin-induced ER stress with and
without melatonin [120]. Genes involved in ER stress, bZIP17, bZIP28, bZIP60, IRE1A, and
IRE1B, were upregulated in Arabidopsis upon ER stress-inducing conditions. Among those
genes, bZIP17, bZIP28, IRE1A, and IRE1B decreased the transcript level to control with
25 µM exogenous melatonin applied in the growth medium/roots, suggesting that mela-
tonin treatment eliminated the ER stress from the roots. Applying melatonin to roots did not
change the transcriptional levels of these genes in shoots. While bZIP60 was downregulated
with the melatonin treatment, the expression did not reach the control levels.

4.2. Melatonin and Autophagy

As a part of protein and cell protection, melatonin induces autophagy under stress.
Autophagy is the ultimate response to save cells from PCD [121]. Arabidopsis seedlings
grown under oxidative stress show higher levels of autophagosomes, autophagy-related
ATG gene expression, and a higher survival rate with melatonin treatment [122]. Under
heat stress, melatonin also upregulated autophagy-related genes, ATG, in tomato leaves [53]
and anthers [85]. In addition to exogenous melatonin, overexpressing of the melatonin
biosynthetic SNAT gene increases the salt tolerance in Arabidopsis seedlings, with enhanced
levels of autophagy [123].

Recent studies show that melatonin induces the expression of autophagy genes, and
autophagy genes are also involved in the expression of melatonin biosynthetic genes.
Overexpression of autophagy-related genes (ATG8b, 8c, and 8e) facilitated the protein
expression levels of TDC2, ASMT2, and ASMT3 in cassava [124]. According to the study,
exogenous melatonin promotes autophagy by inducing the expression of autophagy genes,
while overexpression of melatonin biosynthesis genes MeTDC2, MeASMT2, and MeASMT3
also induce autophagy. Although the exact mechanism of melatonin-induced autophagy is
yet unknown, the reversible actions in the regulation of autophagy genes and melatonin
biosynthesis genes suggest a close relationship between the two, which has the goal of
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helping plants to survive abiotic stress. Perhaps, like HSFA1/HSP40 with SNAT/COMT,
autophagy genes also can promote TDC/ASMT gene expression.

4.3. Interaction of Melatonin with HSFs and HSPs

Heat shock proteins (HSP) are molecular chaperones with the role of repairing and/or
degrading accumulated harmful unfolded proteins to assist the organism’s survival under
stress. Heat shock factors (HSF) are transcriptional regulators of HSP [15,125].

It has been demonstrated that HSFs and HSPs are involved in phytomelatonin biosyn-
thesis under stress conditions. As outlined in Figure 4, low levels of existing melatonin
could be a limiting factor for plant protein protection mechanism, and hence a reason
for plant abiotic stress susceptibility. Providing a boost of melatonin either by a genetic
modification or external application increases protein protection and HSF levels, further
upregulating melatonin biosynthesis (Figure 4).
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HSF binds to the heat shock elements (HSE) in the promoter region of the melatonin
biosynthesis genes to enhance the transcription. Exogenous melatonin uptake increases the
total melatonin content, which stimulates melatonin biosynthesis gene expression leading
to increased abiotic stress tolerance in plants.

The overexpression of HSFA1a in tomatoes increases the accumulation of melatonin
under cadmium stress, while silencing HSFA1a reduces melatonin production and cadmium
tolerance [126]. Overexpressing of HSFA1a also increases the expression of COMT1, a gene
encoding an essential enzyme in the melatonin biosynthesis pathway, by binding to the
heat shock element of its promoter under cadmium stress. Overexpressing of HSFA1a
increases HSP production, while silencing of HSFA1a decreases HSP under cadmium stress
showing that HSFA1a is responsible for HSP chaperone production under cadmium stress.
When HSFA1a is overexpressed, if COMT1 is silenced, it reduces the HSP production and
cadmium tolerance along with the melatonin accumulation [126]. The study suggests that
HSFA1 upregulates COMT1 by binding to the heat shock element in the COMT promoter
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to increase melatonin synthesis under cadmium stress. Increased melatonin levels further
increase HSF and HSP levels for enhancing cadmium tolerance.

The interaction of SNAT with HSP40 promotes thermotolerance in tomatoes [48].
Downregulation of HSP40 lowers melatonin synthesis under heat stress may be due to
the protection provided by HSP40 towards SNAT against heat-induced degradation. The
two heat shock elements in the tomato SNAT promoter region also indicate a possibility
of HSF binding the SNAT promoter and upregulating the gene expression under heat
stress. Overexpressing of SNAT increased the synthesis of melatonin, HSP40, HSP20,
HSP21, HSP90, and HSP17 [48]. The study suggested that HSP40 promotes melatonin
synthesis/protection and enhances thermotolerance by reducing oxidative stress.

ASMT is another enzyme involved in melatonin biosynthesis. The overexpression of
ASMT in tomato plants upregulates HSP17.7, HSP20-1, HSP21, HSP70, and HSP90 under
heat stress resulting in increased thermotolerance [53]. The foliar application of exogenous
melatonin shows the same results as the ASMT overexpression. The upregulation of HSPs
results in refolding denatured proteins under heat stress with a drastic reduction in protein
aggregation compared to the wild type. These results showed that melatonin enhances
protein protection under heat stress, either as phytomelatonin or exogenous melatonin [53].

In Arabidopsis, under heat stress, exogenous melatonin showed increased upreg-
ulation in HSFA1, HSP90, and HSP101 while silencing the HSFA1 gene alleviating the
melatonin-induced thermotolerance [127], suggesting that the relationship between HSFA1
and melatonin is bi-directional. Under heat stress, melatonin-pre-treated tomato anthers
showed increased upregulation in the expression of HSP21 and HSP70 with reduced pollen
damage [85]. The study showed that melatonin had reduced the oxidative stress in tomato
anthers; the upregulation of HSP21 and HSP70 significantly protects anther development
under heat stress. In kiwifruit, ten HSPs, including HSP70 and three small HSPs, were
upregulated with melatonin pre-treatment under heat stress [128]. It is reported that
when tall fescue is treated with melatonin before the heat stress, it upregulates HSFA3
but downregulates HSFB2B. In addition to HSFA3, melatonin pre-treatment upregulates
AWPM, reported to have a role in rice drought stress tolerance [129], CYTC-2, and CML
38, reported to have a role in plant growth and development [88]. Melatonin spray on
chrysanthemum plants enhanced thermotolerance by increasing the upregulation of HSP90,
HSP23, HSP80, HSP70, HSFS-3, HSFA-2b, and HSFA1a in addition to genes involved in the
calcium signal transduction, phytohormone regulation, and carbohydrates metabolism
and photosynthetic pigments. [130]. The expression of HSP90, HSFA2a, and HSFB1a was
increased by melatonin pre-treatment in strawberry plants under heat stress [57].

Accordingly, an increase in melatonin levels strengthens abiotic stress tolerance by
boosting HSF/HSP levels, while reduced endogenous melatonin reduces the capability
to produce HSP. Genes encoding SNAT and COMT, major enzymes essential for the final
step of melatonin biosynthesis, contain stress-responsive elements in the promoter region,
facilitating HSF/HSP expression under abiotic stress [48,126]. The binding of HSF/HSP
enhanced the melatonin biosynthesis gene regulation, leading to increased melatonin levels,
promoting antioxidative abilities and protein protection, and enhancing the production
of heat shock transcription factors and molecular chaperones, HSF and HSP. Exogenous
melatonin application and the overexpression of melatonin biosynthesis genes promote
this process leading to increased abiotic stress tolerance. This indicates that a lower
level of melatonin present in plant tissues could be the limiting factor for this process
of melatonin-mediated molecular chaperone production under abiotic stress. Lower HSP
production in HSF-overexpressed, COMT-silenced plants [126] also suggests that even with
a high level of HSF, melatonin is necessary for the sufficient production of HSP to provide
protein protection.

5. Melatonin Regulates Phytohormones under Abiotic Stress

In regulating plant growth and development, melatonin also alters the levels of
hormones during unfavourable conditions. Recent studies show that melatonin acts as a
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regulatory hub of phytohormones under normal and stressful conditions [39]. Interestingly,
depending on the stress condition and plant growth stage, melatonin levels regulate plant
hormones in contrasting ways to support the plant’s survival.

Recent studies have shown that the increased melatonin levels reduced abscisic acid
(ABA) levels under drought but enhanced ABA levels under cold stress. However, in
both cases, melatonin enhances stress tolerance in plants. Jahan et al. (2021) showed
that in tomato seedlings, exogenous melatonin increased the gibberellic acid (GA) and
decreased the abscisic acid (ABA) levels to alleviate heat-induced leaf senescence [82].
Similarly, melatonin promoted the germination of cotton seeds under drought stress by
modifying the drought-induced reduction in GA and promoting ABA [72]. A study on
coffee also supported the observation that melatonin reduces ABA levels during drought
via downregulating the ABA-responsive binding element protein (AREB) in coffee leaves
under drought stress [70].

In contrast, melatonin increases ABA levels in barley under drought-primed cold
stress leading to better water status maintenance and higher survival [131]. The study
used drought-primed wild-type and ABA-deficient mutant barley plants and showed that
drought priming increased endogenous melatonin and ABA in the wild type but not in
ABA deficient mutant. Exogenous melatonin (foliar and through roots) treatment with
drought priming further increased endogenous ABA levels when the wild-type plants
are subjected to cold stress. Interestingly, cold-stressed melatonin-treated ABA deficient
mutant showed increased ABA levels indicating that melatonin is an important signalling
molecule that regulates plant hormones in a stress-dependent manner.

Similarly, exogenous melatonin also increases the ABA levels and cold-responsive CBF
genes in Elymus nutans, promoting cold tolerance [132]. Further, the study by Zhao et al.
(2017) demonstrated that melatonin pre-treatment mitigates the chilling stress damage in
cucumber seedlings by upregulating ABA biosynthesis genes and downregulating ABA
catabolic genes during the first four days after treatment. In addition to ABA-related genes,
melatonin regulates CaZat12, an important stress-responsive and polyamine metabolic
gene was also reported [115].

The melatonin-induced hormone regulation adjustments do not solely depend on the
stress condition. They also can act differentially during the plant growth stages of plants.
Under normal conditions, melatonin pre-treatment reduces the ethylene rate in lupin
seedlings and ABA, another plant hormone inhibiting normal growth and development
during the vegetative stage. Nevertheless, the levels of auxins, cytokinin, and gibberellin,
which stimulate vegetative plant growth, increased by melatonin in the study [133].

In contrast, melatonin treatment increased the ethylene levels in tomatoes, and in-
creased ethylene and ABA in grape berry fruit, promoting ripening and improving the
quality of the fruit under normal conditions [134,135]. However, at the postharvest stage,
melatonin inhibits ethylene synthesis in fruits allowing more extended storage and delaying
postharvest senescence in apples and pears—in pears, melatonin inhibits ethylene synthesis
by increasing nitric oxide, while in apples, the reduction in ethylene occurs parallel to the
enzymatic antioxidative activity [136,137].

Further, melatonin enhances the ethylene levels in grapevine plants under salt stress
by promoting ethylene precursor 1-aminocyclopropanr-1-carboxylic acid (AAC), enhancing
salt tolerance [138]. This study also showed that melatonin promoted ethylene synthesis
through AAC under salt stress but suppressed MYB108A, an essential gene involved in
the ethylene synthesis pathway reducing melatonin-induced salt tolerance. The study con-
cluded that melatonin-induced salt tolerance in grapevine is mediated by ethylene. [138].

The overexpression of corn ASMT increased the indole acetic acid (IAA) levels, leading
to improved drought tolerance via enhanced lateral root formation [55]. Recently, Yang
et al. (2022) studied the transcriptome of tomatoes and found that melatonin-induced
drought stress tolerance was involved in the melatonin-mediated regulation of plant
hormones [139]. The study also found that drought stress highly upregulated ethylene
genes in tomato plants. However, in melatonin-pre-treated plants, the expression levels
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of ethylene genes were either similar or less to the non-stressed control plants. Similarly,
drought stress also upregulated genes encoding ABA, while melatonin-pre-treated plants
show less upregulation of ABA genes when subjected to drought stress. In contrast, IAA
encoding genes were downregulated in non-treated plants when subjected to drought, and
melatonin pre-treatment further decreases the expression of IAA genes.

6. Concluding Remarks

Yield reduction due to abiotic stress in crop plants affects global food security, making
it vital to focus on enhancing abiotic stress tolerance in crop plants. The increase in the level
of phytomelatonin during abiotic stress supports plant survival by minimising oxidative
stress and enhancing physiological activities. It is well known that exogenous melatonin
application during the vulnerable stages of the plant increases abiotic stress tolerance.
Applying melatonin before abiotic stress during sensitive stages is a cost-effective solution
to increase plant stress tolerance and minimise yield loss due to abiotic stress. Moreover,
the application of exogenous melatonin is not genotype-specific and is readily applicable
for large-scale crop production.

Many recent studies have focused on protecting plants during the seedling stage.
Researchers have also used melatonin to increase seed germination under abiotic stress
(Table 2). However, only a few studies on using melatonin during flowering or reproduction
have been conducted. Successful sexual reproduction is critical for crop yield [140]. A
few reports confirmed that melatonin treatment in the flowering stage increases the crop
yield under abiotic stress [64,84], but studies on the effect of exogenous melatonin on
the abiotic stress-induced reproductive stage are minimal. A study has shown that pre-
treatment of roots with melatonin at the flowering stage can alleviate heat-induced pollen
abortion in tomatoes [85], opening opportunities for further research on the effect of
exogenous melatonin application during the flowering stage for enhanced stress tolerance
and increased yield.

In many cases, the melatonin pre-treatment is applied during or just before the stress
treatment. The long-term effects of melatonin treatment on unpredicted stress conditions are
yet to be investigated. In some cases, a foliar application was performed once, just before
the stress treatment [60,84], while some studies use repetitive application [57,58,141]. It is
more common to use more than one application on roots before or during stress [74,85,86].
However, seedlings germinated from melatonin-primed seeds show increased abiotic stress
tolerance, suggesting that single melatonin application could have a lasting effect [66,72,77,79].
Priming seeds with melatonin has been widely used to improve seed germination under
abiotic stress conditions such as temperature stress, flood, and salt stress in crops such as rice,
soybean, and cucumber, which are usually grown on large-scale [71,142–146].

Recent studies showed that exogenous melatonin promotes phytomelatonin biosynthe-
sis in plants by upregulating genes in the melatonin biosynthetic pathway. Improving crop
plants’ growth, development, and yield could indicate that these increased phytomelatonin
levels might also have a long-term effect on improving abiotic stress tolerance. Hence it is
essential to investigate how melatonin pre-treatment can be used to prepare crop plants for
unpredictable sudden stress conditions.

The effect of exogenous melatonin application has similar results to genetically modi-
fied plants with overexpressed melatonin biosynthetic genes under abiotic stress conditions.
This includes increased survival with greater fresh weight, root length, photosynthesis,
and antioxidant activity. However, compared to crops genetically modified to increase
melatonin production, exogenous application of melatonin is a less time-consuming and
cost-effective method to improve plant abiotic stress resistance.

The application of melatonin in effectively improving plant abiotic stress tolerance is
not limited to agricultural and horticultural crops. However, studies conducted on mela-
tonin application in forestry are minimal. Root application and needle spray of exogenous
melatonin have been reported to increase the seedling growth and elemental contents in
Anatolian black pine (Pinus nigra) [147]. Salinity and alkalinity in the soil is a major stress
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condition that leads to afforestation. Exogenous melatonin application increases the salt
and alkaline stress tolerance in poplar plants (Populus cathayana × canadansis) under green-
house conditions [148]. Therefore, it is essential to study further the effect of exogenous
melatonin in forestry.

Various studies have concluded that enhanced abiotic stress tolerance is based on
the antioxidative actions of melatonin. However, melatonin has been shown to regulate
stress-responsive genes and increase protein/cell protection independent of its antioxidant
activity, such as ER stress responses; UPR, ERAD, and autophagy [119,122]; preventing
apoptosis/PCD [114] by bringing ER stress levels down [120]; repairing subcellular organs
and genetic materials [109,119]; and promoting its recovery to enhance stress tolerance as a
whole organism. Further, research is needed on the melatonin–ER stress relationship and
the role of polyamines in melatonin-induced ER stress response in plants.
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