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Abstract: Drought is one of the most serious abiotic stressors in the environment, restricting agri-
cultural production by reducing plant growth, development, and productivity. To investigate such
a complex and multifaceted stressor and its effects on plants, a systems biology-based approach
is necessitated, entailing the generation of co-expression networks, identification of high-priority
transcription factors (TFs), dynamic mathematical modeling, and computational simulations. Here,
we studied a high-resolution drought transcriptome of Arabidopsis. We identified distinct temporal
transcriptional signatures and demonstrated the involvement of specific biological pathways. Genera-
tion of a large-scale co-expression network followed by network centrality analyses identified 117 TFs
that possess critical properties of hubs, bottlenecks, and high clustering coefficient nodes. Dynamic
transcriptional regulatory modeling of integrated TF targets and transcriptome datasets uncovered
major transcriptional events during the course of drought stress. Mathematical transcriptional sim-
ulations allowed us to ascertain the activation status of major TFs, as well as the transcriptional
intensity and amplitude of their target genes. Finally, we validated our predictions by providing
experimental evidence of gene expression under drought stress for a set of four TFs and their major
target genes using qRT-PCR. Taken together, we provided a systems-level perspective on the dynamic
transcriptional regulation during drought stress in Arabidopsis and uncovered numerous novel TFs
that could potentially be used in future genetic crop engineering programs.

Keywords: co-expression network; water deprivation; drought; systems biology; network centrality;
computational simulation; Arabidopsis; transcriptional regulation

1. Introduction

Since the last century, ecological and agricultural systems have been negatively im-
pacted by a wide spectrum of environmental cues, including biotic and abiotic stresses.
Among all the abiotic stimuli that limit crop yield, drought is the most threatening environ-
mental constraint that adversely affects plant growth and productivity [1–4]. As such, it
constitutes a serious threat to animals and crops in practically every corner of the globe by
affecting up to 45 percent of the world’s agricultural area, which is home to 38 percent of
the world’s human population [2]. In the United States, drought is increasingly common,
costing an average of $9.6 billion each year, and is thus deemed as one of the most critical
economic problems and natural threats [2]. Moreover, this crisis of crop productivity is
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further exacerbated by global climate change and future water shortages [3]. Since water is
essential at all stages of growth and development, even a subtle variation in water potential
during critical growth phases can adversely impact the yield of agronomically important
crops [2,5,6]. For instance, drought-related water scarcity can reduce 40% and 50% of
wheat and tomato production, respectively [5,7]. Likewise, it was projected that climate
change-related water deficiency could reduce potato production by 18–32% in the next four
decades [4]. Besides directly impacting crop yield, drought can induce nutrient deficiencies
owing to a slower rate of mineral diffusion from the soil matrix to the roots [8]. Furthermore,
drought stress elicits a wide range of physiological, biochemical, and metabolic injuries
in plants, leading to cellular damage and a reduction in crop production and quality [2,9].
Therefore, it is imperative to understand the underlying molecular mechanisms of plant
drought stress tolerance.

While diverse plant organs and tissues, including roots, shoots, and leaves, respond
to drought stress in both a generalized and specialized manner [10], roots constitute the
primary sensors detecting drought-related stresses. At the onset of drought stress, the
modification of root architecture, as well as the regulation of root-to-shoot water traffic,
are initiated to maximize water uptake [8,10,11]. To avoid non-stomatal water loss in the
aerial parts of plants, drought induces structural and compositional cuticular modifica-
tions that augment the water barrier property [11]. Furthermore, stomata located in the
epidermis of the leaves are closed to minimize excessive water loss through transpiration.
Such physiological changes in the whole plant are coordinated with the alteration in the
cellular concentration of diverse phytohormones, particularly the production of abscisic
acid (ABA) and ethylene (ET) [10,12]. This leads to the activation of intricate hormonal
signaling networks that are controlled by functional and regulatory proteins and mani-
fested by global transcriptomic reprogramming [13–15]. Towards this, several major plant
transcription factor (TF) families have been characterized in response to drought. This in-
cludes AREB/ABF (ABA-responsive element-binding protein/ABA-binding factor), DREB
(dehydration-responsive element-binding), AP2/ERF (APETALA2/ethylene-responsive
element-binding factor), bZIP (basic leucine zipper), NAC (NAM, ATAF1/2, CUC), MYB
(myeloblastosis oncogene), and bHLH (basic helix-loop-helix proteins) [10,12–17]. While a
wealth of drought-related transcriptomic information is available for the model plant Ara-
bidopsis, it remains to be determined how temporal transcriptomic differences are governed
by master regulators, including major TFs. To establish a comprehensive understand-
ing of complex and dynamic host transcriptional regulatory responses to drought stress,
a systems-level approach is necessitated that encompasses systematic, time-scale tran-
scriptional response analyses in Arabidopsis that could be later applied to agronomically
important crop plants.

A Systems Biology-based investigation of transcriptional regulatory networks (TRNs)
entails the generation of genome-wide expression networks, identification of highly in-
fluential nodes, as well as dynamic mathematical modeling, computational simulations,
and probabilistic assessments of transcription [18–21]. Regulatory networks comprise tran-
scriptional components, referred to as “nodes,” and regulatory interactions between nodes,
termed “edges” [20,22]. The characteristics of such transcriptional relationships constitute
either direct TF-target interactions or co-expression of highly correlated genes [10,13,14,18].
Network biology, a branch of systems biology, is critical in deciphering the biological
information of individual nodes or edges and regulatory networks as a whole [20,23–25].
Henceforth, topological features of a system and network architectural analyses can be em-
ployed to identify novel molecular players and regulators in various regulatory networks
in diverse systems [14,26–29]. Among these network features, modules (clusters of highly
correlated genes) and hubs (high degree; the number of edges of a node) have been used to
predict major regulators in Arabidopsis and tomato [14,30]. Modeling dynamic transcrip-
tional processes in TRNs is challenging, but it can hold great promise for comprehending
how plants respond to water scarcity. For instance, in a small-scale genetics-based study,
an Arabidopsis TF ANAC016 was shown to coordinate with AREB1 and NAP (NAC-like
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activated by AP3/PI) TFs through a trifurcate feed-forward regulatory circuitry in response
to drought [31]. iDREM (interactive Dynamic Regulatory Events Miner) reconstructs dy-
namic regulatory networks at global levels that can potentially provide information on the
function and timing of master regulators [32]. It utilizes time-course RNA-seq and static
TF-target datasets and highlights major bifurcation events where the expression of a subset
of genes diverges from that of the rest of the genes and identifies master regulators poten-
tially responsible for the transcriptional events [32,33]. SQUAD (Standardized Qualitative
Dynamical systems) perform steady-state studies and dynamic mathematical simulations
of TFs and their interacting targets [34]. It combines Boolean and ordinary differential
equation (ODE) models to execute such mathematical simulations [34]. Taken together,
a system biology-based approach allows the construction of global drought-responsive
TRNs and identifies master regulators that play critical roles throughout different stages
of drought.

Here, we identified time-point-specific unique and shared Arabidopsis transcriptome
signatures in response to drought. Moreover, we highlighted the biological pathways
pertinent to these temporal transcriptomes. We constructed a global co-expression network
in Arabidopsis to determine highly significant modules that are implicated in drought. Our
network architectural and centrality analyses identified high-priority genes and 117 TFs.
Integration of TF-target and time-course RNA-seq datasets allowed us to identify 25 major
TFs that are implicated in “water deprivation response” throughout the time of drought
stress. We selected six of these novel TFs, which possess either of three centrality features,
that is, hubs, bottleneck, and a high clustering coefficient (CC), and performed mathemat-
ical simulations that allowed us to decipher the amplitude and duration of target gene
expression exerted by these six TFs. To support these computational transcriptional predic-
tions, we provided experimental evidence of the TF-target relationship in a time-course
drought qRT-PCR experiment using Arabidopsis plants. Overall, we provided a compre-
hensive dynamic model of the transcriptional regulatory network in Arabidopsis during
drought stress and discovered several novel TFs that can be implicated in future genetic
engineering crop enhancement programs.

2. Results
2.1. The Temporal Transcriptional Landscape of Arabidopsis during Drought Stress Identifies
Unique Transcriptome Signatures and Specific Biological Pathways

To reveal the drought-related transcriptional landscape in Arabidopsis, we built a sys-
tems biology-based pipeline (Figure S1). Towards this, we first analyzed a high-resolution
mRNA expression dataset (GSE76827) that pertains to drought stress treatment on days
0, 1, 3, 5, 7, and 9 (Figure 1A, Table S1). We observed only a few hundred differentially
expressed genes (DEGs) in the early phase of drought stress i.e., 42 and 947 DEGs for
day 1 and day 3, respectively (Figure 1B, Table S1). However, we discovered a drastic
change in gene expression as the drought stress progressed to day 5 (3924 DEGs) and
day 7 (9285 DEGs), with the highest numbers of DEGs on day 9 (13,614 DEGs) (Figure 1B,
Table S1). Intriguingly, we found that similar numbers of genes were up- or down-regulated
at all data points. For instance, 6702 and 6912 genes were up- and down-regulated on
day 9 of drought stress, respectively (Figure 1B, Table S1). It is important to note that the
pattern of results is consistent with the original publication [35], but differs in number since
we have chosen a different method, DESeq2, of analysis and cutoff for differential gene
expression analysis.
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Figure 1. Arabidopsis transcriptome dataset (GSE76827) displays more change in the expression
patterns at later sampling days of drought stress. (A) Heatmap of the gene expression profile of
Arabidopsis under drought conditions on different sampling days (as indicated). The color bars
display the normalized gene expression (Red ≥ 1, Blue ≤ −1). (B) The total number of uniquely
expressed genes on days 1, 3, 5, 7, and 9 are shown in the plots. (C) Differential gene expression
is displayed during the drought treatment time frame. The total number of genes significantly
deferentially expressed were 42, 947, 3924, 9285, and 13,614, respectively, on days 1, 3, 5, 7, and
9(false discovery rate (FDR) ≤ 0.05, log2 Fold Change (log2FC) ≥ |0.58|). Red dots correspond to
up-regulated genes, while blue points indicate down-regulated genes. (D,E) The gene ontology (GO)
enrichment analysis of Arabidopsis unique differentially expressed genes (DEGs) on day 7; (D), and
day 9; (E)) after drought stress is presented (p-value ≤ 0.05). The color gradient of bars in the gene
enrichment analysis represents low (yellow) to high (red) enrichment significance values.



Int. J. Mol. Sci. 2023, 24, 7349 5 of 23

To uncover both the shared and distinct temporal transcriptional landscapes for each
time point, we performed expression gradient analysis and identified time-point-specific
unique DEGs. This method of gene expression analysis allowed us to determine numerous
novel and unique transcriptional signatures over the course of drought progression. Specif-
ically, we discovered 1, 46, 265, 940, and 5471 DEGs on day 1, day 3, day 5, day 7, and day 9,
respectively (Figure 1C, Table S1). These results indicate that the number of unique genes
also gradually increased akin to the cumulative number of DEGs on a given day of drought
stress. Compared to day 7, which exhibited only 940 unique transcriptional signatures out
of 9285 DEGs, day 9 of drought stress is manifested with a significant number of unique
DEGs, i.e., 5471 out of 13,614 DEGs (Figure 1C, Table S1). Overall, these data suggest that
while the amplitude and duration of transcriptional signatures might be different between
day 1 and day 7 of drought stress, the transcriptional landscape is overall very similar
for this phase of drought. Moreover, a significant transcriptional switch likely ensued on
day 9 (Figure 1C, Table S1). To further understand the biological characteristics of such
transcriptional switches and gain insights into the potential pathways that are driving
these time-point-specific DEGs under drought stress, we performed gene annotation and
pathway analysis using Metascape [36]. We found that the “response to stimulus” gene
ontology (GO) category was enriched on day 3, while day 5 was enriched with “pyrimidine
nucleoside metabolic process,” “regulation of cell communication,” “sulfur and amino
acid metabolic,” and “ion transport” GO categories (Figure S2). Intriguingly, day 7 GO
categories were pertinent to cell wall biosynthesis, DNA damage, and cellular stress re-
sponses (Figure 1D). Finally, we observed that the drought response on day 9 featured
GO categories related to catabolic processes such as “cell death” and “autophagy,” “pro-
teolysis,” “vesicle-mediated transport.” “RNA splicing,” and “chromatin organization”
(Figure 1E). Taken together, our analyses constructed a global, dynamic transcriptional
landscape of drought that features major transcriptional events, unique gene signatures,
and novel pathways implicated in the Arabidopsis drought responses.

2.2. Network Topology Analyses of Drought-Related Co-Expression Network Reveal 117 Major TFs

A gene co-expression network is a systems biology-based analysis that isolates and
highlights various correlation patterns among a set of genes and identifies diverse modules
encompassing clusters of highly correlated genes that are potentially involved in related
biological pathways. Such analysis can allow the prediction of gene functions as well as
the discovery of functional modules, which may provide further insights into the transcrip-
tional gene regulatory mechanisms. Towards generating an Arabidopsis Drought-specific
Gene Co-expression Network (ADGCN), we used WGCNA (Weighted Gene Co-expression
Network Analysis) [37]. Our ADGCN encompasses 9370 nodes (genes) connected by
402,598 weighted edges (co-expression relationship) (Figure 2A). To understand the nature
of interactions within the network and ascertain highly connected modules in the ADGCN,
we first calculated the degree of distribution and performed a connectivity analysis. We
demonstrated that ADGCN exhibits the properties of a scale-free network (R2 > 0.9), a
power-law degree distribution possessing fewer highly connected nodes with other nodes
in a network (Figure S3A). Subsequently, we demonstrated the network connectivity that
was indicated by the location of genes in a dendrogram (Figure S3B). Topological Overlap
Mapping Metric (TOM) led to the identification of 15 diverse modules (Figure S3B, Table S1).
Moving forward, we calculated the network features of ADGCN. We demonstrated that the
average clustering coefficient and connectivity of ADGCN were 0.43 and 144, respectively
(Figure S2C,D). Subsequently, to retain the most contributing modules in ADGCN, we
focused our analyses on five modules that displayed an increased clustering coefficient
over the entire network. Furthermore, it is important to note that two of these five modules
also possessed heightened connectivity over the entire network (Figure S2C,D). Subse-
quently, we focused our analyses on five modules that displayed an increased clustering
coefficient.. To provide functional insights into these modules, we performed pathway
analyses (Figure 2A). The “blue” module was enriched with “amino acid homeostasis”,
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“autophagy”, “chemotaxis” and “mRNA splicing”. Interestingly, these GO categories were
the hallmarks of unique DEGs of day 9 (Figure 2A). Likewise, we found that the signifi-
cantly enriched GO terms of the “turquoise” module were “photosynthesis”, “biosynthetic
process”, “mitotic cell cycle”, “DNA replication”, and “amino acid metabolism”, which
were associated with the unique DEGs of day 5 and day 7 (Figure 2A).

To identify the major TFs as well as additional transcriptional signatures that can sig-
nificantly contribute to gene functions in the above-described molecular pathways, we next
performed network architectural and centrality analyses. Since the topology of scale-free
networks is largely controlled by highly connected nodes, we focused our analyses on
the clustering coefficient, hubs (highly connected nodes), and bottlenecks (high between-
ness nodes). Among the 592 TFs discovered in ADGCN, 51, 48, and 37 TFs exhibited
high clustering coefficients, bottlenecks, and hub properties, respectively (Figure 2B–D
and Table S1). Given that 17 TFs were common between hubs and bottlenecks and only
two TFs were shared between bottlenecks and clustering coefficients, cumulatively, we
identified 117 non-redundant sets of high-priority TFs that possessed either of the three
above-described centrality features. Major families that were enriched in this set of high-
priority TFs included ANAC, activator protein 1 (AP1), bHLH, bZIP, Homeobox, MYB,
nuclear factor Y (NF-Y), TCP domain protein (TCP), WRKY DNA-binding domain protein
(WRKY), and Zinc finger (Table S1). Finally, we also highlighted the functional GO cate-
gories of non-TF genes that were classified as high clustering coefficients, bottlenecks, and
hub nodes. Notably, “alternative splicing”, “translational elongation”, and “polysaccha-
ride biosynthetic process” gene function pathways were enriched in the high clustering
coefficient nodes (Figure 2B,E). The “metabolism” and “amino acid” GO categories were
exclusively enriched in bottlenecks (Figure 2C,E). Finally, we discovered that hubs were
enriched in “cell cycle”, “DNA replication”, “photosynthesis”, “amino acid biosynthetic
process” and “response to water deprivation” gene function classifications (Figure 2D,E).
Overall, the generation of a comprehensive co-expression network and network topological
analyses discovered potential major master regulators, nodes, and pathways in Arabidopsis
drought signaling.

2.3. Dynamic Transcriptional Regulatory Modeling Discovered Major Bifurcated Events of the TFs,
Which Participate in the “Water Deprivation Response” Pathway

Direct transcriptional gene regulation relies on intricate coordination between TFs
and their downstream target genes [32,33]. Therefore, inferring the dynamic regulatory
relationships between TFs and their targets can provide a mechanistic view of how multiple
TFs collaboratively participate in drought-related transcriptional circuitry during diverse
stages of water deficiency stress. Towards this, we employed the iDREM package [32,33],
which reconstructed drought-specific reaction networks in an unsupervised manner. Specif-
ically, we integrated the publicly available time-course transcriptome data (GSE76827 with
static TF-target datasets and performed dynamic regulatory modeling (see Section 4). We
discovered significant bifurcation events in which the transcription of a subset of genes
deviated from the expression levels of the remainder of the genes over the course of time,
as well as identified all the TFs that might govern these sets of genes (Figures 3 and S4,
Table S2). Furthermore, we also inferred the functional classification of the TFs and their
targets based on the GO category data (Figure S4; p-value ≤ 0.05). Overall, we showed
that 411, 323, 602, 212, and 546 TFs were modeled in diverse paths on days 1, 3, 5, 7, and
9, respectively (Figure 3, Table S2). We subsequently focused our analyses on “response
to water deprivation”, “response to stress”, “response to abiotic stimulus”, “response to
chemical”, “response to hormone-mediated signal”, and “response to water” gene func-
tional categories. Next, we directed our subsequent analyses to the “response to water
deprivation” GO category. Towards this, we compared all the TFs in this category from our
dynamic regulatory modeling with the ADGCN co-expression network and discovered
a set of common 25 TFs (Table S2). This set of selected TFs was enriched in bZIP, MYB,
NAC, ERF, and AP1 superfamilies. In summary, our dynamic regulatory modeling allowed



Int. J. Mol. Sci. 2023, 24, 7349 7 of 23

us to identify the transcriptional paths and major transcriptional events of previously
undiscovered 25 TFs of “response to water deprivation” functional classification, which
was also one of the categories enriched in the “blue” module of the ADGCN co-expression
network (Figure 2A). The identification of these 25 critical TF regulators will substantially
broaden our understanding of Arabidopsis drought-related transcriptional circuitry and
provide candidate genes for downstream analyses in crops.
Int. J. Mol. Sci. 2023, 24, x FOR PEER REVIEW  7  of  25 
 

 

 
Figure 2. (A) Weighted gene co-expression network analysis (WGCNA) constructed the Arabidopsis
Drought-specific Gene Co-expression Network (ADGCN) encompassing 9370 nodes connected by
402,598 weighted edges (≥0.75). Nodes are colored based on their specific module assignment. Most
significant modules based on connectivity and clustering coefficient were annotated by GO analysis
and the enriched pathways are listed next to their respective modules (p-value≤ 0.05). (B–D) ADGCN
network analysis plots displaying clustering coefficient (CC) (B), betweenness centrality (C), and
degree distribution (D). (E) Functional annotation and pathway enrichment analyses of high CC
(green), high bottleneck (red), and high hub (violet) genes.
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Figure 3. The plot illustrates the interactive Dynamic Regulatory Events Miner (iDREM) of drought
response in Arabidopsis from day 0 to 9 at significance p < 0.01. The ontology identified the transcrip-
tion factors (TFs) and genes involved in different functions on different days of drought stress. Each
colored line corresponds to a unique transcriptional regulatory path and numbers of TFs representing
each functional category are listed in text boxes.

2.4. Mathematical Transcriptional Simulation of Six Major Tfs Acquired by Integrating
Drought-Related Co-Expression Data with Dynamic Transcriptional Modeling

To simulate the influence of the regulatory activity of major TFs on their target genes,
we used SQUAD simulations on an integrated network that included ADGCN and TF-
target association data. For all the downstream simulations and experimental validations,
we selected six major TFs that were present among the above-described 25 TFs of “response
to water deprivation” and exhibited the properties of high clustering coefficient, hubs,
and bottlenecks. This includes AT4G14770 (TESMIN/TSO1-LIKE CXC 2; TCX2/SOL2),
AT1G51140 (ABA-RESPONSIVE KINASE SUBSTRATE 1; AKS1/FLOWERING BHLH 3;
FBH3), AT5G56840 (a MYB-like TF), AT2G36270 (ABA INSENSITIVE 5; ABI5), AT3G09600
(LHY-CCA1-LIKE5; LCL5/REVEILLE 8; RVE8), and AT2G46590 (DOF AFFECTING GER-
MINATION 2; DAG2) (Figures 4 and S5, Table S2). Interestingly, our dynamic regulatory
modeling indicated major bifurcation events for these TFs on day 3, day 5, and day 7
(Table S2). We also showed that TCX2, AKS1/FBH3, AT5G56840, ABI5, LCL5/RVE8, and
DAG2 co-regulate with 63, 146, 6, 121, 28, and 2 target genes, respectively. For mathemat-
ical simulations, the activation status of these six TFs was individually changed from 0
to 1 over the course of time to predict the dynamic behavior of their target genes. The
transcriptional trajectory plots of the target genes illustrated varied levels of amplitude
and intensity of activation for the corresponding putative transcriptional targets (Figures
4 and S5, Table S2). Overall, we simulated the transcriptional kinetics of target genes for
a selected set of six major TFs to gain additional insights into their regulatory influence
during the Arabidopsis drought response.
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2.5. Experimental Evidence for the Regulatory Relationship between Major Drought-Related TFs
and Their Target Genes

To provide experimental validation of the dynamic gene regulation and transcriptional
simulations, we performed extensive time-course qRT-PCR experiments in Arabidopsis
wild-type Col-0 plants. We collected leaf samples of drought-stressed or corresponding
well-watered control plants daily over a period of ten days. Based on the activation
status, transcriptional trajectories, and amplitudes of gene regulation, we further selected
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four TFs (TCX2, AKS1/FBH3, ABI5, and LCL5/RVE8) and four targets for each of these TFs
(Table S3). TCX2 is a regulator of cell fate transition that controls divisions by regulating
stem cell-type-specific networks [38]. We demonstrated that the mRNA levels of TCX2
were downregulated on day 2 and day 3, while its transcript levels were increased on day 5
and day 6 (Figure 5A). On the other hand, we observed a relatively negative transcriptional
influence of this TF on its target gene, AT4G15790, particularly on day 1, day 5, and day 6
(Figure 5A). Interestingly, the other three tested target genes (AT4G23820; PGF13, Pectin
lyase-like superfamily protein, AT5G38420; DEG24, a member of the Rubisco small subunit,
and AT4G33680; AGD2, a diaminopimelate aminotransferase) positively co-expressed with
TCX2 on day 5 and day 6 (Figure 5B–E; Table S3). Moreover, TCX2 has also been shown to
regulate stomatal cell lineages, further highlighting its connection to drought responses [38].
Our data indicate the potential roles of this stem-cell-expressed TF and its target genes in
drought, particularly in the mid-phase of drought stress in guard cells.

AKS1 (also known as FBH3) was shown to be released from the ABA signaling core
complex, possibly in the guard cells [39]. Moreover, this basic helix-loop-helix type TF is
also involved in photoperiodism flowering [39] (Table S3). Our time-course expression data
indicate that AKS1 is induced on day 5 of drought stress and its mRNA accumulation con-
tinues to increase for the remainder of the tested drought stress period (Figure 5F, Table S3).
While AT4G12560 (CPR1, a defense-responsive gene) positively co-expressed with AKS1
(Figure 5G, Table S3), the transcript abundance of AT4G36740 (HB40, a homeodomain
leucine zipper class I (HD-Zip I) protein) was negatively affected by AKS1 (Figure 5H).
Moreover, we also showed that the expression levels of AT5G13330 (RAP2.6L, a member
of the ERF) were suppressed during the later phase of drought stress (Figure 5I, Table S3).
Finally, the transcript levels of AT3G02310 (AGL4, a MADS-box protein) were only height-
ened on day 10 of drought stress (Figure 5J, Table S3). These data further highlighted the
complex involvement of the guard cells in various downstream responses to drought, and
shed new light on how a master regulator controls additional TFs at various stages of
drought stress.

The third selected gene, AT2G36270 (ABI5), encodes a member of the basic leucine
zipper TF family that is involved in ABA signaling during seed maturation and germina-
tion [40]. The transcript levels of this master regulator were increased on day 6, day 8, day 9,
and day 10 (Figure 5K). Interestingly, two of its target genes (AT5G04760; DIV2 an R-R-type
MYB protein, which plays negative roles in salt stress and is required for ABA signaling
in Arabidopsis, and At4G08980; FBW2, a novel negative regulator of AGO1 protein levels
that may play a role in ABA signaling) positively co-expressed with ABI5 (Figure 5L,M,
Table S3). On the other hand, the two additional tested targets of ABI5 (AT2G46680; HB-7
that encodes a putative TF in drought response, and AT4G33150; LKR that encodes a
bifunctional polypeptide lysine-ketoglutarate reductase and saccharopine dehydrogenase
involved in lysine degradation; Table S3) were only induced during the very late phase of
drought stress (Figure 5N,O). These data further underscore the complex and dynamic roles
of ABA signaling at various stages of drought stress and may help provide a mechanistic
understanding of how ABI5 controls global transcriptomic changes during drought.

Finally, we examined the expression levels of AT3G09600 (LCL5/RVE8), which en-
codes an MYB-like TF. LCL5/REV8 was shown to be involved in the regulation of circadian
signaling as well as the heat shock response [41]. We demonstrated that LCL5/RVE8 ex-
pression levels started to rise on day 5 and progressively increased until day 10 of drought
stress (Figure 5P). Two of its targets (AT3G58630, a novel TF, and AT3G48990; AAE3, which
encodes an oxalyl-CoA synthetase and is required for oxalate degradation) were positively
co-expressed with LCL5/RVE8 (Figure 5Q,R Table S3). However, the other two tested
targets of LCL5/RVE8 (AT3G21890; BBX31, a B-box type zinc finger family protein, and
AT4G34890; XDH1, which encodes a xanthine dehydrogenase that is involved in purine
catabolism) were only regulated during day 5 and day 7 of drought stress (Figure 5S,T;
Table S3), further highlighting the LCL5/RVE8-mediated crosstalk between heat stress
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and drought. Therefore, LCL5/RVE8 could constitute a key regulatory node for genetic
interventions in the face of increasingly common heat wave-drought events worldwide.

Taken together, we experimentally characterized the transcriptional regulation patterns
of four master TFs and their putative targets over a time course of drought stress in
Arabidopsis plants.
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Figure 5. Kinetics of gene expression of transcription factors (red) and their targets in Col-0 under
drought (solid lines) and normal irrigation (dotted lines) conditions. RT-qPCR was performed in leaf
samples collected daily from day 0 to day 10. Gene expression was assessed using reference gene
UBQ5 in four groups: TF1 (AAT4G14770 and targets (B) AT4G15790, (C) AT4G23820, (D) AT5G38420,
(E) AT4G33680; TF2 (F) AT1G51140 and targets (G) AT4G12560, (H) AT4G36740, (I) AT5G13330,
(J) AT3G02310; TF3 (K) AT2G36270 and targets (L) AT5G04760, (M) AT4G08980, (N) AT2G46680,
(O) AT4G33150; TF4 (P) AT3G09600 and targets (Q) AT3G58630, (R) AT3G48990, (S) AT3G21890,
(T) AT4G34890. The graphs represent the mean with standard errors of three technical replicates.
Experiments were performed in three biological replications. The gray lines indicate error bars
computed as the standard errors.
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2.6. Experimental Evidence for the Regulatory Relationship between Significant Drought-Related
TFs and Their Target Genes

To investigate the regulatory significance of the above-described TFs and their targets,
we obtained mutants for FBH3, ABI5, and LCL5. We did not find any homozygous plants
for TCX2 (Figure S6). Subsequently, we examined the expression levels of the respective
TFs and their selected targets via qRT-PCR experiments under oxidative stress conditions
simulated by methyl viologen (MV; N,-N′-dimethyl-4,-4′-bipyridinium dichloride; MV)
(Figures 6 and S6). Compared to the mock control, the mRNA accumulation of FBH3 was
increased in MV-treated Col-0 seedlings. However, the basal and induced levels of FBH3
were dampened in the fbh3 mutant. As alluded to above, the transcript levels of the target
genes are possibly under the control of FBH3; we tested the expression levels of CPR1,
HB40, RAP2.6L, and AGL4. Compared to the Col-0 control, both the basal and MV-induced
levels of these four target genes were significantly reduced in fbh3, indicating the positive
regulatory control of FBH3 on its target genes (Figure 6A–E).

In the abi5 mutant, ABI5 transcript levels were decreased compared to Col-0 in the
mock condition. This reduction of the transcript was further exacerbated under MV-treated
seedlings as Col-0 seedlings exhibited higher levels of ABI5. Subsequently, we revealed
that the mRNA levels of all of its targets were reduced in the abi5 mutant. Specifically, we
demonstrated that the transcript level of one of its target genes, DIV2, decreased by up
to two-fold in the abi5 mutant under oxidative stress conditions. However, no significant
change in the transcript level of DIV2 between the Col-0 and the abi5 mutant was observed
in the mock condition. Further, we observed a significant two-fold and four-fold decrease
in the transcript level of FBW2 in the abi5 mutant plant compared to Col-0 under both mock
and treated conditions, respectively. The transcript level of HB-7 was more reduced in abi5
mutant plants compared to Col-0 under both mock and stress conditions. We also observed
a significant decrease in the transcript level of LKR in the abi5 mutant under both mock
and stress conditions in comparison to Col-0 (Figure 6F–J).

In the lcl5 mutant, we found that the level of mRNA transcript of LCL5 was ten-fold
decreased than Col-0 in the mock condition. Moreover, under stress conditions, there was
a significant reduction in the transcript level of LCL5 in the lcl5 mutant plant. Similarly,
we demonstrated that the transcript level of a novel TF (AT3G58630) was two-fold and
three-fold decreased in the lcl5 mutant compared to Col-0 under mock and oxidative
stress conditions, respectively. Further, we observed a significant two-fold decrease in the
transcript level of AAE3 in the lcl5 mutant plant compared to Col-0 under stress conditions.
The transcript level of BBX31 was also reduced in the lcl5 mutant plants compared to Col-0
under stress conditions. However, no significant change in the transcript level of BBX31
between the Col-0 and lcl5 mutant was observed in the mock condition. We also observed
a substantial decrease in the transcript level of XDH1 in the lcl5 mutant under both mock
and stress conditions in comparison to Col-0 (Figure 6K–O).

In summary, we provided genetic evidence for the regulatory relationships between
major TFs and their targets in Arabidopsis plants.

2.7. Anthocyanin Production in the Mutants Corresponding to Selected Drought-Related TFs in
Response to Reactive Oxygen Species (ROS) and Oxidative STRESS-Inducing Agents

Numerous reports have previously demonstrated an increase in ROS accumulation
and oxidative stress in response to drought [42–47]. Specifically, we used Methyl viologen
(MV; N,-N′-dimethyl-4,-4′-bipyridinium dichloride; MV) and paraquat (PQ), to induce
ROS production. As described above, we did not find any mutant for the TCX2 gene;
however, we included a mutant corresponding to DAG2. Since it has only two target genes,
we did not perform any expression study but added phenotypic analyses. We subjected
mutants corresponding to DAG2, FBH3, ABI5, and LCL5 to PQ and MV, followed by
the quantification of anthocyanin accumulation to validate the physiological roles of the
selected TFs. We observed negligible anthocyanin production in the mock ( 1

2 MS media)
conditions. Interestingly, the level of anthocyanin was two-fold decreased in all the mutants,
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such as fbh3, lcl5, and dag2, compared to the Col-0 under MV treatment (Figures 7 and S7).
However, there was no significant variation in the level of anthocyanin production between
abi5 and Col-0. While in paraquat treatment, the anthocyanin content of all the mutants,
including fbh3, abi5, and lcl5, decreased two-fold than that of Col-0. Moreover, in the dag2
mutant, the amount of anthocyanin was two-and-a-half fold decreased compared to that in
Col-0.
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Figure 6. Gene expression profile of transcription factors (red) and their targets in Col-0, fbh3 mutant,
abi5 mutant, and lcl5 mutants in 1/2 MS media and 2uM methyl viologen (MV) treatment conditions.
RT-qPCR was performed in leaf samples collected after 7 days of treatment. Gene expression was
assessed using reference gene UBQ5 in three groups: TF1 (A) AT1G51140 and targets (B) AT4G12560,
(C) AT4G36740, (D) AT5G13330, (E) AT3G02310; TF2 (F) AT2G36270 and targets (G) AT5G04760,
(H) AT4G08980, (I) AT2G46680, (J) AT4G33150; TF3 (K) AT3G09600 and targets (L) AT3G58630,
(M) AT3G48990, (N) AT3G21890, (O) AT4G34890. The graphs represent the mean with standard
errors of three technical replicates. Experiments were performed in three biological replications.
The statistical significance of the data is denoted by asterisks in the following manner: “* p < 0.05”,
“** p < 0.005”, and “*** p < 0.0005”. The label “ns” indicates non-significant results, as determined
by Student’s t-test. The lattice column indicates the significant differences between Col-0 and the
mutants in comparison.
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Figure 7. Anthocyanin content in leaves of 7 days old Arabidopsis plant in MS media and different
stress conditions. (A) 2 uM Methyl viologen (MV) treatment, n = 12 (three biological replicates)
(B) 2 uM paraquat (PQ) treatment, n = 12 (three biological replicates). Asterisks represented statistical
significance (** p < 0.005, *** p < 0.0005, and **** p < 0.00005, Student’s t-test. The symbol l indicates
Col-0, N represents fbh3 mutant, n signifies abi5 mutant, F identifies lcl5 mutant and u indicates
dag2 mutant.

Taken together, we provided experimental evidence for the physiological roles of TFs
under chemically induced oxidative stress conditions.

3. Discussion

Drought is a primary abiotic environmental stress that limits agricultural productivity
by impacting plant growth and development during all phases of their lives. Furthermore,
global climate change and potential water constraints are likely to exacerbate the overall
crop yield crisis [48]. Therefore, it is imperative to identify potential novel master reg-
ulators that can be used in genome engineering and editing programs to improve plant
drought stress tolerance. Here, we used a systems-level approach to reveal phase-specific
transcriptional signatures and identify biological pathways pertinent to the Arabidopsis
drought transcriptome landscape. Our network science-based analyses unveiled major
transcription factors that regulate drought response at various time points. Furthermore,
dynamic regulatory modeling allowed us to uncover major regulatory events and the mas-
ter regulators responsible for them. Finally, our mathematical transcriptional simulations
followed by experimental validation provided potential molecular mechanisms on how
master transcriptional regulators operate in an intricate regulatory network to respond to
various phases of drought stress.

In our global co-expression network analyses, we found 117 non-redundant sets of
high-priority TFs that possess either of three centrality features i.e., clustering coefficient,
hubs, and bottlenecks (Figure 2). Over the past decade, network analyses and centrality fea-
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tures have been widely applied to identify the most influential nodes in diverse networks,
including protein-protein interactions and co-expression networks [14,18,26–29,49,50]. For
instance, in a rather focused study, a protein phosphatase 2A (PP2A) network in Arabidop-
sis was generated [14]. Using the closeness centrality score (CCS), 13 PP2A genes were
identified that were implicated in the synthesis of amino acids, nucleotides, fatty acids,
phytohormones, and vitamin pathways [14]. Intriguingly, our phase-specific unique tran-
scriptome signature analyses revealed that day 5 is enriched with “pyrimidine nucleoside
metabolic process,” “regulation of cell communication,” “sulfur and amino acid metabolic,”
and “ion transport” GO categories (Figure S2), suggesting the potential roles of PP2A in
the mid-phase of drought stress in Arabidopsis. In another report, it was demonstrated
that Arabidopsis PP2CA is also targeted by the bacterial pathogen Pseudomonas syringae to
increase plant susceptibility, further supporting the complex role of PP2A genes in various
plant stress responses [51].

In maize, over 800 hubs have been identified in a drought-associated co-expression
network [52]. The pathway analysis of the non-TF hubs, glycolysis, and gluconeogenesis
pathways were enriched, indicating that they might play an important role during leaf de-
velopment. Moreover, carbon fixing, nitrogen metabolism, sulfur metabolism, linoleic acid
metabolism, monoterpenoid biosynthesis, and glutathione metabolism were significantly
altered during maize stress in drought [52]. While our 117 high-priority TFs were enriched
in “alternative splicing,” “translational elongation,” and “polysaccharide biosynthetic pro-
cess” gene function pathways (Figure 2B), our network topology analyses unveiled that
the “metabolism” and “amino acid” GO categories were exclusively enriched in bottle-
necks (Figure 2C). Finally, we discovered that hubs are enriched in “cell cycle,” “DNA
replication,” “photosynthesis,” “amino acid biosynthetic process,” and “response to wa-
ter deprivation” gene function classifications (Figure 2D). The major families of TFs that
regulate the above-described pathways belong to ANAC, AP1, bHLH, bZIP, Homeobox,
MYB, NF-YA, TCP, WRKY, and Zinc finger (Table S1). Similar functional categories were
found in the maize co-expression network, in which 49 hub TFs representing bHLH, bZIP,
C2H2, Dof, MYB, ERF, and NAC were revealed [52]. Interestingly, 44 of these major TFs
have also been shown to be involved in four distinct developmental stages of maize [52].
Likewise, the core component of the rice drought co-expression network is enriched in
“sequence-specific DNA binding,” “porphyrin and chlorophyll metabolism” [53], which
is potentially regulated by WRKY, Homeodomain, MYB, bZIP, Zinc finger domain, and
C2H2 TFs. Overall, our data on Arabidopsis and other studies in monocot and dicot plants
indicate the master regulators that are involved in drought-related biological pathways
are conserved across diverse plant species. Given the involvement of these TFs in other
abiotic and biotic stresses, as well as diverse plant development processes, it is plausible
that plants rewire the flow of regulatory information and prioritize growth over survival
responses during water deficiency conditions, similar to what was reported during biotic
stress [54]. Finally, these datasets also point towards global crosstalk of diverse environ-
mental stresses that require major nodes of convergence, possibly master transcriptional
regulators. Therefore, the identification of such major transcriptional players is imperative
to better inform future breeding programs.

From the integration of the dynamic regulatory network and co-expression network
analyses, we focused our mathematical transcriptional simulations and downstream analy-
ses on a set of major TFs that represent “response to water deprivation”-related biological
pathways (Figures 2–4). Such an integrative systems biology-based framework can be
expanded to all 117 major TFs, which exemplified other biological GO terms (Figure 2).
It is important to note that previous studies in Arabidopsis or other models used co-
expression network analyses and investigated the co-expression patterns in the entire
module as a whole [55,56]. However, we integrated experimental TF-target datasets into
our co-expression studies to understand the regulatory relationships, if any, across different
modules. Moreover, previous studies have also used hubs within a module as an indica-
tor of importance nodes [10,14,26–28,57,58]. Here, we focused on three diverse centrality
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measures, i.e., hubs, high betweenness, and high clustering coefficients. Our network
science-based analysis also signifies the importance of our study to discover and charac-
terize novel players in drought stress that have been implicated in response to diverse
biotic and abiotic stresses, plant developmental processes, and phytohormonal-mediated
crosstalk. One such master regulator that was discovered in this study is TCX2, a stem-cell-
ubiquitous gene (Figure 5A). Interestingly, TCX2 is conserved in both plants and animals
and belongs to the family of CHC proteins that are components of the DREAM cell-cycle
regulatory complex [59]. As we had proposed, recent research has demonstrated that
TCX2 functions as a master regulator, that orchestrates coordinated stem cell divisions
through stem-cell-specific regulatory cascades in roots [38]. Interestingly, TCX2 and its
closest homolog SOL1 regulate fate transition and cell divisions in the Arabidopsis stomatal
lineage [60], suggesting a multifaceted role of this master regulator in roots and guard
cells. While roots play a vital role in response to drought stress, it is also important to
note that the regulation of guard cells to avoid water transpiration is equally significant.
Thus, our data suggest a critical role of TCX2 in the early- and mid-phase of drought stress
(Figure 5A. While TCX2 regulates a suite of diverse genes, we showed that it co-expresses
and potentially regulates a pectin lyase (PGF13) [61], a Rubisco subunit (DEG24) [62], and
a diaminopimelate aminotransferase, which is required for disease resistance to a bacterial
pathogen [63]. Cumulatively, the evidence suggests the potential roles of TCX2 in photo-
synthesis, cell wall metabolism, and disease resistance. Notably, bacterial phytopathogens
use stomata as the main route of entry into the leaf cells [64–66], further highlighting the
roles of this major regulator in the crosstalk between biotic and abiotic stresses in plant
developmental processes.

Considering that stomatal closure is regulated by ABA to avoid further water loss
during drought stress, it was unsurprising that two additional master regulators identified
in the current study are major components of the ABA signaling pathway (Figure 5). AKS1
was shown to be released from the ABA signaling core complex, possibly in the guard cells,
and connects the ABA core machinery and ABA-responsive genes [39]. Interestingly, our
dynamic modeling, transcriptional simulations, and gene expression study further con-
nected AKS1 to the phytohormone crosstalk, as it co-expresses and potentially regulates an
Ethelene Responsive Factor (ERF) transcription factor, RAP2.6L (Figure 5I). While RAP2.6L
was previously shown to be involved in resistance against a bacterial pathogen [67], AKS1
also potentially regulates CPR1 (a salicylic acid-dependent defense gene) (Figure 5G). Col-
lectively, these data further underscore the importance of AKS1-dependent regulation of
ABA-ET-SA crosstalk and, potentially, the control of stomatal aperture. ABI5 is the second
major component of ABA signaling that is required at various stages of plant development,
drought stress, and immune responses [40,51]. Among other targets, we experimentally
demonstrated that ABI5 potentially regulates two ABA signaling players, DIV2 and FBW2
(Figure 5L,M), which negatively regulate ABA signaling [68,69]. Interestingly, we also
showed the co-regulation of ABI5 with HB-7 (Figure 5N) and AKS1 with HB-40 (Figure 5H).
Both of these homeodomain leucine zipper class I (HD-Zip I) possessed the properties of
hubs and bottlenecks in our analyses, indicating the importance of these two key players in
ADGCN (Table S1). Remarkably, apple plants overexpressing HB-7 were more tolerant to
drought treatment, maintained a high rate of photosynthesis, and accumulated increased
biomass, suggesting the potential use of our network science-based discovery in genome
editing and engineering programs for economically important plant species [70,71]. It
is also important to point out that, while the current study examined the importance of
transcriptome in discovering novel players in drought, this abiotic stress is manifested by
intricate synergistic and antagonistic signals that cannot be fully captured by RNA-seq.
Post-transcriptional and post-translation modifications, as well as 3D chromatin structure,
lipidome, and metabolome, among other omics, needed to be considered when studying
such a complex cellular process.

In summary, our systems biology-fueled and network science-driven approach to
modeling the dynamic transcriptional regulation in drought stress discovered novel master
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regulators that are involved in diverse biological pathways. Our integrative framework
also highlights the intertwined relationships among phytohormone signaling networks,
biotic/abiotic stresses, stomatal regulation/guard cell formation, and diverse plant devel-
opmental processes.

4. Materials and Methods
4.1. Plant Growth Conditions

All work was performed with Arabidopsis thaliana ecotype Col-0. SALK_049022C
(FBH3), CS873827 (ABI5), and CS840385 (LCL5) were purchased from the Arabidopsis
Biological Resource Center (ABRC) and reconfirmed the mutant lines through PCR-based
genotyping using TDNA insert and respective genes primers. Seeds were sown on Fafard
Germination Mix in 90 mm × 68 mm Pöppelmann TEKU® round pots, and cold stratified
in the cold room at 4 °C for three days. Plants were grown at 23 ◦C with a 12 h light/12 h
dark cycle with a light intensity of 120 µE/m2/s and watered every three days with tap
water to keep soil moisture. Ten-day-old seedlings were transplanted to 12 × 6 Landmark
Plastic flats with continuous irrigation until day 18. Half of the 18-day-old population was
grown without further input of water, while the other half was supplied with 3 mL of tap
water per plant 2 h prior to sampling. Samples were collected daily from day 18 to day
28 and flash-frozen in liquid nitrogen followed by storage at −80 °C. Three leaves were
harvested for each replicate, and three biological replicates were prepared. For mutant
analyses, samples were harvested for PCR-based genotyping of the mutant plants after
7 days of growing into the flats. Two leaves from six individual plants for each mutant line
were collected to extract DNA using Edwards’s buffer. Then, the extracted DNAs were
used as the template to perform PCR using the Phire Hot Start II (Thermo Fisher Scientific,
Waltham, MA, USA) enzyme. The amplified PCR products were analyzed through gel
electrophoresis and documented under the Gel doc (BioRad, Hercules, CA, USA). The
primer sequences are listed in the supplementary table. The confirmed mutant plants were
further subjected to growth to collect seeds for the downstream experiments.

4.2. Anthocyanin Quantification

Arabidopsis seeds were sterilized using a seed sterilization buffer containing ethanol,
10% Triton 10×, and sterile deionized (DI) water. The sterilized seeds were rinsed with
sterile DI water 3–5 times. The sterile seeds were seeded on the 1

2 MS (Murashige and
Skoog, PhyTotech labs, Lenexa, KS, USA) media, pH 5.8, containing square plates, and
stratified for 3 days at 40C in the cold room. The plates were then transferred to the
controlled growth chamber, maintaining a 12 h light/12 h dark cycle and 23 ◦C temperature
conditions for germination. Five days post germination, seedlings of each mutant line,
including wild type Col-0, were transplanted to the fresh 1

2 MS, 2 µM methyl viologen
(MV, Thermo Fisher Scientific, Waltham, MA, USA) supplemented MS, and 2 µM paraquat
(PQ, Thermo Fisher Scientific, Waltham, MA, USA) incorporated MS to simulate oxidative
stress under controlled conditions. Seven days post-treatment, the plants were collected to
perform anthocyanin measurements.

For anthocyanin quantification, 20 mg of fresh-weight leaves from each plant group
were collected to extract anthocyanin using a solution containing methanol: hydrochloric
acid: water in a 25:5:70 ratio. The whole seedling was incubated in anthocyanin extraction
solution in the dark for 4 h, and the samples were centrifuged at 13,000 rpm for 5 min.
The supernatant of 200 uL was aliquoted into 96 wells polystyrene plate (Thermo Fisher
Scientific) to quantify the absorbance using a microplate reader (Aligent BioteK Synergy,
Santa Clara, CA, USA) at 525 nm and 657 nm and estimated the anthocyanin content
using this equation: anthocyanin content = (OD525 − 0.25 × OD657) [72]. For each group
of treated and untreated conditions, 12 seedlings were used in each experiment. All the
experiments were conducted with three biological replicates.
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4.3. RNA Extractions and Quantitative Real-Time Polymerase Chain Reaction (qRT-PCR)

Leaf samples of Col-0 were ground with a Bead Ruptor 96-Well Plate Homogenizer.
Total RNA was extracted using TRIzol (Invitrogen, Waltham, MA, USA) according to the
manufacturer’s protocol. Briefly, 1 mL of TRIzol was used per sample. The RNA pellets
were dissolved in 20 µL DEPC-treated water and quantified using BioPhotometer Plus
(Eppendorf, Hamburg, Germany). 10 µg of RNA samples were then treated with DNAse
using the TURBO DNA-free™ Kit (Ambion, Waltham, MA, USA) in a 20 µL reaction.
cDNA was synthesized using SuperScript IV reverse transcriptase first-strand synthesis kit
(Invitrogen) with 2 µg DNA-free RNA in a 10 µL reaction, as described previously [73]. PCR
programs from both DNAse treatment and reverse transcription reactions were performed
on an Applied Biosystems 96-Well Thermal Cycler (Thermo Fisher Scientific, Waltham, MA,
USA). qRT-PCR was performed on an ABI 7500 Fast PCR System (Thermo Fisher Scientific,
Waltham, MA, USA) with 2× PowerUp SYBR green master mix (Applied Biosystems,
Thermo Fisher Scientific, Waltham, MA, USA) using the following settings: 50 ◦C for 2 min
and 95 ◦C for 10 min followed by 40 cycles of 95 ◦C for 15 s, 55 ◦C for 15 s, and 72 ◦C for
1 min. Primer sequences are listed in Table S3.

4.4. Drought Stress Analysis Data Acquisition

Drought-related data pertinent to this study were downloaded from the NCBI Gene
Expression Omnibus (GEO) database [74]. Specifically, we employed the GSE76827 dataset
that consists of transcriptome pertinent to drought-stressed aerial parts (shoot) of Ara-
bidopsis at 0, 1, 3, 5, 7, and 9 days [35]. A custom Python script (version 3.8) was used to
preprocess the sample data to filter out low-variance genes. During the preprocessing,
genes that had zero expression values for more than 30 percent of the samples were pruned
to maintain adequately high variance, which is necessary for the co-expression network
construction. This approach provided data that were ready to proceed for downstream
network-based and additional analyses.

4.5. Differentially Expressed Genes (DEGs) Analysis and Functional Annotation
Pathway Analyses

The processed transcriptome data from GSE76827 were subjected to iDEP [75], which
is an interactive DEG (iDEP) analysis web tool, to compute DEGs between drought and
mock treatments at diverse time points. Briefly, iDEP utilizes the DESeq2 R package to
analyze DEGs [76]. We used a threshold of 1.5 fold change (FC), which is equivalent to 0.58
log2 Fold Change (log2FC), and a false discovery rate (FDR) ≤ 0.05 was set for DEGs [21].
DEGs were further subjected to hierarchical clustering. Functional annotation and pathway
enrichment analyses were performed using Metascape using the cutoff 1.30 in -log10 scale
(p-value ≤ 0.05) [36].

4.6. Weighted Gene Co-Expression Network Analysis (WGCNA) and Network Centrality Analyses

Towards generating an Arabidopsis Drought-specific Gene Co-expression Network
(ADGCN), we utilized the GSE76827 dataset that consists of transcriptome pertinent to
drought-stressed aerial parts of Arabidopsis at 0, 1, 3, 5, 7, and 9 days. We employed
the WGCNA and (optional Limma) R packages, which provide a wide spectrum of R
functions and carry out diverse weighted correlation network analyses. Specifically, this
package includes functions for the construction of a co-expression network, detection
of various modules with different correlation coefficients, analysis of a wide range of
network topological features, simulation, and visualization of data and network [37].
WGCNA follows three major steps to build a co-expression network: (1) defining an
adjacency matrix among all the genes based on pair-wise correlations, (2) calculating
network centrality features from the adjacency matrix and converting it into a dissimilarity
measure, and (3) application of hierarchical clustering by employing this dissimilarity
measure. This is followed by tree cutting using either a static or a dynamic height cut.
This analysis resulted in clusters or modules of genes with significance [37]. The data are
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formed into modules based on correlation patterns; colors are assigned to differentiate the
modules. The nodes and edges data will be used to perform network analysis in the next
step [49]. In the ADGCN co-expression network, the nodes correspond to genes, while
weighted edges (≥0.75) define the interconnectedness based on expression correlations [77].
The edges-node data and module assignment data were further imported to visualize
networks with module-assigned colors in Cytoscape [78]. After network construction, the
topological features such as eigenvector centrality, degree centrality, betweenness centrality,
closeness centrality, and information centrality are computed. After network construction,
the topological features such as degree centrality, betweenness centrality, and clustering
coefficient were computed using the Python-based NetworkX 2.6 package [79].

4.7. Dynamic Gene Regulatory Event Mining and Dynamic Simulations

To explore the dynamic behavior of water stress on Arabidopsis, we performed the
Interactive Dynamic Regulatory Events Miner (iDREM) analysis on the drought-specific
transcription response in Arabidopsis. The iDREM software employs static protein-DNA in-
teraction data, including Chromatin Immunoprecipitation Sequencing (ChIP-Seq) ChIP-seq
etc., and integrates with time-series gene expression data to simulate dynamic regulatory
networks [32]. For the TF-target dataset, we curated TF and targeted gene regulatory
networks by including vast datasets from the Arabidopsis thaliana Regulatory Network
(AtRegNet) [80], Plant Cistrome Database (DAP_seq) [81], Arabidopsis transcriptional regu-
latory map (ARTM) [81], Curated_1 [82], TF2Network (Curated_2) [83], and Ath [80,82–84].
The Arabidopsis Information Resource (TAIR) [85], TF-gene interaction datasets, European
Bioinformatics Institute (EBI)-based functional ontology [86], and drought-specific Ara-
bidopsis expression data were used to perform iDREM analysis. iDREM highlighted major
bifurcation events and displayed TFs that exhibited significant feature changes at a given
time point. The score threshold was kept as 0.01, and significance was based on path
significance conditional on a split, where the minimum split percentage was 50%. On each
day of bifurcation, we highlighted the overall TFs expressed; afterward, we selected the
top 100 TFs from the list based on a highly regulated quantity of genes and compared
them with the Arabidopsis co-expression network. GO term categories were selected with
a p-value ≤ 0.05. Finally, 6 TFs were selected from this group based on high network
centrality features, including degree, betweenness, and clustering coefficient. Next, we
focused on the “water deprivation” functional annotation. Mathematical simulations were
performed using SQUAD (Standardized Qualitative Dynamical systems) [34], as described
before [21]. Briefly, this analysis is based on standardized qualitative dynamical systems
to simulate the behavior of regulatory networks from a steady (0) to an activated (1) state.
Initially, at a steady state, the whole GRN (TFs and genes) have 0 values. To simulate
dynamic behavior, The TF is activated from 0 to 1 only one time, which correspondingly
modulates the dynamic behavior of genes in the regulatory network. In our Figure 4A–F, if
the TF activation to 1 leads to changes in increased gene activity on the positive quadrant
of the Y-axis, the TF may be predicted as an “activator.” However, if the TF activation to
1 leads to changes in increased gene activity in the negative quadrant of the Y-axis, the TF
may be predicted as a “repressor.” Additionally, at the later time (pseudo-time) point, the
decrease in activation indicates the loss of activity after the initial activation.

Supplementary Materials: The supporting information can be downloaded at: https://www.mdpi.
com/article/10.3390/ijms24087349/s1.
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