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Abstract: The extracellular matrix (ECM) of the brain is a dynamic structure made up of a vast
network of bioactive macromolecules that modulate cellular events. Structural, organizational, and
functional changes in these macromolecules due to genetic variation or environmental stressors are
thought to affect cellular functions and may result in disease. However, most mechanistic studies to
date usually focus on the cellular aspects of diseases and pay less attention to the relevance of the
processes governing the dynamic nature of the extracellular matrix in disease pathogenesis. Thus,
due to the ECM’s diversified biological roles, increasing interest in its involvement in disease, and
the lack of sufficient compiled evidence regarding its relationship with Parkinson’s disease (PD)
pathology, we aimed to compile the existing evidence to boost the current knowledge on the area and
provide refined guidance for the future research. Here, in this review, we gathered postmortem brain
tissue and induced pluripotent stem cell (iPSC)-related studies from PubMed and Google Scholar to
identify, summarize and describe common macromolecular alterations in the expression of brain ECM
components in Parkinson’s disease (PD). A literature search was conducted up until 10 February 2023.
The overall hits from the database and manual search for proteomic and transcriptome studies were
1243 and 1041 articles, respectively. Following a full-text review, 10 articles from proteomic and 24
from transcriptomic studies were found to be eligible for inclusion. According to proteomic studies,
proteins such as collagens, fibronectin, annexins, and tenascins were recognized to be differentially
expressed in Parkinson’s disease. Transcriptomic studies displayed dysregulated pathways including
ECM–receptor interaction, focal adhesion, and cell adhesion molecules in Parkinson’s disease. A
limited number of relevant studies were accessed from our search, indicating that much work remains
to be carried out to better understand the roles of the ECM in neurodegeneration and Parkinson’s
disease. However, we believe that our review will elicit focused primary studies and thus support
the ongoing efforts of the discovery and development of diagnostic biomarkers as well as therapeutic
agents for Parkinson’s disease.

Keywords: Parkinson’s disease; extracellular matrix; post mortem tissue; induced pluripotent stem
cells; proteins; transcription

1. Introduction

Parkinson’s disease (PD) is an extremely heterogeneous neurodegenerative disorder
characterized by the cardinal features of the hallmark presence of bradykinesia, rest tremor,
and rigidity [1,2]. These motor signs are often preceded by non-motor manifestations
such as constipation, autonomic and olfactory dysfunction, sleep disturbances, depression,
and anxiety. This motor dysfunction is due, in a large part, to the loss of dopamine (DA)-
containing neurons in the substantia nigra pars compacta (SNc), a part of the midbrain that
plays an important role in the regulation of movement [3–5]. It has been estimated that, at
clinical presentation, more than 60% of SNc DA neurons have already degenerated, and
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there is also an 80% reduction in dopamine content in the striatum [3,4,6]. Although the
disease appears multifactorial in origin, it could result from a complex interaction between
genetics and the environment, and commonly affects older people, coming in second only
to Alzheimer’s disease in neurodegenerative diseases [7]. Several genes or loci including
synuclein alpha (SNCA), leucine-rich repeat kinase 2 (LRRK2), Parkin RBR E3 ubiquitin
protein ligase (PARKIN), PTEN-induced kinase 1 (PINK1), and glucosylceramidase beta
1 (GBA1), which have a genetic and neuropathologic link to PD, have been identified as
being involved in PD, have been reviewed elsewhere [8–12] and are also registered in the
Online Mendelian Inheritance in Man (OMIM) database. There has been speculation that
extracellular alpha-synuclein may contribute to the spread of PD by activating microglia
and causing neuroinflammation [13]. This activation of microglia could also have significant
implications for the extracellular matrix (ECM) [14]. As a result of the aging population
and the world’s increasing industrialization, which is linked to environmental risk factors,
the prevalence of PD is expected to rise steadily to around 13 million by 2040 [15]. The late
onset of motor symptoms, after the loss of the majority of dopaminergic neurons, and the
lack of any reliable biomarkers is the current diagnostic challenge of the early detection of
and intervention in ever-increasing PD cases [16]. Thus, the discovery and development
of specific biomarkers for early diagnosis and neuroprotective strategies are of utmost
importance for this currently incurable disease.

The ECM is a three-dimensional, cell-secreted, ubiquitous, and complex macromolec-
ular network of proteins and glycans, which is built up around the cellular components
of every tissue [17,18]. The ECM demonstrates great tissue specificity due to its varied
compositions and topographies that are formed by a dynamic interaction between the
numerous cells in each tissue and the altering milieu [19]. Brain ECM networks account
for 10–20% of brain volume and constitute collagenous and non-collagenous proteins,
glycoproteins, hyaluronan, and proteoglycans (PGs) [20,21]. The network also binds se-
creted proteins such as growth factors and is known to interact with numerous cell surface
receptors, such as integrins, thereby providing biochemical cues that regulate the activities
of protein complexes and mediate cell-to-cell communication [22,23]. The intricate chemical
composition enables the ECM to play a crucial role in governing essential cellular behaviors
and characteristics such as cell survival, function, attachment, and proliferation, and it also
aids in the physical organization of neuronal and glial cells into distinct brain areas [24,25].

While the ECM’s composition is broadly similar across different tissues, there are
notable differences in the types and amounts of molecules present in the ECM of different
organs. In the brain, the ECM is designed to maintain homeostatic processes that are crucial
for the survival of terminally differentiated cells, which generally do not regenerate [26,27].
Functionally, the ECM surrounding blood vessels in the brain, which includes basement
membrane components such as laminin and collagen IV, is more similar to the systemic
ECM. However, closer to the brain’s cellular environment, the ECM has different anatomies
such as the diffuse interstitial matrix and the condensed perineuronal nets (PNNs) that
surround specific populations of neurons [28]. The ECM is even specific around the synaptic
elements [29], further stressing its importance to brain function. In these specialized
structures, the brain ECM is distinct and plays an important role in regulating neuronal
activity and synaptic plasticity [30–34]. As a result, it has a unique molecular makeup,
with a long chain of hyaluronic acid as its primary component [28]. Additionally, the
components are spatially and temporally controlled throughout brain development [26,27].
As an individual reaches adulthood, the composition of the brain’s ECM mainly consists
of glycans and proteoglycans, with fewer amounts of collagen and other fibrillar ECM
proteins, but it still serves to anchor different structures and guard against abnormal
synaptic remodeling [30,35]. Its components are, however, poorly regulated in certain
diseases, and as a result, a myriad of ECM changes occur during pathogenesis [18,26,36].

The ECM also has an important role in regulating synaptic function and development [37].
As the brain develops postnatally, the composition of the ECM changes to facilitate this
function [38,39]. In the early stages of development, the ECM is dynamic and permis-



Int. J. Mol. Sci. 2023, 24, 7435 3 of 22

sive to facilitate neuronal plasticity [40,41]. As the brain reaches the end of this critical
period, which is marked by extensive neuronal outgrowth and synaptic refinement, the
ECM is remodeled and replaced by an adult form enriched by PNN [30]. The PNNs are
located between neurons and glia and act as a physical barrier that inhibits further synapse
development [39]. The composition of the ECM is regulated by neurons and glial cells
through the secretion of ECM proteases such as matrix metalloproteinases (MMPs), and a
disintegrin and metalloproteinase with thrombospondin motifs (ADAMTS), which play a
crucial role in ECM remodeling [42].

Brain ECM components are synthesized and secreted by both neurons and glial
cells [43–45]. However, in the Central Nervous System (CNS), glial cells act as major
regulators of the fate of the ECM [14]. Microglia, the main immune cells in the brain
parenchyma, play an important role in the homeostasis of the brain ECM [46,47]. Microglia
perform phagocytic removal of ECM components during synaptic remodeling [47–50].
It has been suggested that during synaptic remodeling, cell-to-cell interactions occur
between microglial processes and dendrites [51], resulting in the phagocytic breakdown
and remodeling of the ECM by microglia [52]. Accordingly, microglia-based clearance
or modulation of the ECM around each synapse serves as the fuel to support synaptic
remodeling [47], whereas microglia’s dysfunction results in aberrant ECM clearance or
buildup, which contributes to the pathophysiology of the disease [14]. In animal models
of PD, regions of neuronal degeneration were found to have an increased density of
microglia [53]. A study on mice also reported brain injury as a promoter of the interaction
between microglia and dendrites and subsequent neurotoxicity [54]. Activated microglia
also cause blood–brain barrier disruption [55], which could lead to fibroblast infiltration
and subsequent ECM breakdown in PD [56].

Astrocytes play a role in the elimination of extracellular α-synuclein, a protein associ-
ated with the pathogenesis of PD, and also protect neurons from the propagation of the
same protein [57]. They also maintain a neuroprotective environment in the CNS under
normal and inflammatory conditions by releasing a variety of ECM glycoproteins such as
laminins and tenascin-C [58]. In various disease processes, reactive astrocytes can become
reactive or asthenic [59], and in PD, a special inflammation process without reactive astro-
cytes was previously reported [60]. In addition, these glial cells help maintain the structural
integrity of the blood–brain barrier, which is disrupted in PD cases [61]. The blood–brain
barrier, on the other hand, is a highly regulated and dynamic structure that is additionally
affected by interactions between its cellular and ECM components [62,63]. Due to their
crucial role in the formation of myelin, oligodendrocytes, glial cells that produce myelin
to wrap axons, also have active roles in PD [64]. The ECM forms the microenvironment
that crucially controls the cellular fate of oligodendrocytes and other cells, and the proper
functioning of each ECM component determines their development and pathology [65,66].
Overall, this dynamic interplay between glial cells, PD, and their surrounding milieu
highlights the importance of glial cells and ECM in neuroprotective activity.

Over the past few decades, the application of high-throughput technologies has fun-
damentally advanced our understanding of disease mechanisms [67–77]. However, under-
standing the link between cells and the surrounding ECM remains a formidable task [26].
Many cellular activities are dominated by proteins, and knowing how these processes
are controlled at the protein level is crucial for understanding the underlying molecular
causes of diseases [78]. The understanding of PD pathophysiology was substantially aided
by proteomic studies of brain tissue [79–81]. Samples from PD patients and PD animal
models have displayed damage to the macromolecules of intracellular components [82–87].
Complex disease mechanisms involving neuroinflammation, oxidative stress, and the ubiq-
uitin proteasomal system (UPS) are commonly linked with PD [88,89]. Despite the efforts
to identify pathways and targets for the development of a defined therapeutic plan for
PD, it remains elusive. The reason why the current understanding of PD development is
incomplete could be attributed to the fact that the identified pathways and targets do not



Int. J. Mol. Sci. 2023, 24, 7435 4 of 22

present a complete picture, which may be further exacerbated by the limited sample types
and restricted brain regions considered in proteomic studies.

The lag behind diagnostic biomarkers and effective treatment can further be attributed
to the unbalanced emphasis given to intracellular components, with little attention being
paid to the brain ECM. The brain ECM is vital for neural plasticity and is also known to play
an important role in neurodegeneration [90,91]. Despite its critical role in the regulation
of cellular function, few studies have addressed it in PD [92–95]. In addition, only a small
number of studies that specifically examine the ECM have been performed so far, and these
investigations show that PD patients have altered ECM components [96,97]. The fact that
research is concentrated on certain areas of the brain may also conceal the method by which
the association between the ECM and PD is understood. As demonstrated in postmortem
tissue of AD patients [98], PD may also involve numerous distinct locations, including
those parts of the brain that have not been known to be impacted by the disease. It has
been shown that injury or inflammation can cause the degradation of the ECM, leading
to the release of various ECM molecules, including hyaluronan fragments, tenascins, and
sulfated proteoglycans [24,99,100]. These fragments can travel through the extracellular
space and affect adjacent regions in a paracrine manner, which can serve as a biomarker for
the early diagnosis of PD as well as be used to monitor its prognosis [100]. Thus, the precise
role of the ECM in PD pathology has been masked by several variables, which necessitate a
comprehensive evaluation of studies that have been conducted on various brain regions
and reported alterations of ECM components in PD.

While proteomics can provide a lot of information about the composition of the ECM,
it does have some limitations. Some ECM proteins are highly insoluble or difficult to extract
so they may not be amenable to proteomic analysis [101]. Additionally, the ECM is not
composed solely of proteins; it also contains other molecules such as glycosaminoglycans,
which are not always manageable for proteomic analysis [28,102]. Similarly, proteomic
analysis can also be affected by post-translational modifications, including glycosylation,
which can modify the identity and function of proteins [103]. The inability of current
discovery strategies to detect low-abundance and transient protein species is the additional
challenge of proteomic analysis to give a complete picture of ECM [102,104].

Here, we aimed to examine the differences in ECM expression and composition be-
tween PD patients and matched healthy controls, summarize key findings, and provide
recommendations for the direction of future ECM-related research. To do this, we per-
formed a thorough literature search to pinpoint the ECM proteins that are differentially
expressed in PD. Accordingly, several ECM proteins including annexins, collagens, versican,
and tenascins were identified. We also identified and summarized transcriptomic studies to
identify genes and pathways that are differentially expressed in PD patients. These studies
have reported ECM–receptor interaction, focal adhesion, cell adhesion molecules, and cell
adhesion together with the integrin signaling pathway to be differentially expressed in
PD. We believe that our review will elicit focused primary studies and thus support the
ongoing efforts of the discovery and development of diagnostic biomarkers of as well as
therapeutic agents for PD.

2. Methods
2.1. The Literature Search Strategy

All articles published in English were searched in PubMed and Google Scholar. The
information was extracted from proteomic and transcriptomic studies that reported differ-
entially expressed ECM-related proteins and genes/biological pathways. A comprehensive
literature search was performed until 10 February 2023 with the search terms: “Proteomic*
AND Parkinson’s disease”, “Parkinson’s disease AND Extracellular matrix”, Transcrip-
tomic* AND Parkinson* disease AND Extracellular matrix”, “Gene expression profiling
AND Parkinson’s disease”. Only studies that included postmortem/brain tissue samples
and induced pluripotent stem cells (iPSCs)/neurons of human origin were included. The
reference list of all identified studies was also scanned for other potentially relevant studies.
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Following the search, all identified citations were collated and uploaded into a citation
management system. The search was re-run before summarizing the data, and additional
studies retrieved were also screened for inclusion.

2.2. Selection Criteria

Initially, two independent reviewers screened and retrieved the articles based on the
titles and abstracts, and then the full texts of the identified articles were evaluated.

2.2.1. Inclusion Criteria

• Proteomic studies
• Genome-wide transcriptomic studies
• Information on differentially expressed proteins/genes/pathways related to control conditions
• Samples employed either from human patients or cell lines of human origin
• Non-review articles.

2.2.2. Exclusion Criteria

• Studies conducted on nonhuman tissue or cell lines
• Interventional studies
• Literature reviews.

2.3. Data Extraction and Management

Two reviewers independently extracted data from the included studies using a well-
structured data extraction format with strict adherence to the inclusion criteria. Extracted
information included the author’s name, year of publication, number of participants, the
status of the study participants (case or control), demographic characteristics (e.g., sex and
age), PD type (idiopathic or genetic), sample type (brain tissue or iPSCs), brain region, post-
mortem interval, proteomic/transcriptomic method, identified proteins/genes/pathways
and regulations. The data extracted by the two reviewers were first compared and then
merged into one datasheet. The data extraction form and all extracted data are provided as
supplementary files. The EndNote X7.5 citation manager (Thomson Reuters, New York,
NY, USA) was used to store, organize and manage all the references.

Every protein and gene/genomic pathway that has been reported to be altered were
manually collected from both the main text and the Supplementary Materials. The proteins
were organized according to their respective human Uniprot ID. Proteins, genes, and
biological pathways that are commonly reported (reported by, at least, two articles) to
be differentially expressed and other relevant evidence were separately presented in the
Results section below. A summary table with detailed information on the included articles
is presented in a supplementary file.

3. Results
3.1. Literature Search Results

The total number of research articles from the database and manual search for pro-
teomic studies was 1243. Following a title and abstract screening, 22 articles were found
to contain a PD control comparison and proteomic analysis. After a full-text review, only
10 articles were identified to contain an ECM protein-related report and differentially ex-
pressed ECM proteins and thus selected for data extraction. The search for transcriptomic
studies identified a total of 1041 studies. These studies were screened based on the titles
and abstracts, resulting in 49 articles. Then, the full texts were reviewed and 24 articles
were eligible for inclusion (Figure 1).
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Figure 1. Preferred reporting items for systematic reviews and meta analyses (PRISMA) flow diagram
of the search strategy.

3.2. Summary of the Demographic Characteristics of the Study Participants

All proteomic studies and the majority of the transcriptomic studies were from post-
mortem brain tissue-based samples. Four articles with transcriptomic analysis were from
iPSC-based studies [67–69,105]. One of the articles reported an analysis of post-mitotic
catecholaminergic neuron-like cells, which also constitute DA neurons [106]. From the
eligible studies, 247 participants (129 cases and 118 controls) were from proteomic analysis,
and 1021 participants, (539 cases and 482 controls) were from transcriptomic analysis
(Figure 2). All of the cases in proteomic analysis, and most of them in the transcriptomic
analysis, were idiopathic PD cases (Figure 3A). The average age of the participants from
both proteomic and transcriptomic studies displayed that most of the participants were
aged individuals (>65 years) (Figure 3B). Most studies reported an average post-mortem
interval (PMI) of less than 22 h, and in most of the proteomic studies, age, gender and PMI
were matched between the case and the controls; if not, these variables were controlled
(Figure 3C, Table 1).
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Table 1. Patient and sample information from the included proteomic studies.

No. of Study Participants Average Age Sex PMI (h)
Remark Ref.

Case Control Case Control Male Female Case Control

6 6 77.8 77.8 0 12 5.75 7.15 Matched * [107]

3 3 81.7 83.3 6 0 19.7 20 [108]

3 3 79 72.7 3 3 18.7 24 [109]

20 5 - - - - <12 h <12 h Matched * [110]

28 37 77.6 68 28 37 10.25 14.1 Matched */cohort [96]

28 36 77.6 68 28 36 10.25 14.1 Matched */cohort [97]

5 5 84.2 77.4 6 4 35.6 30.2 Matched *. PMI controlled [111]

21 8 79.9 77.8 17 12 10.6 17.4 [112]

12 12 76.8 79.5 24 0 4.16 5.66 ** controlled [113]

3 3 4 2 Matched * [114]

* Matched = age, gender and PMI are matched; ** controlled = age and PMI are controlled.
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3.3. Description of the Included Articles

All of the proteomic studies and the majority of the transcriptomic articles were from
primary studies of postmortem tissue (Figure 4A, Table 2). Except in two studies [96,109],
the reported number of differentially expressed ECM proteins was less than ten. The
total share of differentially expressed ECM proteins reported from each proteomic study
was less than one-fifth of the total differentially expressed proteins in that specific study
(Table 2). Most of the articles in transcriptomic studies incorporated more than one brain
region followed by the substantia nigra, which was solely used by 37% of the included
articles (Figure 4B). However, the majority of the proteomic studies used samples from
the frontal cortex followed by samples of the substantia nigra (Table 2), but most of the
reported ECM-related differentially expressed proteins were from the substantia nigra
(Figure 4D). Liquid chromatography with tandem mass spectrometry (LC-MS/MS) was the
most commonly utilized method for the proteomic studies (Table 2), whereas microarray
with RT-qPCR validation was the common method reported from transcriptomic studies
(Figure 4C).
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Table 2. Differentially expressed proteins from postmortem brain samples and the methods applied.

Brain Region Method DEP DEP (ECM-Related) DEP (ECM-Related) % Ref.

Locus ceruleus LC-MS 87 2 1.1 [107]

Substantia nigra MS/MS 23 2 8.7 [108]

Substantia nigra LC-MS/MS 204 12 5.9 [109]

Frontal cortex (middle frontal gyrus) LC-MS/MS 200 2 1 [110]

Frontal cortex Brodmann area 9 Q-Extractive HF MS 89 14 15.7 [96]

Frontal cortex Brodmann area 9 Q-Extractive HF MS 112 * 8 7.1 [97]

Substantia nigra LC-MS/MS 11 2 18.2 [114]

Substantia nigra 2D-GE, MS/MS 16 2 12.5 [111]

Olfactory bulbs LC-MS/MS 168 1 0.6 [112]

Frontal cortex Brodmann area 9 LC-MS/MS 283 1 0.2 [113]

* The total ECM-related components identified; DEP = differentially expressed proteins.

3.4. Description of Commonly Reported Differentially Expressed ECM and ECM-Related Proteins

A total of 46 proteins that are related to the brain ECM were identified from the selected
proteomic studies of postmortem tissues. Some of them were reported in more than one
study, resulting in 33 unique proteins. Annexins and collagens were the most commonly
reported proteins followed by the versican core protein and brain link protein (Figure 5).
Most of the ECM-related proteins were reported to be upregulated. All collagen and
tenascin subunits were identified to be upregulated. However, different studies reported
hyaluronan, proteoglycan link proteins, and fibronectin differently (as dysregulated in both
directions) (Table 3).
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Table 3. Commonly reported differentially expressed ECM-related proteins from postmortem tissue
of PD patients compared with healthy controls (reported from, at least, two of the included studies).

Components Protein Names Gene Names Up/Down Ref

Versican family Versican core protein VCAN, CSPG2 up [96,97,107]

Collagen family

Collagen alpha-1(I) chain COL1A1 up [96,97]

Collagen alpha-2(I) chain COL1A2 up [96,97]

Collagen alpha-1(IV) chain COL4A1 up [96]

Collagen alpha-2(IV) chain COL4A2 up [96,97,112]

Collagen alpha-3(VI) chain COL6A3 up [96,97]

Annexin family

Annexin A1 ANXA1 up [109,114]

Annexin A2 ANXA2 up [97,109]

Annexin A5 ANXA5, ANX5 up [97,111]

Annexin A6 ANXA6, ANX6 down [97,108]

Hyaluronan and proteoglycan link
protein family

Hyaluronan and proteoglycan link protein 1 HAPLN1 (CRTL1) up [96]

Hyaluronan and proteoglycan link protein 2 HAPLN2 Down and
up [96,109,114]

Hyaluronan and proteoglycan link protein 4 HAPLN4 down [109]

Fibronectin family Fibronectin (FN) FN1 (FN) Up and
down [97,109]

Tenascin family
Tenascin, TN TNC (HXB) up [96]

Tenascin-R (TN-R) TNR up [110]

Galectin family

Galectin-1, Gal-1 LGALS1 up [111]

Galectin-3, Gal-3 LGALS3, MAC2 Down [107]

Galectin-3-binding protein LGALS3BP M2BP up [109]

3.5. Description of Commonly Reported Differentially Expressed ECM and ECM-Related Gene
Groups/Pathways/Processes

From the transcriptomic studies of postmortem tissues and iPSC-based studies, focal
adhesions were the most commonly reported macromolecular assemblies followed by cell
adhesion molecules and cell adhesion. ECM–receptor interaction and VEGF signaling
were equally reported by three articles (Figure 6). ECM–receptor interaction, cell adhesion
molecules, glycosaminoglycan degradation, and integrin signaling were all reported as
upregulated across the studies, and collagen and related processes were reported to be
downregulated. The remaining gene groups/pathways/biological processes were reported
to be dysregulated in both directions. Similarly to integrin signaling, all integrin-related
genes reported in the articles were upregulated, whereas collagen-related genes were
reported to be dysregulated in both directions (Table 4). Some of these pathways are
categorized into one (cell–cell/cell–matrix) and presented together with other dysregulated
pathways as given below (Figures 6 and 7).
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Table 4. Commonly reported differentially expressed ECM-related gene groups/pathways/biological
processes from iPSCs and postmortem tissue-based studies of PD patients compared with healthy
controls (reported from, at least, two of the included studies).

Genes/Gene
Groups/Pathways/Biological Processes Sample Up/Down References

ECM–receptor interaction Brain tissue, post-mitotic catecholaminergic
neuron-like cells, iPSC-derived DA neurons up [68,106,115]

Focal adhesion
Brain tissue and iPSC-derived DA neurons up [68,115–118]

iPSC-derived DA neurons down [67]

Cell adhesion molecules Brain tissue and iPSC-derived DA neurons up [67,115,117,119]

Cell adhesion
Brain tissue up [113,120,121]

iPSC-derived DA neurons Down [69]

Cell–matrix adhesion
Brain tissue up [115]

Brain tissue down [122]

Glycosaminoglycan degradation Brain tissue up [123,124]

Collagen and related processes iPSC-derived DA neurons down [67,69]

Integrin signaling Brain tissue up [113]

ITGA1, ITGA 3, ITGA 4, ITGA 5, ITGA 7, ITGA
11, ITGAM, ITGB3BP Brain tissue and iPSC-derived DA neurons up [67,68,120]

COL1A2, COL4A1, COL4A2,
COL6A3, COL12A1 iPSC-derived DA neurons down [67,125]

COL1A2, COL4A1, COLA2, COL18A1 Brain tissue and iPSC-derived DA neurons up [68,120]

LAMA1, LAMA2, LAMB1, LAMB2 Brain tissue and iPSC-derived DA neurons up [67,120,126–128]

LAMA3 Brain tissue Down [126]
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4. Discussion

According to our search result, a few studies reporting differentially expressed ECM
components were identified, and even fewer studies were identified that focused on pro-
teomic studies related to the ECM. Furthermore, the accessed studies reported a relatively
small number of ECM-related genes and proteins that are altered in PD compared to total
number of dysregulated genes. The frontal cortex and substantia nigra were the most fre-
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quently sampled regions, with collagens, annexins, tenascins, and versican being the most
commonly reported proteins. The transcriptomic studies identified several differentially
expressed ECM-related pathways, including ECM–receptor interaction, focal adhesion, cell
adhesion molecules, and cell adhesion. However, the limited number of ECM-targeted
studies highlights the need for more targeted research to gain a better understanding of
potential alterations in the brain’s ECM in relation to PD. The fact that only a relatively
small number of ECM-related genes and proteins have been reported to be altered in PD
compared to the total number of dysregulated genes reported may suggest that the role
of ECM in the development of PD is only partial, despite the abundance of ECM-related
genes present in the Matrix database; alternatively, it could indicate that conducting func-
tional studies, rather than solely focusing on “omics,” is a more plausible approach for
better understanding the contribution of the ECM to PD pathologies. Overall, the com-
piled evidence from our review work could potentially enhance our comprehension of the
pathophysiology of PD, and also help to guide ongoing efforts towards identifying reliable
molecular markers and effective interventions to halt its progression.

Around one-third of the ECM is made up of collagens, but there is little data to show
how they are affected in PD [129]. Despite this barrier, several types of collagens from
different categories—fibril-forming (I), network-forming (IV) and beaded filament-forming
(VI)—were observed to be differentially expressed in PD patients compared with matched
controls. In our analysis above, we showed the dysregulation of different collagen proteins
and genes from brain tissue and iPSC-based human studies. Similar findings have also
been reported from in vitro studies, animal PD models, and PD patients. In a 3D cell culture
of primary rat cortical neurons, Cullen et al. [130] observed an association between type IV
collagen, the major protein component of the basement membranes, and neurite outgrowth.
Transgenic mice with alpha-synuclein overexpression also exhibited elevated type IV colla-
gen expression, implying a potential correlation between alpha-synuclein accumulation
and basement membrane dysfunction in PD [131]. Type VI collagen is mainly found in
the connective compartments of the CNS, and is known to interact with other ECM com-
ponents [132]. An analysis of animal brain sections revealed that a deficiency in collagen
VI accelerates neurodegeneration by inhibiting autophagy and inducing apoptosis [133].
An additional study on transgenic mice has also demonstrated its neuroprotective role
against the toxicity of amyloid-β peptides and UV-induced damage [134]. Furthermore, a
study on patients with loss-of-function mutations in type VI collagen has also linked this
protein to dystonia, a movement disorder characterized by persistent or sporadic muscle
spasms [135]. Jin et al. [136], in their recent study on sporadic PD patients, reported a
possible connection between the COL6A3 gene variants and susceptibility to PD. According
to our proteomic review work, collagens IV and VI were found to be upregulated in PD
patients [96,97,112], although transcriptomic studies showed dysregulation of collagen IV
in both directions [67,68]. Along with other studies from different PD models, our review
work highlights the functional role of collagen (especially collagen VI) in neuronal cells
and their neuroprotective potential against neurodegeneration [137].

The key perineuronal net (PNN) components, such as lecticans, tenascin R, and link
proteins, interact with one another to form the PNN’s molecular framework, which wraps
around perikaryon and proximal dendrites of certain nerve cells [138]. Among the lecticans,
brevican, neurocan, versican and other types of proteoglycans such as decorin were re-
ported to be differentially expressed in PD in the proteomic studies included in the current
review work [96,97,107,109]. However, only the versican protein was widely reported
among them and observed to be upregulated across the studies [96,97,107]. Versican is a
non-fibrous component of the brain’s ECM, acting as a core protein to which side chains
of carbohydrates bind to create proteoglycans [28]. It is a multifunctional protein modu-
lating cell adhesion, migration, and inflammation, thereby interacting with immune cell
receptors and also other ECM components such as fibronectin and tenascin [139–141]. The
binding of immune cells to the versican–ECM complex may break down the ECM, leading
to neuroinflammation and apoptosis [141,142]. However, whether the intact or fragmented
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versican is responsible for neuroinflammation and apoptosis needs further investigation.
According to Downs et al. [97], its alteration involves both proteomic and glycoproteomic
changes in PD, and they emphasized the importance of changes in its glycosylation pattern
on the inflammatory process in PD. Overall, further research into its neuroinflammatory
mechanism and targeted work could lead to a novel approach to treating PD.

According to the reports from proteomic studies included in the current review, fibronectin
and tenascin were also among the widely reported dysregulated ECM proteins [96,97,109,110].
Tenascins (C and R) were demonstrated to be upregulated, but mixed results were observed
in the case of fibronectin [97,109]. Such opposing expressions of different glycoproteins
were also implicated in multiple sclerosis [143]. Like in PD, high tenascin levels were also
reported in the brains of Alzheimer’s disease (AD) patients [138]. According to a study
conducted on multiple sclerosis patients, this enhanced production may probably represent
a defensive mechanism, yet excessive production could lead to disorganized matrix deple-
tion and the suppression of restorative activities [28,144]. Additional studies on an in vitro
model of induced inflammation of hippocampal neurons co-cultured with glial cells and on
an AD mouse model showed that the inhibition of tenascin’s function and compounds that
reduce its production suppresses neurodegeneration [145,146]. These outcomes in other
neurodegenerative diseases and their upregulation in PD patients indicate the importance
of tenascins as a potential therapeutic target for neurodegenerative diseases. To stabilize
the ECM at the cell surface, fibronectin needs uninterrupted polymerization into fibrils,
which in turn requires the adequate delivery of integrins [147,148]. In our literature review,
integrin gene expression was upregulated in both postmortem and iPSC-based studies
of PD patients [67,68] and the opposite expression between fibronectin and integrin was
also reported in iPSC-based studies [67,68]. Such contradicting results from co-functioning
genes necessitate further work to figure out their exact contribution to PD pathogenesis.

Annexins are another group of proteins reported to be differentially expressed in
postmortem tissue of PD patients. According to a report based on affinity chromatography
and solid phase assays, these proteins are known to bind with glycosaminoglycans (GAGs),
ECM components, with specific binding affinities [149]. In this review work, annexin A6
was downregulated while annexins A1, A2, and A5 were upregulated [97,109,111,114]. It
has been demonstrated that annexin A6 acts as a recognition component for GAGs in the ex-
tracellular space [149]. In contrast to annexin A6, transcriptomic postmortem studies from
our review work indicated the upregulation of the GAG degradation pathway [123,124].
Such opposing expressions may likely indicate the disruption of their molecular networks
and associated signaling pathways in PD [149]. Furthermore, it has been demonstrated
that, in conjunction with annexin A2, annexin A6 interacts with tau, which is thought to
contribute to the pathological redistribution of tau in Alzheimer’s disease. [150]. Recombi-
nant human annexin A1 (hrANXA1) was demonstrated to lower amyloid-β levels in an
AD mice model [151] whereas annexin A5, whose cerebrospinal fluid level was reported to
match disease severity in AD patients, was implicated as a biomarker in AD [152]. These
pieces of evidence together imply the impact of annexins in neurodegeneration and their
potential as biomarkers and therapeutic targets.

Along with proteomic study, transcriptomic study is also providing valuable insights
into the genetic underpinnings of PD and paving the way for new and personalized
approaches to its diagnosis and treatment. Consequently, we gathered literature reporting
transcriptional alterations in the ECM of PD patients. Several pathways and processes,
including ECM–receptor interaction, focal adhesion, cell adhesion molecules, and cell
adhesion were observed to be dysregulated after gene ontology (GO) analysis. Focal
adhesions are the specialized cell adhesion structures that mediate the interaction between
the ECM and the intracellular actin cytoskeleton [153,154]. Cell adhesions occur through the
interactions between cell adhesion molecules (CAMs) and transmembrane proteins located
on the cell surface, which connect cells to the ECM [155]. These interactions involve two
types of receptors, cadherin and integrin receptors, which mediate cell–cell and cell–ECM
adhesion, respectively [156,157]. In the ECM, integrin binds with laminins, cell adhesion
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molecules, and major components of the basement membrane [158]. From this review work,
both integrins and laminins were observed to be upregulated in PD [67,68,113,120,126–128].
Furthermore, the significance of cell adhesion for cell survival and physiology highlights the
importance of proper communication between the ECM and integrins [159]. This evidence,
together with the dysregulation of their signaling pathways and individual genes in PD,
underlines integrins as a potential and valid target molecule for PD treatment. Previous
success in developing integrin-targeted antibodies blocking ligand binding [160,161] and
downstream signaling [160,162] further support the significance of integrins as important
drug targets.

According to the included studies, the substantia nigra, the primary region of the
brain involved in PD, has a relatively larger average percentage of differentially expressed
ECM proteins per total number of differentially expressed proteins compared to other brain
regions. Overall, most of the proteomic studies from our review reported a small number of
differentially expressed ECM proteins. Several factors including the quality of postmortem
human samples and methods applied for sample dissociation and extraction may affect
protein extraction [163]. The postmortem interval (PMI) is one of the important parameters
in postmortem studies, particularly when evaluating postmortem tissue sample quality.
There has been evidence that a prolonged PMI causes protein breakdown, which substan-
tially reduces the amount of detectable protein during subsequent tissue processing [163].
However, if the autopsy is taken as soon as possible (PMI < 22 h), as demonstrated, protein
integrity will be retained, which is consistent with the majority of the articles included
in our review work. In most of the articles the age, gender, and PMI were reported to be
matched/controlled. Therefore, other variabilities between individual patients and overall
health at the time of death may be more likely here [163,164].

Despite the evidence of hyaluronan remodeling in the neurodegeneration mouse
model [50,165], in the studies that we analyzed, it was not shown to be dysregulated.
However, one of the studies reported the upregulation of the heparan sulfate-glucosamine
3-sulfotransferase 2 (HS3ST2) gene in postmortem brain tissue [120]. In addition to this,
changes in the glycosylation profile of versican were also reported in PD [97]. Versican
plays a role in neuroinflammation by mediating communication between neutrophils and
cytokines [166]. The glycosylation pattern of versican affects this process, and aberrant
expression and glycosylation could potentially disrupt this inflammatory process in PD.
Another study included in the analysis also reported the changes in brain tissue associated
with glycosaminoglycans (GAGs) and proteins during normal aging and compared them
to those seen in PD. The study found that the changes in the composition of heparan sulfate
disaccharides that occur during human aging are different from those seen in PD [96].
These alterations in the disaccharide profiles of GAGs that occur in PD could be indicators
of changes in the way that signaling proteins are presented to cellular receptors and the
inadequacy of proteomic studies to present complete pictures of the ECM’s status. Such
changes in ECM components have important implications for PD pathogenesis. Studies
have also shown that analysis of ECM proteins and carbohydrates during injury may
provide insight into the underlying pathobiology of PD [100]. Along with its abundance, a
disruption of the ECM might thus be a signal of tissue damage and its components could
potentially serve as biomarkers to diagnose or monitor PD. The samples that are used for
omics analysis could also harbor inherent genetic, proteomic, and glycomic variability [96].
However, an integrated analysis of multi-omics data would possibly give replicable results
and minimize the time lapse in bringing bench work to the bedside.

Some of the included iPSC- based studies were conducted on both familial and id-
iopathic PD [67,68]. These studies suggest the biological origin of even idiopathic PD.
However, this might be confounded by the fact that the samples that are used for omics
analysis could also harbor inherent genetic, proteomic, and glycomic variability [96]. In
general, studying the ECM presents several challenges due to its complexity and dynamic
nature. Standardized methods, proteomic techniques, and better in vitro models will be
essential for advancing our understanding of ECM dynamics and its role in tissue homeosta-
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sis and disease. Maintaining its complex three-dimensional nature is one of the challenges
in 2D iPSC cultures. This can make it difficult to compare results across studies and limit
the reproducibility of findings. However, integrated analysis of multi-omics data would
possibly give replicable results and minimize the time lapse in bringing bench work to
the bedside. Importantly, in recent years, organoids, which are 3D scaffolds that mimic
the architecture and functionality of organs in vivo, have been developed [167–169]. These
offer a powerful tool for studying brain diseases and disorders [170–172]. Brain organoids
may therefore be used for modeling the development, maturation, and aging of the brain
ECM, specifically in PD. However, Matrigel is frequently employed for the embedding
of the embryoid bodies (EBs) during the production and expansion of almost all kinds of
organoids [168,173]. Since Matrigel’s main components are collagens and laminin, it intro-
duces a confounding factor when trying to model the brain ECM, and this is an important
issue that needs to be addressed, perhaps by using other types of gels with a similar strain
modulus [167,174,175].

In conclusion, limited relevant studies were accessed from our search, indicating
that much work remains to be carried out to better understand the roles of the ECM in
neurodegeneration and PD. Our work summarizes proteomic and transcriptomic studies
of ECM genes and proteins that are dysregulated in PD. In general, compared to the total
number of dysregulated proteins and genes, only a few ECM-related proteins and genes
were identified. From the collective evidence, we observed that, although the current
knowledge on the involvement of aberrant ECM proteins in PD is still in its infancy,
it is clear that changes in the expression of ECM macromolecules play important roles
in PD. The most commonly reported differentially expressed proteins were annexins,
collagen VI, versican, and tenascins, whereas ECM–receptor interaction, focal adhesion,
cell adhesion molecules, and cell adhesion, as well as the integrin signaling pathway and
individual integrin genes, were commonly dysregulated at the transcription level. These
ECM components and pathways are potential sites to be investigated, validated, and used
as drug targets for PD treatment.
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