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Abstract: Chronic kidney disease (CKD) is a major health problem, affecting millions of people
worldwide, in particular hypertensive and diabetic patients. CKD patients suffer from significantly
increased cardiovascular disease (CVD) morbidity and mortality, mainly due to accelerated atheroscle-
rosis development. Indeed, CKD not only affects the kidneys, in which injury and maladaptive
repair processes lead to local inflammation and fibrosis, but also causes systemic inflammation and
altered mineral bone metabolism leading to vascular dysfunction, calcification, and thus, accelerated
atherosclerosis. Although CKD and CVD individually have been extensively studied, relatively little
research has studied the link between both diseases. This narrative review focuses on the role of a
disintegrin and metalloproteases (ADAM) 10 and ADAM17 in CKD and CVD and will for the first
time shed light on their role in CKD-induced CVD. By cleaving cell surface molecules, these enzymes
regulate not only cellular sensitivity to their micro-environment (in case of receptor cleavage), but
also release soluble ectodomains that can exert agonistic or antagonistic functions, both locally and
systemically. Although the cell-specific roles of ADAM10 and ADAM17 in CVD, and to a lesser
extent in CKD, have been explored, their impact on CKD-induced CVD is likely, yet remains to
be elucidated.

Keywords: a disintegrin and metalloprotease; chronic kidney disease; cardiovascular diseases;
atherosclerosis

1. Introduction

Chronic kidney disease (CKD) is a complex disease and evolves from numerous risk
factors which lead to the alteration of the structure and function of the kidney. These
alterations are irreversible and can progress asymptomatically over months or even years,
in which the kidneys slowly and progressively lose their ability to filter waste products
and excess fluids from the blood, leading to a buildup of (uremic) toxins in the body. The
diagnosis of CKD relies on the identification of such structural damage to the kidney and
the detection of a chronic reduction of kidney function. The main indicator of kidney
function is the glomerular filtration rate (GFR), which equals the total fluid filtered through
nephrons per unit of time [1]. After irreversible nephron loss, CKD patients can reach
end-stage renal disease (ESRD), also known as kidney failure. This stage especially goes
hand in hand with a massive impact on quality of life as these patients require frequent
dialysis or even kidney transplantation. CKD was ranked tenth on the list of global causes
of death in 2019, accounting for 12.2 deaths per 100,000 people [2]. This number is expected
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to reach 14 per 100,000 people in 2030 [2]. Furthermore, CKD is also associated with
substantial morbidity as 35.8 million disability-adjusted life-years were lost worldwide in
2017 [3]. This increasing incidence and prevalence of (advanced) CKD is accounted for
by, among others, aging populations, hypertension, obesity, and the increasing prevalence
of type 2 diabetes [4] (Table 1). Additionally, at the moment, many patients are only
diagnosed in the later stages of the disease, leading to a delayed administration and start
of therapeutic strategies [5–7]. CKD is also an important risk factor for other morbidities,
such as cardiovascular diseases (CVD) and the related mortality. Both CKD and CVD
are major public health problems that affect millions of people worldwide [8–10] and
can lead to life-threatening complications if left untreated. Although both conditions are
widely studied independently from each other, interestingly, there seems to be a strong
link between these two conditions, as CKD patients are at a remarkably increased risk of
developing CVD [11–13]. Strikingly, a cardiovascular (CV) event, rather than ESRD, is
the leading cause of death in this high-risk population of CKD patients [11,14,15]. Where
1.2 million people died from CKD, an additional 1.4 million CVD-related deaths could
be attributed to impaired kidney function [3]. In fact, the prevalence of CVD in CKD
patients is greater than in the general population in all disease stages at any age, but a
significant increase could only be observed in more advanced stages of the disease (CKD
stage 3–5) [11,16]. CKD is therefore recognized as a major risk factor for CVD, which is
interestingly rather independent of other conventional CVD risk factors [17]. Classical
risk factors for CV morbidity and mortality in the general population, such as age, gender,
hypertension, smoking, diabetes mellitus, and dyslipidemia, did not fully predict outcomes
in CKD patients [18], suggesting additional CKD-related pathogenic processes may be at
play, as also highlighted in Table 1.

Table 1. Major risk factors specific for CKD, atherosclerosis, and CKD-induced atheroscl-
erosis [18–22].

General Risk Factors
for CKD

General Risk Factors for
Atherosclerosis

Risk Factors for
CKD-Induced

Atherosclerosis

Age Age Age
Diabetes mellitus Diabetes mellitus Diabetes mellitus

Hypertension Hypertension Augmented hypertension

Dyslipidemia Abnormal lipid and
protein modifications

Male gender Uremic toxins

Physical inactivity Altered mineral
bone metabolism

Smoking Oxidative stress
Stress

Systemic low-grade
inflammation

Abbreviation: CKD—chronic kidney disease.

1.1. Pathogenesis and the Role of Cellular Cross-Talk

Early-stage CKD is characterized by the reduction of microvascular density (microvas-
cular rarefaction) and tubular atrophy, which are both hallmarks that lead to tissue hypoxia,
inflammation, and fibrosis and thereby drive CKD progression [23]. The exact pathophysio-
logical mechanisms underlying microvascular rarefaction are still rather elusive. Therefore,
a better understanding is needed to enable early disease detection and therapeutic in-
tervention. Upon kidney damage, albuminuria will develop, which is associated with
systemic capillary rarefaction and endothelial dysfunction [24]. Endothelial dysfunction
can additionally be induced by a large variety of stimuli, such as growth factors (e.g., TGFβ,
VEGF, EGF), pro-inflammatory molecules such as TNF and IL-6 [25], hyperlipidemia, but
also uremic toxins, which are mainly present at later stages of CKD. Dysfunction of the en-
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dothelium not only leads to increased endothelial inflammation and permeability but also
stimulates endothelial-to-mesenchymal transition (EndoMT), which leads to capillary loss
and fuels renal fibrosis [26]. Similarly, structural and functional changes in tubular epithe-
lial cells (TECs) upon kidney damage lead to (partial) epithelial-to-mesenchymal transition
(EMT), thereby driving inflammation as well as fibrosis and bolstering the progression of
CKD. It is generally accepted that there is extensive cross-talk between both kidney TECs
and peritubular endothelial cells [27], as well as between kidney endothelium/epithelium
and the systemic vasculature. However, the relative contribution of both cell types is still
largely unknown. Furthermore, in the renal tubules, several stimuli influence TECs, which
are major components of the tubules in the kidney. TECs are vulnerable to several deleteri-
ous factors such as hypoxia, toxins, and proteinuria. Upon kidney injury, TECs activate
several repair mechanisms. However, maladaptive repair, such as pericyte dissociation
from the endothelium, pericyte proliferation and differentiation, lead to an increase of
myofibroblasts resulting in the progressive deposition of collagen I, persisting presence of
M1 macrophages, and G2/M arrest of tubular cells, driving interstitial inflammation and
fibrosis which eventually might result in CKD [28].

Besides local intercellular cross-talk, CKD-associated factors (e.g., hormones, enzymes,
cytokines, but also uremic toxins) mediate systemic cross-talk, affecting the systemic
vasculature, contributing to accelerated atherosclerosis, vascular calcification, and related
CVD complications. Beyond the traditional risk factors, some additional mechanisms
are assumed to contribute to the progression of CVD in CKD patients. Firstly, oxidative
stress plays a key role in the development of atherosclerosis by the production of bioactive
molecules, modification of low-density-lipoprotein (LDL), consumption of nitric oxide
resulting in endothelial dysfunction, and production of various oxidative reactants and
diffusible free radical species [29–31]. Captivatingly, a significant association between the
baseline level of oxidative stress and the incidence of CVD has been observed in CKD
patients [32]. Secondly, hormones [33–36], enzymes, and cytokines [37–39] are released in
response to kidney injury and/or kidney damage, resulting in alterations of the vasculature.
Thirdly, CKD-associated mediators, e.g., uremic toxins [40], as well as hemodynamic
alterations contribute to vascular damage [41]. However, many of the exact underlying
mechanisms behind the highly increased CVD risk in CKD patients still remain elusive and
therefore are an active field of research.

1.2. ADAMs

The underlying processes of CKD and CKD-induced CVD are rather diverse and
involve a wide variety of signaling pathways; however, shedding is a major way of commu-
tation in the cellular cross-talk between these pathologies. Over the past few decades, many
studies in the context of CVD and kidney homeostasis have focused on a disintegrin and
metalloproteinases (ADAMs), which are constitutively expressed zinc-dependent mem-
brane proteases. Interestingly, these studies demonstrated that ADAMs play a diverse role
and control developmental processes, tissue remodeling, inflammatory responses, as well
as proliferative signaling pathways by either modifying or shedding proteins (reviewed
in [42–50]). In humans, 21 ADAM family members have been identified so far [51], al-
though only 12 ADAMs (ADAM8–10, 12, 15, 17, 19–21, 28, 30, and 33) actually display
proteolytic activity [52]. Additionally, the expression pattern of the different ADAMs is
highly variable, although ADAM10 and ADAM17 are expressed at a substantial basal
level in almost all cell types. Additionally, ADAM expression is regulated by endogenous
proteins known as tissue inhibitors of metalloproteases (TIMPs) [50]. TIMPs are well known
to also regulate matrix metalloproteases (MMPs) [53]. Interestingly, there seems to be a link
between ADAMs and MMPs as, for example, ADAM-mediated release of TNF-α induces
MMPs (MMP-2, -8, -9) via a positive feedback loop [54–56]. Furthermore, the expression of
ADAMs can be induced by different stimuli. For example, ADAM10-dependent shedding
can be induced by intracellular calcium signaling, whereas ADAM17 activity is induced
by protein kinase C [57]. ADAMs are synthesized as inactive precursors (also known as
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proenzymes), consisting of seven domains. The prodomain (pro) is coupled to the metallo-
protease domain (MP), after which ADAMs harbor a disintegrin domain (D), followed by a
cysteine-rich domain (C), an EGF-like domain (EGF; except for ADAM10 and ADAM17), a
transmembrane domain (TD), and finally a short cytoplasmic domain (CD) [25] (Figure 1).
In order to convert these precursors into active ADAM proteases, enzymatic removal of the
N-terminal prodomain has to take place.
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after the prodomain (Pro) is cleaved off, after which they can shed, among others, transmembrane
proteins, which are released into the circulation. Created with BioRender.com.

The expression and function of ADAMs in the kidney are heterogeneous and depen-
dent on many variables, such as the underlying disease, the disease stage, the localization
of the proteases as well as their regulators in the kidney. The two most-studied family mem-
bers of the ADAM family are ADAM10 and ADAM17 [43,58], which are highly expressed
on the cell surface of epithelial cells in the distal tubule [59] as well as endothelial cells (ECs),
particularly in diseased endothelium [60]. Their main function is the cleavage of a variety
of membrane-bound proteins, including (receptors for) many cytokines and growth factors,
thereby shedding soluble proteins. This shedding process represents a major mechanism
by which ADAM10 and ADAM17 influence cellular responses in the kidney itself, but
also the intra-renal as well as systemic intercellular communication [61]. ADAM10 and
ADAM17 shed partly overlapping substrates, although they appear to have opposite func-
tions in atherosclerosis [62,63]. Interestingly, only a limited amount of literature is available
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regarding the role of ADAM10 in renal disease, and there is especially a lack of studies
that investigate the role of these ADAMs in CKD-induced atherosclerosis, leaving these
ADAMs and their substrates as an interesting target to study in this context. Several key
pathophysiological processes have been identified in which ADAM10 and ADAM17 play a
key role (Table 2). The most important ones will be discussed in the following chapters.
Therefore, this narrative review will discuss the current state of the art regarding the role
of ADAM10 and ADAM17 in CKD and CVD and will for the first time shed light on the
involvement of these ADAMs in CKD-induced CVD.

Table 2. List of ADAM10 and/or ADAM17 substrates with relevance for kidney disease
and atherosclerosis.

ADAM Inflammatory Mediators Cell Process in Kidney Function/Disease Reference
ADAM10 Betacellulin Differentiation, fibrosis, migration, permeability, proliferation [64–66]

CADM1 Adhesion, apoptosis [67–69]

Corin Blood pressure [70]

E-cadherin Cell adhesion, wnt-signaling [71,72]

VE-cadherin Endothelial permeability, angiogenesis [73,74]

ADAM17 ACE2 Endothelial dysfunction, inflammation, oxidative stress [75–80]

AREG Inflammation, fibrosis [61,64]

CD163 Inflammation, macrophage activation [81]

CD40 Immune suppression [82]

cKit ligand Angiogenesis [83]

EMMPRIN Lymphocyte cycling [84]

EPCR Anticoagulation [85]

Ephrin B4 Sprouting [84]

FLT3L Lymphopoiesis, progenitor differentiation [86]

IL-1R2 Anti-inflammatory [87]

IGFR1 Cell survival [84]

Jagged 1 Cell differentiation [88]

L-selectin Adhesion [89]

L1-CAM Adhesion [90]

Nox4 Oxidative stress [91]

NRP-1 Angiogenesis [92]

PECAM-1 Adhesion [84]

Sema 4D Platelet activation [93]

Tie2 Angiogenesis [94]

TGFα Cell proliferation [64,95]

TNFR1 Inflammation [87,96,97]

TNRF2 Inflammation [96,97]

VCAM-1 Adhesion, inflammation [98]
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Table 2. Cont.

ADAM Inflammatory Mediators Cell Process in Kidney Function/Disease Reference
ADAM10, CD44 Angiogenesis, inflammation, migration [99,100]

ADAM17 CD74 Leukocyte migration [101]

CX3CL1 Adhesion, inflammation, transmigration [102–106]

CXCL16 Leukocyte adhesion, inflammation [104–110]

DLL1 Migration, proliferation [111]

HB-EGF Angiogenesis, cell survival, fibrosis, proliferation [84,95,112,113]

IL-6R Inflammation [114–116]

ICAM-1 Leukocyte recruitment, inflammation [117,118]

JAM-A Angiogenesis, transmigration [119]

KIM-1 Efferocytosis [120]

Klotho Calcification, fibrosis, vascular dysfunction [121–128]

M-CSFR Inflammation [129]

Meprin Apoptosis, fibrosis, necrosis [130–132]

Notch Angiogenesis, differentiation, EMT, fibrosis, inflammation [133–139]

Syndecan-1 Adhesion, migration, proliferation [140–144]

Syndecan-4 Adhesion, migration, proliferation [143,145]

TNFα Fibrosis, inflammation [61,97,146–148]

TRANCE (RANKL) Calcification, survival/proliferation, osteogenic SMC
differentiation [149–151]

VEGFR2 Angiogenesis, cell survival, homeostasis, proliferation [74,92]
Abbreviations: ADAM—a disintegrin and metalloproteinases; ACE2—angiotensin-converting enzyme 2; AREG—
amphiregulin; CADM1—cell Adhesion Molecule 1; CX3CL1—chemokine (C-X3-C motif) ligand 1; CXCL16—
chemokine (C-X-C motif) ligand 16; DLL1—Delta-like canonical Notch ligand 1; E-cadherin—epithelial cadherin;
EGF—epidermal growth factor; EMMPRIN—extracellular matrix metalloproteinase inducer; EMT—epithelial-to-
mesenchymal transition; EPCR—endothelial protein C receptor; FLT3L—Fms-related tyrosine kinase 3 ligand;
HB-EGF—heparin-binding EGF-like growth factor; ICAM-1—intercellular adhesion molecule 1; IGFR1—insulin-
like growth factor 1; IL-1RII—interleukin-1 receptor II; IL-6R—interleukin 6 receptor; JAM-A—junctional adhesion
molecule A; KIM-1—kidney injury molecule-1; L1-CAM—L1 cell adhesion molecule; M-CSFR—macrophage
colony-stimulating factor receptor; Nox4—NADPH oxidase 4; NRP-1—neuropilin-1; PECAM-1—platelet endothe-
lial cell adhesion molecule-1; RANKL—receptor activator of nuclear factor κB ligand; Sema 4D—semaphorin 4D;
SMC—smooth muscle cell; TGFα—transforming growth factor α; Tie2—tyrosine kinase with immunoglobulin-
like loops and epidermal growth factor homology domains-2; TNFR1/II—tumor necrosis factor receptor 1/II;
TNFα—tumor necrosis factor α; TRANCE—TNF-related activation-induced cytokine; VCAM-1—vascular cell
adhesion protein 1; VE-cadherin—vascular endothelial cadherin; VEGFR2—vascular endothelial growth factor
receptor 2.

2. Role of ADAM10/17 in CKD

It has been recognized that dysregulation of ADAMs occurs in CKD, and genetic
targeting of ADAMs in different mouse models of kidney disease showed that they can
have detrimental and protective roles. In particular, substrate shedding by ADAM10 and
ADAM17 leads to a large variety of consequences for the structure and functionality of
the kidney (Table 2). The main substrates, and the biological effect of its shedding in the
context of CKD, will be discussed below.

2.1. ADAM17 and Its Role in CKD

In human kidneys of healthy individuals, ADAM17 is especially expressed on a
genetic level in the distal tubules, as shown by RNA in situ hybridization, whereas
no ADAM17 gene expression is observed in the glomerular endothelium, glomerular
mesangium, peritubular capillaries, and proximal tubules; a moderate expression is ob-
served in the glomerular parietal cells and podocytes; and a moderate to strong expression
is observed in renal arterial ECs and smooth muscle cells (SMCs) [59,152]. However, in
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CKD patients, the mRNA expression of ADAM17 is upregulated in the glomerular pari-
etal epithelium and podocytes, and a de novo expression is observed in the glomerular
endothelium and mesangium, peritubular capillaries, and proximal tubules in the kidneys
compared to healthy individuals, indicating that disease development has a major influ-
ence on ADAM17 expression [59,152]. Studies focusing on ADAM17 in kidney biopsies
from patients with CKD and in experimental mouse models of renal disease suggest the
importance of ADAM17 in kidney inflammation, fibrosis, and disease progression [45,61].
For example, the NEFRONA study showed an increase in circulating ADAM17 in plasma
samples from patients with CKD (without a previous history of CVD) with advanced
CKD (stage 5D) compared to patients with moderate CKD (stage 3–5) [153]. Circulating
ADAM17 has furthermore been recognized as an independent marker to identify CV events
in CKD patients, although circulating ADAM activity (especially ADAM17) as a risk factor
for CKD progression was only found in male patients [153].

The role of epidermal growth factor receptor (EGFR), a member of the ErbB family of
tyrosine kinase receptors [46], signaling in kidney pathology has already been thoroughly
investigated. Captivatingly, EGFR ligands are shed by ADAM17 as well as ADAM10,
and whereas amphiregulin (AREG) and transforming growth factor α (TGFα) are pre-
dominantly shed by ADAM17, betacellulin and EGF are shed by ADAM10 [64] (Figure 2).
Interestingly, the EGFR ligands activate the EGFR signaling pathway, which can in turn
activates ADAM17 or ADAM10, thereby generating a positive feedback loop. In CKD
patients, AREG is highly upregulated in the kidneys [61]. In vitro experiments suggest that
ADAM17 is upregulated by AREG and that a positive feedback loop results in the ability of
AREG to upregulate itself [61]. Furthermore, the shedding of AREG increases EGFR activa-
tion. This leads to the enhanced production of pro-fibrotic and pro-inflammatory cytokines
in primary murine tubular cells isolated from injured kidneys and in a human proximal
tubular cell line in vitro [61,154]. Furthermore, in vivo data showed that Adam17 hypomor-
phic mice, specific Adam17 inhibitor-treated WT mice, or mice with an inducible knockout
of Adam17 in the proximal tubule (Slc34a1-Cre) were significantly protected from kidney
fibrosis [61]. Collectively, these findings depict that AREG can have pro-inflammatory and
pro-fibrotic effects. Moreover, accumulating evidence shows that ADAM17 might regu-
late tissue remodeling and inflammation in the kidney via EGFR transactivation [47,155].
ADAM17 shedding of TGFα also leads to the activation of the EGFR–MAPK pathway [153].
Activation of this pathway results in the stabilization of ADAM17, which induces a devas-
tating feed-forward loop, resulting in the progression of kidney dysfunction [156]. Elevated
ADAM17 expression in the kidneys of CKD patients co-localized with TGFα in the fibrotic
regions [59]. Furthermore, ADAM17 releases the EGFR ligand HB-EGF, which also results
in the activation of EFGR signaling, leading to the upregulation of pro-inflammatory factors
as well as increased inflammatory cell infiltration [59] (Figure 2).

An in vitro study with TECs showed aldosterone-induced upregulation of pro-
inflammatory genes as well as overexpression of pro-inflammatory factors upon
ADAM17/EGFR activation. In line with this, blockage of the ADAM17/EGFR pathway
had a counteracting effect in response to aldosterone and resulted in an anti-inflammatory
environment [157]. Furthermore, high glucose conditions promoted TEC injury due to
increased oxidative stress, which was prevented by the inhibition of ADAM17, suggesting
that ADAM17 is an important mediator of inflammatory processes in the renal tubule [91].
Moreover, ADAM17 pathway activation leads to TEC proliferation and EMT, which is
defined by an amplified expression of cellular collagen and fibronectin [61,158]. The sus-
tained activation of EGFR signaling by ADAM17 also induces interstitial fibrosis due to an
increased release of pro-fibrotic factors [61]. These findings reflect the complexity of the
regulatory network between TECs and ADAM17 in cellular processes such as inflammation
and fibrosis.
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Figure 2. Overview of shedding activities of a disintegrin and metalloproteinases (ADAM) 10
and ADAM17 in the kidney. The shedding of ADAM10 and ADAM17 substrates in chronic kidney
disease (CKD). (a) Activation of the epidermal growth factor receptor (EGFR) pathway by shedding
amphiregulin (AREG) and transforming growth factor α (TGFα) by ADAM17. AREG and TGFα
shedding results in the upregulation of ADAM17 on the transmembrane. (b) Additionally, heparin-
binding EGF-like growth factor (HB-EGF) is cleaved by ADAM10, also activating the EGFR pathway.
(c) Shedding of Klotho is mediated by ADAM10 as well as ADAM17, resulting in soluble Klotho
(sKlotho), which exerts renoprotective effects. Membrane-bound Klotho, fibroblast growth factor
receptor (FGFR), and fibroblast growth factors 23 (FGF23) are from a trimeric signaling complex
regulating kidney homeostasis. (d) ADAM10 and ADAM17 can shed chemokine (C-X3-C motif)
ligand 1 (CX3CL1) and chemokine (C-X-C motif) ligand 16 (CXCL16), producing soluble chemokines.
sAREG, sTGFα, sHB-EGF, sKlotho, sCX3CL1, and sCXCL16 are all released into the circulation
and can translocate to the arterial endothelium and affect atherosclerotic processes. Created with
BioRender.com.

In addition to EGFR ligands, the membrane-bound chemokines CX3CL1 [102–105] as
well as CXCL16 [104,105,108] are shed in the kidney by ADAM17, but also by ADAM10
(Figure 2). Upregulation of both chemokines in mice resulted in the recruitment of mono-
cytes, NK cells, and T cells, which has been implicated in the pathogenesis of inflamma-
tory and fibrotic kidney diseases [159,160]. However, shedding can alter the function of
chemokines due to the conversion of a membrane-bound chemokine with cellular adhesion
function to a chemoattractant as a soluble variant. ADAM17 and ADAM10 might thus sup-
port the local fine-tuning of cell recruitment facilitated by CX3CL1 and CXCL16 [103–105].
However, whether CX3CL1 or CXCL16 shedding encourages or diminishes kidney damage
remains unclear.

2.2. ADAM10 and Its Role in CKD

It has been demonstrated that ADAM10 plays a crucial role during the development of
the kidney by mediating Notch-induced effects [161–163]. For example, ADAM10-mediated
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Notch signaling is vital for the development of the kidney vasculature, especially promot-
ing the development as well as the maturation of the glomerular endothelium [162,163].
Furthermore, in vitro studies showed that a knockdown of Adam10 disrupted proximal
tubule development [164]. Interestingly, several embryonic pathways, e.g., Notch, Wnt,
and Hedgehog signaling are revived upon kidney injury [165,166].

An overview of some major substrates that are shed by ADAM10 can be found in
Table 2. Interestingly, ADAM10 is upregulated in the kidney tissue of CKD patients, clearly
suggesting that it plays a key role in disease development [167]. Besides regulating cellu-
lar sensitivity to environmental stimuli, ADAM10 also orchestrates the release of soluble
mediators with (ant)agonistic, paracrine functions involved in inflammation, cell sur-
vival/proliferation, and fibrosis. Conceivably, these factors will mediate intra-renal cellular
cross-talk between epithelial cells and the endothelium of the peritubular capillaries [27].

In a rat model of CKD, increased expression of Adam10 contributed to EMT of tubu-
lar epithelia and increased kidney fibrosis [167]. Moreover, in a mouse model, it could
be demonstrated that activation of ADAM10 promoted kidney interstitial fibrosis and
eventually renal dysfunction [164]. Furthermore, previous in vivo studies reported that
endothelial-specific Adam10-deficient mice show vascular abnormalities in the kidney, such
as enlarged and hypercellular glomeruli with occasionally dilated peripheral capillaries, as
well as an increased amount of mesangial collagenous matrix in glomeruli [163].

The shedding of additional transmembrane proteins has also been shown to influence
the morphology of the kidney, for example, cleavage of CXCL16 by ADAM10 led to lupus
nephritis and acute tubular necrosis [107,108], whereas IL6-R shedding by ADAM10/17
resulted in acute crescentic glomerulonephritis and lupus nephritis [114], and Notch shed-
ding by ADAM10/17 led to renal fibrosis and glomerulosclerosis [164,168]. Additionally,
the shedding of TNF-α and TGF-β by ADAM17 resulted in increased fibrosis, glomeru-
losclerosis, inflammation, protein matrix accumulation, and neutrophil and macrophage
infiltration by both the TNF receptor (TNFR) and EGF receptor (EGFR) signaling path-
ways [47,61,147]. Furthermore, it has been shown that substrates of ADAM10/17 such as
Meprin influence kidney function as the Meprin inhibitor, actinonin, lowered blood urea
nitrogen and serum creatinine levels in the presence of renal sepsis [131].

3. Role of ADAM10/17 in Atherosclerosis
3.1. Substrate Cleavage by ADAM10/17 in the Context of Inflammation

Besides a crucial role in CKD, ADAM10 and ADAM17 have been more elaborately
studied in the context of CVD, particularly in atherosclerosis, the main underlying cause of
CVD [43,57,169]. Atherosclerosis is a multifactorial lipid-driven inflammatory disease in
which various cell types and multiple crucial mediators play an important role. Various
mediators have already been identified as substrates for ADAM10 and/or ADAM17 (exten-
sively reviewed in [57,169] and listed in Table 2). The main mediators during inflammation
and atherogenesis are the chemokines that play an essential role in the recruitment of
leukocytes to the injured vascular wall. The membrane-bound chemokines CXCL16 and
CX3CL1 are not only shed by ADAM10/ADAM17 in the kidney but also play an important
role in the context of atherosclerosis [104,106]. Increased cleavage of these chemotactic
proteins would on the one hand result in an increased attraction of leukocytes to the vessel
wall and on the other hand, diminish the adhesive capacity of the vessel wall, resulting
in opposing effects in relation to inflammation and atherogenesis [104,106]. Additionally,
in this leukocyte recruitment process, the shedding of intercellular adhesion molecule 1
(ICAM-1) and vascular cell adhesion molecule 1 (VCAM-1) by ADAM17 plays an impor-
tant role as these adhesion molecules are crucial for the adherence of leukocytes to the
vessel wall [98,118]. Once leukocytes adhere to the vessel wall, they still have to cross the
endothelium in a process called transmigration. In this context, the junctional molecules
vascular endothelial (VE)-cadherin and junctional adhesion molecule A (JAM-A) play an
important role as they maintain the integrity of the endothelial layer [74,119,170]. It was
shown that ADAM10/17 can cleave these junctional molecules, resulting in increased
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vascular permeability, thereby promoting leukocyte transmigration [74,119,170,171]. Based
on the important role of ADAM10 and ADAM17 in inflammation and the related leukocyte
recruitment studied mainly in in vitro settings, it is highly likely that these ADAMs also
play a crucial role in atherosclerosis formation in vivo.

3.2. ADAM17 as a Mediator of Atherosclerosis

ADAM17 expression has indeed been associated with atherosclerosis development.
For example, quantitative trait locus mapping in mice demonstrated that increased Adam17
expression is associated with atherosclerosis resistance [172]. On the other hand, it was
shown that Adam17 is expressed in murine atherosclerotic lesions and expression increased
with lesion progression, with a concomitant increase in plasma levels of soluble TNFRs [173].
In addition to these murine data, ADAM17 expression was also upregulated in advanced
human atherosclerotic lesions [174], and a positive association between circulating levels
of ADAM17 substrates (soluble (s)ICAM-1, sVCAM-1, sIL6R, and sTNFR1) and the risk
for a second major CV event was also observed in humans [175]. Furthermore, ADAM17
expression was predominantly associated with CD68-positive cells of monocytic origin,
although especially in carotid artery atherosclerotic plaques, ADAM17 expression was also
observed in vascular cells [174].

Although these association studies showed somewhat contradictory results, a more
recent study by Nicolaou et al. investigated the causal role of ADAM17 in atherosclerosis
development. Since full-body Adam17-deficient mice are, similar to Adam10-deficient mice,
embryonically lethal, they used Adam17 hypomorphic mice (Adam17ex/ex) [176] that express
very low levels of ADAM17. This study showed that ADAM17 has an atheroprotective
role in atherosclerosis development as Adam17 hypomorphic mice have atherosclerotic
lesions that are 1.5-fold larger compared to controls [177]. The proposed mechanism
was the reduced shedding of membrane-bound TNF and TNF-receptor 2 (TNFR2) in
mice with very low ADAM17 expression, resulting in constitutive activation of TNFR2-
signalling [177]. Consequently, several cellular functions are also disturbed upon Adam17-
deficiency, such as increased proliferation and reduced apoptosis in macrophages and SMCs
and an increased adhesion of macrophages to ECs in vitro, which are all atherosclerosis-
promoting effects [177]. Because these effects were alleviated with the knockdown of Tnfr2,
it was confirmed that TNF-TNFR2 signaling is a crucial mechanism behind the observed
ADAM17-mediated effects on atherosclerosis [177].

The full-body approach of the study by Nicolaou et al. did not allow for the determi-
nation of which exact cell type is responsible for the observed effects. Using the Cre-flox
system, cell-specific effects of ADAM17 in atherosclerosis could be distinguished [62].
Myeloid-specific Adam17-deficiency (LysM-Cre driven) resulted in an almost 2-fold increase
in atherosclerotic lesion sizes with a more advanced lesion phenotype, characterized by
reduced relative macrophage content with increased relative SMC and collagen content [62].
Although it is plausible to speculate that the interference with TNFR2 signaling is also the
underlying mechanism in this mouse model, perhaps together with the interference of
MMP expression (similar to the myeloid-specific Adam10--deficient model, as described
below), such underlying mechanisms have not been studied yet and thereby remain an
active field of research. Interestingly, endothelial-specific Adam17-deficiency (Bmx-Cre
driven) demonstrated the opposite effects on lesion development, as the lack of endothelial
ADAM17 resulted in significantly reduced atherosclerotic lesion sizes [62].

The notion that myeloid and endothelial ADAM17 have opposing effects on atheroscle-
rosis formation is also of crucial importance for potential future therapeutic options to
target ADAM17. So far, many studies in other diseases, e.g., cancer, have focused on
the general inhibition of ADAM17, which at least in the context of atherosclerosis would
probably not be effective due to the contradicting cell-specific effects and may even lead to
unwanted side-effects. Therefore, cell-specific or substrate-specific targeting is needed.
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3.3. ADAM10 as a Mediator of Atherosclerosis

Several studies have already highlighted that ADAM10 is associated with atherosclero-
sis development in humans. For example, we previously showed that ADAM10 expression
is significantly increased during atherosclerotic plaque progression compared to healthy
human vessels and early atherosclerotic lesions [74]. Furthermore, a polymorphism in the
ADAM10 promoter (rs653765) which results in an increased ADAM10 expression was found
to be associated with atherosclerotic cerebral infarction [178]. However, such associations
do not show the cause of the effect, which needs to be explored in animal models. However,
a limiting factor in the evaluation of this causal role of ADAM10 in atherosclerosis in vivo
is the fact that full-body Adam10-deficient mice are embryonically lethal [179], making it
impossible to investigate the global effect of ADAM10. However, cell-specific models have
so far proven to be highly useful to at least elucidate the role of cell-specific ADAM10 in
atherosclerosis formation.

Using a conditional knockout model in which mice lack ADAM10 specifically in
myeloid cells (LysM-Cre driven), we could, for example, elucidate the causal role of
myeloid ADAM10 on atherosclerosis formation using bone marrow transplantation into
atherosclerosis-prone Ldlr−/− mice [180]. Although lesion size was not affected by the lack
of myeloid ADAM10, lesions demonstrated an increased collagen content [180], indicating
that myeloid ADAM10 affects the fibrotic processes in atherosclerotic lesions. In line with
this, it was shown in vitro that macrophages lacking ADAM10 have a significantly reduced
expression of MMP9 and 13 and a reduced activity of MMP2. It has previously been
shown that ADAM10 has the direct matrix-degrading capacity, although this observation
was made in a rather artificial in vitro setting [181]. Additionally, macrophages lacking
ADAM10 also displayed a more anti-inflammatory (M2-like) phenotype, characterized by
increased IL-10 secretion and reduced TNF and IL-12 release, although there was no change
in profibrotic M2 markers, such as arginase 1 or TGF-β. Overall, ADAM10 modulates
fibrosis by reducing MMP activity either directly or indirectly.

Contrasting this role of myeloid ADAM10 in atherosclerosis formation, endothelial
Adam10-deficiency resulted in a markedly increased atherosclerotic lesion size, which
coincided with an increased necrotic core and reduced macrophage content, though le-
sional collagen content was unaffected [63]. Interestingly, a majority of plaques from
mice that lacked endothelial ADAM10 showed features of intraplaque hemorrhage and
neovascularization, which is normally rarely observed in mice. It is plausible that this is
caused by a disturbed shedding of key receptors involved in angiogenesis, such as vascu-
lar endothelial growth factor receptor 2 (VEGFR2) and Notch [74,182,183]. For example,
ADAM10-mediated Notch cleavage is important for Notch activation which limits tip cell
selection and sprouting formation in ECs [184]. Combined with the notion that interfer-
ence with Notch signaling phenocopies vascular abnormalities that are observed in mice
lacking ADAM10 [163,182,185], the reduced Notch signaling is most likely responsible for
the observed pathological neovascularization in atherosclerotic lesions from mice lacking
endothelial ADAM10. Mechanistically, it could be shown in vitro and in vivo that Adam10
knockdown reduced the shedding of lectin-like oxidized LDL receptor-1 (LOX-1) and
increased endothelial inflammation [63]. Interestingly, these effects are also completely op-
posite to the observed effects on atherosclerosis formation by endothelial Adam17-deficiency,
as described above [63]. Although, as described, ADAM10 and ADAM17 share many sub-
strates, they can also cleave various unique substrates. Based on the opposing effects in the
endothelial-specific Adam10 and Adam17-deficient studies and the notion that ADAM17
does not seem to be involved in LOX-1 cleavage [186], it is plausible that the underly-
ing mechanism behind the pro-atherogenic effects of endothelial ADAM17 is due to the
cleavage of an ADAM17-specific substrate, although this remains to be investigated.

Combined, it could be clearly demonstrated that ADAM10 plays a key role in atheroscle-
rosis formation in a cell-specific manner. However, further studies are still needed to also
explore the role of ADAM10 expressed in other cell types (such as SMCs) in atherosclero-
sis formation.
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4. ADAMs in Cardiorenal Cross-Talk

As mentioned before, enhanced atherosclerosis is observed in animal models of
CKD [187], and CKD patients have a significantly increased risk for CVD events and
death [11,13]. However, the underlying mechanism of this cardiorenal cross-talk remains
largely elusive. Uremic toxins accumulate in the circulation of CKD patients, as these
cannot be sufficiently filtered, and thereby negatively influence the systemic vasculature,
leading, for example, to protein/lipid modifications, immune cell activation, and endothe-
lial dysfunction. Moreover, impaired kidney function augments hypertension and alters
mineral bone metabolism, leading to vascular stiffness and calcification [22] (Figure 3).
Furthermore, shedding and the release of various substrates into the circulation can be
responsible for the cross-talk between the kidney and vasculature. Although ADAM10 and
ADAM17 are clearly involved in both CKD and CVD, yet are more elaborately studied in
the context of CVD, the role of ADAMs in the progression of renal disease and especially
their role in cardiorenal disease is thus far a rather understudied field of research. Clear
indications of the involvement of ADAMs in cardiorenal disease are for example provided
by the NEFRONA study in which the circulating ADAMs were measured in 2570 CKD
patients. The results indicated that soluble ADAMs (mainly ADAM17, but potentially also
ADAM8, −9, or −10) are an independent risk factor for CV events in CKD patients [69,153].
Fascinatingly, vitamin D supplementation, which resulted in ADAM17 inhibition, pre-
vented renal fibrotic and inflammatory lesions, which coincided with a decrease in systemic
inflammation and related CV mortality [156].
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In addition, certain shedding activities of ADAM10 and ADAM17 have been as-
sociated with CKD and the related CVD risk. For example, Klotho is cleaved in the
kidney by both ADAM10 and ADAM17 [121] (Figure 2). Klotho is characterized as a
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vasculoprotective/anti-aging protein that is predominantly expressed in the distal tubule
of the kidney where, interestingly, the highest ADAM10 and ADAM17 expression is also
observed [59]. Klotho is known to interact with fibroblast growth factors 23 (FGF23). Cap-
tivatingly, high levels of FGF23 were observed in CKD patients, which coincided with a
high expression of ADAM17. In turn, FGF23 is known to be an important indicator of
oxidative stress and is associated with increased CV risk in CKD patients [188]. Addition-
ally, soluble Klotho can exert protective effects against fibrosis and inflammation [189] in
an FGF23-independent manner [190], thereby preventing CKD progression. Furthermore,
Klotho is also expressed by ECs [60], which protects the vasculature from endothelial
dysfunction [191]. In this manner, the shedding of Klotho by ADAM10/17 can exert not
only effects on CKD but also on CKD-induced CVD [192].

Additionally, CXCL16 can also play a role in cardiorenal disease as it was observed
that the expression of this chemokine and its receptor CXCR6 was significantly increased
in the radial arteries of inflamed ESRD patients, characterized by high C-reactive protein
levels compared to those in control non-inflamed ESRD patients [193]. Interestingly, these
inflamed ESRD patients also had an increased ADAM10 expression in the radial arteries,
which also coincided with an increased accumulation of foam cells in the vessel wall [193].
Combined, these results clearly suggest that ADAM10 can also play a key role in cardiorenal
disease by influencing the CXCL16/CXCR6 pathway. It is likely that the release of EGFR
ligands and other inflammatory molecules (IL-6R, TNF(R), etc.) in the kidney also impacts
systemic vasculature [194,195].

Cross-talk within the kidney, particularly when damaged, has also been linked to
extracellular vesicle (EV) release [196]. EVs are mediators of CVD [197] as well as systemic
vascular calcification in CKD [198]. ADAMs can directly or indirectly modulate EV com-
position and function by their shedding activity and/or by being present themselves in
EVs, affecting target cell responses such as endothelial (dys)function and VSMC calcifica-
tion [199,200]. It has also been shown that EVs, more specifically microparticles, isolated
from human atherosclerotic plaques carry active ADAM17 on their surface and that such
microparticles can enhance the shedding of TNF and its receptor on ECs [85], indicating
that ADAM17 can have systemic effects on inflammation. Furthermore, ADAM10 also
has been observed to be present in EVs, although its exact effects are still elusive [100,199].
It is therefore likely that at least part of the cardiorenal communication is mediated by
the release of soluble mediators, either involving ectodomains shed by the ADAMs or the
release of EVs carrying ADAMs or their substrates.

5. Future Perspectives

Early detection and management of both CKD and CVD are crucial to prevent their
progression and improve quality of life. Because it has been shown that ADAM10/17
influence many mediators of CKD-induced atherosclerosis, it would be very interesting
to dive into the detailed mechanisms of action, as these so far remain rather elusive.
ADAM10/17, to some extent, have cell-specific functions, future research should focus on
elucidating these cell-specific effects of ADAM10/17 in CKD and especially CKD-induced
atherosclerosis mouse models. Some suggestions to study cell-specific effects that are
interesting in this context are, for example, EC (Bmx or Tie-Cre driven), podocyte (podocin
(Nphs2)-Cre driven), or kidney epithelial cell (kidney-specific-protein (Ksp)-Cre driven)
knockouts of Adam10/17. Although the first two suggested mouse models are not kidney-
specific knockouts, this shortcoming can be overcome by transplanting a kidney from a
knockout mouse into a wild-type recipient. These studies may contribute to understanding
the role of these ADAMs in CKD-induced atherosclerosis and potentially open new doors
for ADAM-based therapeutic approaches. This is crucial as, currently, treatment options
to reduce CV mortality in patients with CKD are very limited, and clinical trials designed
to reduce CV mortality in CKD patients have not proven to be successful yet. Notably,
an exception is a clinical trial in which a statin and ezetimibe were given to non-dialysis
patients with CKD [20,201,202], resulting in a 27% decrease in severe atherosclerosis-
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related events, although the benefits were rather limited as the treatment had no impact
on mortality [203]. Therefore, new insights and treatment options are necessary to fight
CKD-induced CVD morbidity and mortality.

A cell-specific targeting approach can be mediated via inactive rhomboid-like protease
(iRhom2), which is involved in ADAM17 maturation and is only expressed in leuko-
cytes [204,205]. A recent study by Hannemann et al. performed an investigation of
atherosclerosis using mice that lack iRhom2 and thereby have increased ADAM17 acti-
vation in leukocytes [206]. It was shown that the activation of ADAM17 resulted in a
significantly decreased atherosclerotic lesion size, which is in line with the results observed
in the previously discussed myeloid-specific Adam17-deficient model. Therefore, it would
be very interesting and worthwhile to investigate more and other cell-/substrate-specific
targeting approaches for ADAM10/17 to create ADAM10/17-based therapies in the context
of (CKD-induced) atherosclerosis.
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