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Abstract: Bisphenol A (BPA) is widely used to harden plastics and polycarbonates and causes se-
rious toxic effects in multiple organs, including the intestines. Selenium, as an essential nutrient
element for humans and animals, exhibits a predominant effect in various physiological processes.
Selenium nanoparticles have attracted more and more attention due to their outstanding biological
activity and biosafety. We prepared chitosan-coated selenium nanoparticles (SeNPs) and further
compared the protective effects, and investigated the underlying mechanism of SeNPs and inorganic
selenium (Na2SeO3) on BPA-induced toxicity in porcine intestinal epithelial cells (IPEC-J2). The
particle size, zeta potential, and microstructure of SeNPs were detected by using a nano-selenium
particle size meter and a transmission electron microscope. IPEC-J2 cells were exposed to BPA
alone or simultaneously exposed to BPA and SeNPs or Na2SeO3. The CCK8 assay was performed
to screen the optimal concentration of BPA exposure and the optimal concentration of SeNPs and
Na2SeO3 treatment. The apoptosis rate was detected by flow cytometry. Real-time PCR and Western
blot methods were used to analyze the mRNA and protein expression of factors related to tight
junctions, apoptosis, inflammatory responses and endoplasmic reticulum stress. Increased death and
morphological damage were observed after BPA exposure, and these increases were attenuated by
SeNPs and Na2SeO3 treatment. BPA exposure disturbed the tight junction function involved with
decreased expression of tight junction protein Zonula occludens 1 (ZO-1), occludin, and claudin-
1 proteins. Proinflammatory response mediated by the transcription factor nuclear factor-k-gene
binding (NF-κB), such as elevated levels of interleukin-1β(IL-1β), interleukin-6 (IL-6), interferon-γ
(IFN-γ), interleukin-17 (IL-17), and tumor necrosis factor-α (TNF-α) expression was induced at 6 and
24 h after BPA exposure. BPA exposure also disturbed the oxidant/antioxidant status and led to
oxidative stress. IPEC-J2 cell apoptosis was induced by BPA exposure, as indicated by increased
BCL-2-associated X protein (Bax), caspase 3, caspase 8, and caspase 9 expression and decreased B-cell
lymphoma-2 (Bcl-2) and Bcl-xl expression. BPA exposure activated the endoplasmic reticulum stress
(ERS) mediated by the receptor protein kinase receptor-like endoplasmic reticulum kinase (PERK),
Inositol requiring enzyme 1 (IRE1α), and activating transcription factor 6 (ATF6). We found that
treatment with SeNPs and Na2SeO3 can alleviate the intestinal damage caused by BPA. SeNPs were
superior to Na2SeO3 and counteracted BPA-induced tight junction function injury, proinflammatory
response, oxidative stress, apoptosis, and ERS stress. Our findings suggest that SeNPs protect intesti-
nal epithelial cells from BPA-induced damage, partly through inhibiting ER stress activation and
subsequently attenuating proinflammatory responses and oxidative stress and suppressing apoptosis,
thus enhancing the intestinal epithelial barrier function. Our data indicate that selenium nanoparticles
may represent an effective and reliable tool for preventing BPA toxicity in animals and humans.
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1. Introduction

The intestinal tract is the organ with the largest surface area in direct contact with the
external environment of the animal body, which has critical biological functions such as
digestion, absorption, metabolism, and immunity [1]. The intestinal barrier mainly consists
of four aspects: intestinal commensal microorganisms, chemical barrier, physical barrier,
and immune barrier [2]. Among these, intestinal barrier integrity largely relies on the
intestinal epithelial cells (IECs). The IEC is the first cell boundary between the luminal
environment and the body against outside hostile stimuli. The choice of the IEC’s unique
permeability can guarantee the body’s absorption of nutrients and effectively suppress
pathogenic microorganisms and harmful substances through the barrier to enter the blood
to maintain the body’s normal physiological function [3]. The IEC barrier’s permeability is
regulated by the junction complex formed between adjacent intestinal epithelial cells [4].
The intercellular junction complex is mainly composed of tight junctions, which mainly
include claudins, occludin, and ZO families [5]. Maintaining the normal expression and
distribution of tight junction proteins is essential for intestinal barrier function.

BPA is one of the most widely used industrial compounds in the world, mainly in
the production of plastic containers, toys, tableware, medical devices, and polycarbonate
bottles. As an endocrine-disrupting chemical, BPA has estrogen-like and anti-androgen
properties, causing significant damage to human tissues and organs, such as the repro-
ductive system, immune system, and neuroendocrine system [6]. Humans and animals
are exposed to BPA mainly through dietary, transdermal, and inhalation, in which dietary
is considered the main route [7]. Studies have demonstrated that after BPA enters the
human body, it first destroys the intestinal epithelial barrier functions, intestinal immune
systems, and reproductive systems, and thus leads to the occurrence of various metabolic
diseases [8]. Mice dietary intake of BPA first destroys the morphological structure of in-
testinal epithelial cells by inhibiting the expression of tight junction proteins and increasing
intestinal permeability [9]. Similarly, the oral administration of BPA can affect the intestinal
barrier functions and then accumulate in the intestine, liver, and gonads of pigs, leading
to reproductive toxicity [10]. Further studies also indicated that dietary exposure to BPA
destroys the gastrointestinal mucosal layer of human colon cancer cells (HCT116), leading
to increased apoptosis and slower progression associated with intestinal epithelial cell
proliferation [11]. BPA treatment increases intestinal permeability and disrupts the barrier
function by increasing the chemical marker content and tight junction expression in intesti-
nal tissues and blood circulation [12]. It remains unclear how BPA damages the intestinal
epithelial barrier functions.

The endoplasmic reticulum (ER) is composed of branched tubules and flat reticular
capsules that are present in all eukaryotic cells and extend into the cytoplasm to surround
the nuclear membrane. The endoplasmic reticulum can be divided into two types: the
rough endoplasmic reticulum full of ribosomes and the smooth endoplasmic reticulum rich
in lipid synthetase. The rough endoplasmic reticulum is mainly involved in the biosynthe-
sis, folding, processing and modification of soluble and membrane proteins. The rough
endoplasmic reticulum is of paramount importance for adaptive responses to biotic stresses
due to increased unfolded or misfolded proteins. ERS is well known as the accumulation
of unfolded proteins in ER lumen caused by the increased protein synthesis or multiple
conditions, and ER responds to ER stress by activating the unfolded protein response
(UPR), an adaptive intracellular signal to cope with ER stress and help to sustain cell sur-
vival and normal functions [13]. In response to ER stress, ER-resident chaperone binding
immunoglobulin protein (Bip) dissociates from the luminal domains of the three protein
sensors, leading to the activation of proteins PERK, IRE1, and ATF6 to restore intracellular
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homeostasis [14,15]. Notably, ER stress in intestinal epithelium evokes a range of adverse
cellular responses, such as oxidative stress, inflammatory responses, and apoptosis, which
are all involved in the pathogenesis of intestinal barrier dysfunction [16–18]. Dietary intake
of BPA results in an abnormal increase in the amount of unfolded and misfolded proteins in
the ER and then induces ER stress [19]. Studies have shown that BPA can reveal persistent
ER stress by activating ATF6 and IRE1 pathways in mammals [20]. Moreover, BPA activates
ER stress and stimulates oxidative stress, thereby promoting cell apoptosis and damaging
intestinal barrier functions [21].

As an essential nutrient element for humans and animals, selenium has important
biological functions for human health, such as anti-cancer, anti-inflammatory, and anti-
oxidation. In recent years, selenium has been applied in the form of inorganic selenium,
organic selenium, and nano-selenium. Studies demonstrated that the use of inorganic
sodium selenite ameliorates BPA toxicity in the liver, testis, and lungs of mice [22]. How-
ever, because inorganic selenium is easy to combine with vitamins and has poor stability,
low bioavailability, and high biological toxicity, it is difficult to control the safe use dose
in the actual use process [23]. In recent years, selenium nanoparticles, as a new type of
elemental selenium, have attracted much attention. Compared with inorganic selenium and
organic selenium, selenium nanoparticles have higher bioavailability, stronger biological
activity, lower toxicity, and better compatibility as therapeutic drug carriers, and are easy
to synthesize and store [24,25]. Previous studies have shown that the intestinal villus
circumference and height of fish fed with a nano-selenium diet were greater than those of
fish fed with sodium selenite, suggesting that nano-selenium can be more effective in main-
taining intestinal integrity [26]. Recent studies have shown that, compared with inorganic
selenium and organic selenium, selenium nanoparticles have obvious biological beneficial
effects on the alleviation of cadmium-induced inflammation via NF-κB/IκB pathway in
the heart [27]. Nano-selenium is superior to inorganic selenium and organic selenium in
attenuating the cardiotoxic effects of cadmium by activating the aryl hydrocarbon receptor
pathway [28]. Studies also have shown that selenium nanoparticles attenuate BPA-induced
testicular toxicity by inhibiting oxidative stress in male rats [29]. The molecular mechanism
underlying the protective effects of selenium nanoparticles against BPA-induced toxicity
needs to be further explored.

In the present study, we established the model of BPA-stimulated porcine IPEC-J2
cells and further analyzed the effects of prepared SeNPs on ER stress and the downstream
apoptosis, oxidative stress, and inflammatory pathways.

2. Results
2.1. Preparation and Characterization of SeNPs

The size distribution, zeta potential, microstructure, and stability of particles of SeNPs
are presented in Figure 1. SeNPs were prepared by in-situ reduction of selenite and vitamin
C using chitosan as the carrier material, and the concentration of SeNPs was 76.424 mg/g.
The characteristic peak of the absorption maximum for SeNPs was 149.7 nm, indicating the
small particle size of SeNPs (Figure 1A). The zeta potential of SeNPs ranged from −45.8 to
31.4 mV, and a signature peak appeared at 27.7 mV (Figure 1B). The TEM images showed
that the SeNPs were distributed as well-dispersed spherical particles (Figure 1C). The
presence of pepsin and trypsin in the gastroenteric fluid in the digestive system affects the
structure and particle size of SeNPs. The stability of SeNPs was measured after gastric and
intestinal digestion. The absorption values of SeNPs did not change after 1–3 h of gastric
digestion and 1–2 h of intestinal digestion but increased after 2–3 h of gastric digestion and
3 h of intestinal digestion (Figure 1D).
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Figure 1. Determination of physicochemical properties and stability of SeNPs. The size distribution 
(A) and zeta potential (B) of prepared SeNPs were measured. Schematic diagram of macroscopic 
and microscopic morphology of SeNPs (C). Changes in particle size of SeNPs were measured after 
digestion in vitro (D). Data are presented as the means ± SEM of three independent experiments. * 
p < 0.05. 

2.2. Establishment of the Model of BPA-Exposed and Na2SeO3 or SeNPs-Treated IPECs 
The viability and morphological characteristics of IPECs were measured and ob-

served to determine the optimal exposure dose of BPA and treatment dose of Na2SeO3 or 
SeNPs. Cell viability decreased when exposed to the increased BPA concentration, and 
cell viability decreased to about 60% at a BPA concentration of 50 µM, whether 6 or 24 h 
after BPA exposure (Figure 2A). Thus, we choose 50 µM as the BPA exposure concentra-
tion to allow for cell damage without disruption of the cell monolayer in subsequent ex-
periments. After adding 5−50 µg/mL of SeNPs or Na2SeO3, a low dose of SeNPs or Na2SeO3 
decreased the cell death induced by 50 µM of BPA, but a high dose of SeNPs or Na2SeO3 
led to cell death. SeNPs or Na2SeO3 at the concentration of 15 µg/mL exhibited the best 
inhibitory effect on BPA-induced cell damage (Figure 2B). Under the optical microscope, 
at 24 h, untreated control cells appeared normal, and the cell monolayer was intact. At 24 
h after BPA exposure, cells were broken, and the boundary was blurred. However, the 
addition of 15 µg/mL SeNPs or Na2SeO3 attenuated the degree of disruption of the cell 
monolayer induced by BPA. Compared with cells in the Na2SeO3 + BPA group, the number 
of vacuolar dead cells was less in the SeNPs + BPA group (Figure 2C). 

Figure 1. Determination of physicochemical properties and stability of SeNPs. The size distribution
(A) and zeta potential (B) of prepared SeNPs were measured. Schematic diagram of macroscopic
and microscopic morphology of SeNPs (C). Changes in particle size of SeNPs were measured after
digestion in vitro (D). Data are presented as the means ± SEM of three independent experiments.
* p < 0.05.

2.2. Establishment of the Model of BPA-Exposed and Na2SeO3 or SeNPs-Treated IPECs

The viability and morphological characteristics of IPECs were measured and observed
to determine the optimal exposure dose of BPA and treatment dose of Na2SeO3 or SeNPs.
Cell viability decreased when exposed to the increased BPA concentration, and cell viability
decreased to about 60% at a BPA concentration of 50 µM, whether 6 or 24 h after BPA
exposure (Figure 2A). Thus, we choose 50 µM as the BPA exposure concentration to allow
for cell damage without disruption of the cell monolayer in subsequent experiments. After
adding 5–50 µg/mL of SeNPs or Na2SeO3, a low dose of SeNPs or Na2SeO3 decreased
the cell death induced by 50 µM of BPA, but a high dose of SeNPs or Na2SeO3 led to cell
death. SeNPs or Na2SeO3 at the concentration of 15 µg/mL exhibited the best inhibitory
effect on BPA-induced cell damage (Figure 2B). Under the optical microscope, at 24 h,
untreated control cells appeared normal, and the cell monolayer was intact. At 24 h after
BPA exposure, cells were broken, and the boundary was blurred. However, the addition of
15 µg/mL SeNPs or Na2SeO3 attenuated the degree of disruption of the cell monolayer
induced by BPA. Compared with cells in the Na2SeO3 + BPA group, the number of vacuolar
dead cells was less in the SeNPs + BPA group (Figure 2C).
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was determined by measuring the cell viability after BPA exposure (A). The optimal concentration
of Na2SeO3 or SeNPs was determined by measuring the cell viability when cells were treated with
Na2SeO3 or SeNPs, followed by BPA exposure (B). The morphological changes of IPEC-J2 were
observed when cells were treated with 15 µg/mL Na2SeO3 or SeNPs followed by 50 µM of BPA
exposure for 24 h (C). Data are presented as the means ± SEM of three independent experiments.

2.3. SeNPs Maintained the TJ Expression in BPA-Exposed IPECs

To investigate the effect of SeNPs on intestinal integrity in BPA-exposed cells, the
expression of tight junction proteins was determined. Compared with untreated control
IPECs, the expression of ZO-1 and occludin proteins was decreased at 6 and 24 h after
BPA exposure in cells only exposed to BPA (Figure 3A,B). Compared with cells only
exposed to BPA, the expression of ZO-1 and occludin proteins was decreased at 6 h in the
Na2SeO3 + BPA group but increased in the SeNPs + BPA group. Compared with untreated
control IPECs, BPA exposure led to the decreased expression of ZO-1 and occludin proteins
at 24 h, whereas Na2SeO3 or SeNPs treatment enhanced the ZO-1 and occludin proteins
expression. BPA exposure led to decreased expression of claudin-1 protein at 6 h, regardless
of with or without SeNPs or Na2SeO3 treatment. Compared with untreated control IPECs,
BPA exposure led to the decreased expression of claudin-1 protein at 24 h, whereas Na2SeO3
or SeNPs treatment enhanced the claudin-1 protein expression.

Int. J. Mol. Sci. 2023, 24, x FOR PEER REVIEW 6 of 18 
 

 

Figure 2. Effects of Na2SeO3 and SeNPs on viability and morphology of IPEC-J2 after BPA exposure. 
The dashed line represented the standard line of 50% cell viability. The optimal concentration of 
BPA was determined by measuring the cell viability after BPA exposure (A). The optimal concen-
tration of Na2SeO3 or SeNPs was determined by measuring the cell viability when cells were treated 
with Na2SeO3 or SeNPs, followed by BPA exposure (B). The morphological changes of IPEC-J2 were 
observed when cells were treated with 15 µg/mL Na2SeO3 or SeNPs followed by 50 µM of BPA 
exposure for 24 h (C). Data are presented as the means ± SEM of three independent experiments. 

2.3. SeNPs Maintained the TJ Expression in BPA-Exposed IPECs 
To investigate the effect of SeNPs on intestinal integrity in BPA-exposed cells, the 

expression of tight junction proteins was determined. Compared with untreated control 
IPECs, the expression of ZO-1 and occludin proteins was decreased at 6 and 24 h after 
BPA exposure in cells only exposed to BPA (Figure 3A,B). Compared with cells only ex-
posed to BPA, the expression of ZO-1 and occludin proteins was decreased at 6 h in the 
Na2SeO3 + BPA group but increased in the SeNPs + BPA group. Compared with untreated 
control IPECs, BPA exposure led to the decreased expression of ZO-1 and occludin pro-
teins at 24 h, whereas Na2SeO3 or SeNPs treatment enhanced the ZO-1 and occludin pro-
teins expression. BPA exposure led to decreased expression of claudin-1 protein at 6 h, 
regardless of with or without SeNPs or Na2SeO3 treatment. Compared with untreated con-
trol IPECs, BPA exposure led to the decreased expression of claudin-1 protein at 24 h, 
whereas Na2SeO3 or SeNPs treatment enhanced the claudin-1 protein expression. 

 
Figure 3. The effects of Na2SeO3 and SeNPs treatment on the TJ expression of IPEC-J2 cells after BPA 
exposure. Representative panels showing expression of ZO-1, Occludin, and Claudin-1 proteins by 
Na2SeO3 or SeNPs treatment followed by BPA exposure at 6 and 24 h (A). Expression of GAPDH 
was measured as an internal control. Results are presented as the ratio of ZO-1, Occludin, and Clau-
din-1 band intensity to that of GAPDH (B). Data are presented as the means ± SEM of three inde-
pendent experiments. a,b,c,d Mean values within a row with different superscript letters were signifi-
cantly different (p < 0.05). 

2.4. SeNPs Attenuated the BPA-Induced IPEC Apoptosis 
According to the flow cytometry results, IPECs exposed to BPA alone had a higher 

percentage of apoptosis at 24 h compared with untreated control cells (Figure 4A). Treat-
ment with SeNPs or Na2SeO3 resulted in a decrease in the percentage of apoptosis during 
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cells in the Na2SeO3 + BPA group. Western blot results showed that BPA exposure in-
creased the expression of pro-apoptotic protein caspase-3 and Bax at 6 and 24 h compared 
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SeNPs treatment at 6 and 24 h but not by Na2SeO3 treatment at 6 h. Consistently, treatment 

Figure 3. The effects of Na2SeO3 and SeNPs treatment on the TJ expression of IPEC-J2 cells after BPA
exposure. Representative panels showing expression of ZO-1, Occludin, and Claudin-1 proteins by
Na2SeO3 or SeNPs treatment followed by BPA exposure at 6 and 24 h (A). Expression of GAPDH was
measured as an internal control. Results are presented as the ratio of ZO-1, Occludin, and Claudin-1
band intensity to that of GAPDH (B). Data are presented as the means ± SEM of three independent
experiments. a,b,c,d Mean values within a row with different superscript letters were significantly
different (p < 0.05).

2.4. SeNPs Attenuated the BPA-Induced IPEC Apoptosis

According to the flow cytometry results, IPECs exposed to BPA alone had a higher per-
centage of apoptosis at 24 h compared with untreated control cells (Figure 4A). Treatment
with SeNPs or Na2SeO3 resulted in a decrease in the percentage of apoptosis during BPA
exposure. Cells in the SeNPs + BPA group had a lower percentage of apoptosis than cells
in the Na2SeO3 + BPA group. Western blot results showed that BPA exposure increased
the expression of pro-apoptotic protein caspase-3 and Bax at 6 and 24 h compared with
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untreated control cells, whereas treatment with SeNPs or Na2SeO3 attenuated this increase
(Figure 4B,C). The BPA-induced down-regulation of the expression of anti-apoptotic pro-
tein Bcl-2 and Bcl-xl was observed, and this down-regulation was attenuated by SeNPs
treatment at 6 and 24 h but not by Na2SeO3 treatment at 6 h. Consistently, treatment with
SeNPs and Na2SeO3 reversed the increase in the mRNA expression of caspase-8, caspase-9,
and Bax and the decrease in the mRNA expression of Bcl-2 induced by BPA exposure
(Figure 4D).
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Figure 4. Effects of Na2SeO3 and SeNPs treatment on apoptosis of IPEC-J2 cells induced by BPA.
Cell apoptosis was determined by flow cytometric analysis and analyzed (A). Representative panels
showing expression of caspase 3, Bcl-xl, Bax, and Bcl-2 proteins by Western blotting at 6 and 24 h
after BPA challenge (B). Expression of GAPDH was measured as an internal control. Results are
presented as the ratio of caspase 3, Bcl-xl, Bax, and Bcl-2 protein band intensities to that of GAPDH,
and the cellular protein Bcl-2 was used as an internal control for Bax (C). The relative expression of
mRNAs for the caspase-8, caspase-9, Bcl-2, and Bax genes was analyzed by quantitative real-time PCR
(D). Data are presented as the means ± SEM of three independent experiments. a,b,c,d Mean values
within a row with different superscript letters were significantly different (p < 0.05).

2.5. The Effects of Na2SeO3 and SeNPs on Inflammatory Pathways in BPA-exposed IPECs

The Western blot results showed that cells exposed to BPA alone had a higher expres-
sion of p-NF-κB and p-IκB proteins compared with the untreated control cells at 6 and
24 h, but this increase was inhibited by SeNPs or Na2SeO3 treatment (Figure 5A,B). SeNPs
exhibited a better inhibitory effect on the BPA-induced increase in the p-NF-κB expression
at 24 h and in the p-IκB expression at 6 and 24 h. Compared with the untreated control
group, BPA exposure increased the mRNA expression of pro-inflammatory cytokine IL-1β,
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IL-6, IFN-γ, IL-17, and TNF-α at 6 and 24 h, but this increase was attenuated by SeNPs or
Na2SeO3 treatment (Figure 5C). Compared with cells in the Na2SeO3 + BPA group, cells
in the SeNPs + BPA group had a lower expression of IL-1β, IL-6, and IL-17 during BPA
exposure. Compared with the untreated control group, BPA exposure led to decreased
mRNA expression of IL-10, but this decrease was reversed by SeNPs or Na2SeO3 treatment.
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Figure 5. Effect of Na2SeO3 and SeNPs treatment on the inflammatory response of IPEC-J2 cells after
BPA exposure. Representative panels showing expression of p-NF-κB and p-IκB by Western blotting
at 6 and 24 h after BPA exposure (A). Expression of GAPDH was measured as an internal control.
Results are presented as the ratio of p-NF-κB and p-IκB band intensity to that of GAPDH (B). The
relative expression of mRNAs for the IL-1β, IL-6, IFN-γ, IL-17, TNF-α, and IL-10 genes was analyzed
by quantitative real-time PCR (C). Data are presented as the means ± SEM of three independent
experiments. a,b,c,d Mean values within a row with different superscript letters were significantly
different (p < 0.05).

2.6. SeNPs Maintained the Antioxidant Capacity of IPEC-J2 Cells during BPA Exposure

The antioxidant capacity of IPEC-J2 cells was assessed by measuring the abundance
of malondialdehyde (MDA), total antioxidant capacity (T-AOC), superoxide dismutase
(SOD), catalase (CAT), and glutathione peroxidase (GSH-Px). Compared with the untreated
control group, BPA exposure increased the abundance of MDA at 6 and 24 h, and this
increase was inhibited by SeNPs or Na2SeO3 treatment (Figure 6A). Compared with the
untreated control group, BPA resulted in decreased abundance of T-AOC, SOD, CAT,
and GSH-Px at 6 and 24 h (Figure 6B–E). SeNPs or Na2SeO3 treatment inhibited even
reversed the BPA-induced decrease in the abundance of T-AOC, SOD, CAT, and GSH-Px
at 24 h compared with BPA alone group. SeNPs, but not Na2SeO3 treatment, reversed the
decreased abundance of SOD induced by BPA at 6 h.
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2.7. SeNPs Ameliorated the BPA-Induced ERS in IPEC-J2 Cells

Compared with untreated control cells, BPA exposure led to increased expression
of ERS marker protein Bip at 24 h, whereas this increase was attenuated by SeNPs or
Na2SeO3 treatment (Figure 7A,B). For the PERK/ATF4 pathway, BPA exposure increased
the expression of p-PERK, translational initiation factor 2α (eIf2α), and ATF4 proteins at 6
and 24 h, and this increase was inhibited by SeNPs or Na2SeO3 treatment. Compared with
Na2SeO3 treatment, cells treated with SeNPs showed lower expression of p-PERK and eIf2α
at 6 h and lower expression of ATF4 at 24 h (Figure 7A,B). For the IRE1 and ATF6 pathways,
BPA exposure increased the expression of IRE1 and ATF6 compared with the untreated
control group, and this increase was inhibited by SeNPs or Na2SeO3 treatment. SeNPs
treatment exhibited a better inhibitory effect on the increased IRE1 protein expression
induced by BPA at 6 h than Na2SeO3 treatment (Figure 7A,B). Compared with untreated
control cells, BPA exposure led to increased expression of C/EBP homologous protein
(CHOP) at 6 h, whereas this increase was attenuated by SeNPs or Na2SeO3 treatment.
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different (p < 0.05).

3. Discussion

As a common environmental contaminant, BPA has been shown to cause potential
damage to many tissues and organs (lung, liver, kidney, skin, and mucous membrane)
of humans and animals [30,31]. The intestine is especially vulnerable to the adverse
effects of BPA. Previous studies showed that selenium and its nano form have powerful
protective effects against oxidative stress, DNA damage, and apoptosis in response to BPA
cisplatin and ionizing radiation exposure in vivo [32,33]. In this study, we employed the
IPEC-J2 cell line, widely used in mimicking intestinal epithelial cells in in vitro studies, to
evaluate the adverse effects of BPA exposure on the intestinal epithelial barrier function and
further revealed the protective effects and mechanism of SeNPs. Our results showed that
SeNPs alleviated the development of BPA-induced toxicity and maintained the intestinal
barrier functions by inhibiting ER stress and downstream intestinal epithelial cell apoptosis,
inflammation, and oxidative stress.

The intestinal epithelial barrier acts as the first line of defense and plays a vital role in
nutrition and immunoregulation. A layer of epithelial cells bounds together via intercellular
junction proteins and maintains intestinal barrier integrity. Dietary BPA uptake destroys
the morphology of the colonic epithelium and increases the pathology score by decreasing
the expression of tight junction proteins (ZO-1, occludin, and claudin-1) in the colonic
epithelium of mice [34]. The destruction of the intestinal barrier helps BPA to penetrate
the intestine and then invade other organ systems. Dietary exposure of 50 µg/kg/day of
BPA induces increased intestinal permeability and consequently leads to hepatic steatosis
in CD-1 mice [35]. Studies found that long-term exposure to BPA for 22 weeks reduced
the tight junctions in the colon of male C57BL/6J mice, resulting in the dysfunction of the
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gut barrier and impaired cognitive function [36]. Consistent with previous studies, our
results showed that BPA exposure significantly decreased the expression of tight junction
proteins both at 6 and 24 h. However, SeNPs treatment maintained the normal expression
of tight junction proteins during BPA exposure at 24 h. We found that the protective effects
of SeNPs were superior to Na2SeO3, as shown that Na2SeO3 treatment led to a lower
expression of ZO-1 and Occludin proteins than BPA exposure alone. In a model of fluorine-
induced chronic oxidative stress of broilers, selenomethionine exhibited a better protective
effect on ameliorating tight junction network impairment than sodium selenite [37]. Nano-
bio selenium can effectively improve the performance and intestinal integrity of broilers
compared to the common organic and inorganic sources of selenium [38]. Our results
suggest that SeNPs maintained the intestinal barrier function by increasing the expression
of tight junction proteins to attenuate the adverse effects of BPA.

Apoptosis is programmed death of a self-protective nature after the host cell senses
external risk factors [39]. There are two main pathways of apoptosis, the extrinsic apoptotic
pathway mediated by caspase 8 and the endogenous pathway mediated by Bcl 2, caspase
3, caspase 7, and caspase 9 [40]. Studies have shown that cell apoptosis is the main signal
pathway of BPA-induced tissue damage, including the brain [41], liver [42], and lung [43].
It has been shown that BPA-treated rat and human stem cells have a significant decrease in
cell viability and substantial apoptosis as early as 10 min of exposure and at physiologically
relevant low doses [44]. At the same time, it was found that BPA induced apoptosis
of mouse interstitial cells through oxidative stress [45]. Treatment with Se significantly
alleviated Cd-induced apoptosis in chicken livers, as evidenced by a reduction in the
production of NO, iNOS activity, the number of apoptotic cells, and mRNA and protein
expression levels of caspase-3 and Bax [46]. In the rat thyroid follicular cell model, selenium
reduced the proportion of cell death. In addition, high doses of nano-selenium incubation
may prevent tunicamycin-induced ER stress cell apoptosis through the maintenance of
membrane integrity and the reduction of caspase 3/7 activity [47]. In the present study, BPA
exposure decreased the expression of anti-apoptotic Bcl-2 and Bcl-xl, while conversely, BPA
increased the Bax/Bcl-2 ratio and the expressions of pro-apoptotic Bax and effector protein
caspase 3, caspase 8, and caspase 9, indicating that BPA had a strong pro-apoptotic effect on
pig intestinal epithelial cells. A larger ratio of Bax/Bcl-2 directs cells toward apoptosis [48].
SeNPs or Na2SeO3 treatment alleviated the above apoptosis marker protein during BPA
exposure at 6 and 24 h. Compared with the Na2SeO3 treatment, SeNPs treatment exhibited
a better inhibitory effect on BPA-induced intestinal epithelial cell apoptosis, as shown by
the lower expression of caspase-9 and Bax and the higher expression of Bcl-2 in the SeNPs
group at 6 and 24 h.

The transcription factor NF-κB, as an important immunoregulatory factor, promotes
the high expression of pro-inflammatory cytokine TNF-α and interleukin family, which
have a significant disruptive effect on the expression and distribution of tight junction
proteins and impair the intestinal epithelial barrier function [49,50]. BPA has been demon-
strated to modulate the function of the immune system and increases the susceptibility to
infections by virtue of acting as a pro-inflammatory molecule [51]. Long-term exposure
to BPA-induced TLR4-dependent hypothalamic inflammation exacerbates diet-induced
prediabetes [52]. Oral exposure to 4 µg/kg bw/d BPA exacerbates allergic inflammation in
a mouse model of food allergy [53]. Consistent with previous reports, the current study
found that BPA promoted the activation of NF-κB and inhibitor of NF-κB (IκB) and sig-
nificantly elevated the expression of intestinal inflammation-related genes, including IL-6,
IL-17, IL-1β, IFN-γ, and TNF-α. These results reflected that the activation of innate im-
mune responses was an important mechanism of BPA-induced impairment of the intestinal
epithelial barrier function. Selenium can control exaggerated immunological responses
and persistent inflammation [54]. In this study, compared with Na2SeO3, SeNPs could
reduce the excessive expression of inflammatory factors caused by BPA, indicating sele-
nium nanoparticles exhibit considerable promise as a more effective and reliable tool in
controlling and preventing intestinal inflammation during BPA exposure.
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Oxidative stress refers to an imbalance between oxidants and antioxidants in the
body produced by free radicals and is known to be a significant factor influencing disease
occurrence [55]. BPA can increase MDA content in rat testicular tissue and thus leads to
oxidative stress and functional damage [56]. Selenium modulates antioxidant system status
by affecting the activity of antioxidant enzymes via selenoproteins and selenic nucleic
acids [57,58]. Dietary intake of organic selenium can increase the activity of GSH-Px and
significantly decrease the content of MDA in the serum and placenta of the sows [59]. In
this study, BPA exposure led to a decrease in the content of T-AOC, SOD, CAT, and GSH-Px
and an increase in the content of MDA, while SeNPs or Na2SeO3 treatment alleviated
the effects of BPA on oxidative stress. We also found that cells pretreated with SeNPs
had a higher abundance of T-AOC, SOD, CAT, and GSH-Px and a lower content of MDA
compared with cells pretreated with Na2SeO3. These results were in line with the study
reporting that dietary supplement of nano-Se exhibits better effects on elevating the levels
of GSH-Px and T-AOC in laying hens compared with Na2SeO3 [60].

Under the stimulation of the endoplasmic reticulum by intracellular and extracellular
stress factors, the number of unfolded and misfolded proteins in ER increases abnormally,
which induces ER stress. After ER stress occurs, UPR is activated to clear unfolded and
misfolded proteins. ER stress is considered an intermediate pathway to induce the other
pathways and damage cells during BPA exposure. Single or combined exposure to BPA and
mono(2-ethylhexyl) phthalate cause serious toxicological outcomes in the HepG2 cell line,
including altered oxidant/antioxidant status, aggravated ER stress, and apoptosis [61]. BPA
exposure induces neurotoxicity in rats involved with neuronal ER stress, apoptosis, and
JAK1/STAT1 signaling pathway [41]. Long-term BPA exposure disturbed lipid metabolism
and induced oxidative stress, ER stress, apoptosis, autophagy, and inflammatory response
in the liver of common carp [42]. BPA triggers apoptosis by activating ER stress in human
endometrial stromal cells [62]. ER stress might be related to the disturbance of the intestinal
barrier in IPEC-J2 cells after heat exposure [63]. Pterostilbene restores the intestinal barrier
function by inhibiting ER stress in piglets [64]. It was reported that selenium deficiency
leads to apoptosis by inducing ER stress in the swine small intestine and IPEC-J2 cells, indi-
cating that selenium has a protective effect on porcine intestinal health through modulating
ER stress [65]. A previous study showed that ER stress and oxidative stress showed a high
correlation, and the lack of selenium triggers ER stress and oxidative stress, and apoptosis
in chicken hepatocytes [66]. In this study, we determined the status of three UPR pathways
mediated by receptor proteins PERK, IRE1, and ATF6. BPA exposure significantly activated
UPR, as shown by the increased expression of Bip, PERK, eIf2α, ATF4, IRE1α, ATF6, and
CHOP proteins. Interestingly, we also found that the activated UPR was mitigated by
SeNPs and Na2SeO3 treatment. Here, BPA exposure disrupted tight junction function and
induced proinflammatory response, oxidative stress, apoptosis, and ER stress in intestinal
epithelial cells, while SeNPs treatment could alleviate these effects.

In conclusion, our results suggested that, compared with inorganic selenium, sele-
nium nanoparticles were superior in alleviating BPA-induced proinflammatory response,
oxidative stress, and apoptosis in porcine intestinal epithelial cells through ameliorating ER
stress, thus maintaining the intestinal epithelial barrier function. Our study provides a the-
oretical basis for the toxic mechanism of BPA in swine and further complements the risk
assessment of BPA in domestic animals, and pushes forward a solution for BPA-induced
damage by probing the role of selenium nanoparticles.

4. Materials and Methods
4.1. Preparation of SeNPs

The chitosan was dissolved in deionized water and stirred for 6 h. The chitosan
(2 mg/mL) was mixed vigorously with the freshly prepared sodium selenite solution
(20 mmol/L) at a ratio of 1:4 (v/v) for 60 min. Then, the Vc solution (80 mmol/L) was
added to the sodium selenite solution with an equal volume, stirred at 35 ◦C for 12 h, and
lyophilized to obtain SeNPs.
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4.2. Dynamic Light Scattering (DLS)

DLS was employed to record the variation in the intensity of the scattered light on
the microsecond time scale based on particles in gas or liquid being subjected to Brownian
motions. To investigate the stability of colloidal particles, the Z-average size and poly-
mer dispersity index (PDI) of SeNPs were measured by the Nanosizer ZS90 instrument
(Malvern Instruments, Malvern, UK). The refractive indices of water and the SeNPs solution
were taken as 1.333. In general, zeta potentials reflect the electrostatic repulsion between
dispersed particles, and a high value of zeta potentials represents a good dispersion of
colloid particles. In this work, zeta potentials were performed by using Nanosizer. All
measurements were conducted at 25 ± 2 ◦C in triplicate.

4.3. Transmission Electron Microscopy (TEM)

SeNPs were fixed in 2.5% glutaraldehyde for 4 h and then in 1% osmium tetroxide
for 1.5 h at 4 ◦C, after which they were dehydrated in gradient ethanol solutions and
propylene oxide. The resin was then impregnated with acetone for 12 h and polymerized
on a polymerized plate at 40 ◦C for 48 h. Ultrathin sections (1 mm) were cut with the
Ultramicrotome Leica EM UC7 (Leica, Wetzlar, Germany) and then stained with uranyl
acetate and lead citrate [67]. The sections were examined under a TEM (JEM-2100, JEOL,
Tokyo, Japan).

4.4. Gastric and Intestinal Fluid Digestion Test

For the gastric fluid digestion test, 1 mg of SeNPs was mixed with 10 mL of gastric
fluid (pepsin, ≥30 U/mL) and adjusted to pH 1.2 with 6 M HCl. Then, the mixture was
incubated at 37 ◦C for 3 h in a thermostat water bath. The samples were taken at the
digestion time of 0, 1, 2, and 3 h. For the intestinal fluid digestion test, after the gastric
digestion for 4 h was centrifuged at 10,000× g for 30 min, the precipitation was collected
and mixed with 10 mL of intestinal fluid (pancreatin, ≥40 U/mL). The mixture was then
adjusted to pH 7.4 with 1 mol/L of NaHCO3, followed by incubation at 37 ◦C for 3 h in the
thermostat water bath. The samples were taken at the digestion time of 0, 1, 2, and 3 h.

4.5. Cell Culture and Treatment

The IPEC-J2 cell line is a porcine colonic epithelial cell line. Cryopreserved cells were
extracted from liquid nitrogen and continuously cultured for three passages for subsequent
experiments. The cells were cultured in DMEM-F12 containing 10% fetal bovine serum
(Invitrogen, Carlsbad, CA, USA) at 37 ◦C in an atmosphere of 5% CO2 and 95% air at 95%
relative humidity. The medium was replaced every 2 days. The cells were treated under 1
of 4 conditions, as follows: (i) medium (CON group); (ii) 50 µmol of BPA (RHAWN, China)
exposure (BPA group); (iii) pre-incubation with 32.85 µg/mL of sodium selenite following
50 µmol of BPA exposure (BPA + Na2SeO3 group); (iv) pre-incubation with 15 µg/mL
of SeNPs following 50 µmol of BPA exposure (BPA + SeNPs group). Cell samples were
harvested at 6 and 24 h after BPA exposure, respectively.

4.6. Cell Counting Kit-8 (CCK8) Assay

IPEC-J2 cells were seeded at a density of 1× 104 per well in 96-well plates and cultured
for 24 h. According to the BPA concentration range reported in recent research, cells were
treated with 0, 10, 20, 40, 50, 60, and 80 µM of BPA for 6 and 24 h, respectively. The final
DMSO concentration in all cell cultures was adjusted to 0.01% (v/v). A Cell Counting Kit-8
(Solarbio, Beijing, China) was employed to determine cell viability. The absorbances at
450 nm were determined by a microplate reader (INNO-M, TeCK, China). The highest
concentration of BPA that did not considerably impact cell viability was chosen as the
favorable concentration for the subsequent assays. All the experiments were carried out
independently in triplicate.
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4.7. Morphological Observation

Morphological Observation: The cells were seeded into a 6-well plate, and different
BPA, Na2SeO3, or SeNPs treatments were carried out. At 24 h after BPA exposure, cell
morphology was observed under a light microscope (Olympus Corporation, Tokyo, Japan).

4.8. Western Blotting

Total protein was extracted by lysis buffer for Western blotting with 100 mM of
phenylmethanesulfonylfluoride, and 25 µg of total protein sample was subjected to SDS-
polyacrylamide gel electrophoresis under reducing conditions. Separated proteins were
transferred to nitrocellulose membranes in Tris-glycine buffer containing 20% methanol
at 4 ◦C. The membranes were blocked with 5% skim milk for 2 h, following incubated
overnight with diluted primary antibodies against Bcl-xl (1:5000, Abcam, Cambridge, UK),
caspase 3 (1:2000, Cell signaling technology, Boston, MA, USA), Bip (1:2000, Cell signaling
technology), PERK (1:5000, Abcam), p-PERK (1:1000, Bioss), ATF4 (1:2000, Proteintech,
Chicago, IL, USA), ATF6 (1:2000, Proteintech), eIf2α (1:1000, Proteintech, Wuhan, China), p-
IRE1(1:1000, Bioss), CHOP (1:1000, Bioss), NF-κB (1:1000, Bioss), IκB (1:2000, Cell signaling
technology), ZO-1 (1:1000, Bioss, Beijing, China), Occludin (1:1000, Bioss), Claudin-1 (1:1000,
Bioss), and GAPDH (1:1000, Proteintech, China) followed by goat anti-rabbit IgG (H+L;
1:1000, Proteintech, China). The gray values of protein bands were measured by ImageJ
software version 6.1 (Bio-Rad Laboratories, Hercules, CA, USA). The cellular protein PERK
was used as an internal control for p-PERK, and GAPDH was used as an internal control
for other proteins.

4.9. Quantitative Real-Time PCR (qRT-PCR) Analysis

Total RNA samples were isolated by Trizol reagent (Invitrogen) according to the
manufacturer’s instructions. The RNA was reverse transcribed by a cDNA synthesis kit
(Promega, Madison, WI, USA). Specific primers (caspase-8, caspase-9, Bcl-2, Bax, Il-1β, Il-6,
Il-17, Il-10, Tnf-, Ifn-γ, and Gapdh) were designed by Primer-BLAST at the National Center
for Biotechnology Information and were shown in Table 1. The dried RNA pellets were
resuspended in 50 µL of diethylpyrocarbonate-treated water. The concentration and purity
of the total RNA were determined using a spectrophotometer. cDNA was synthesized
from 1 µg of the total RNA using oligo dT primers and Superscript II reverse transcriptase
according to the manufacturer’s instructions (Promega, Beijing, China), and cDNA was
stored at 80 ◦C. Reactions were performed in a 20 µL of reaction mixture containing 10 µL
of 2X SYBR Green I PCR Master Mix,1 µL of cDNA, 1 µL of each primer (10 µM), and 7 µL
of PCR-grade water. The optimal conditions for PCR were 95 ◦C for 2 min, followed by
40 cycles of denaturation for 15 s at 95 ◦C, annealing for 1 min at 60 ◦C, and elongation
for 50 s at 72 ◦C. The qRT-PCR was performed with StepOneTM 96 system (Roche, Basel,
Switzerland). The relative abundance of mRNA of each gene was calculated according to
the 2−∆∆Ct metho d and was normalized to the mean expression of GAPDH.

Table 1. Sequences of oligonucleotide primers used for real-time PCR, length of the respective PCR
product, and gene accession number.

Gene Product a Primer
Direction b Sequence (5′ to 3′) Product Size (bp) Accession Number

GADPH F CCAGAACATCATCCCTGCTT 229 XM_021091114
R GTCCTCAGTGTAGCCCAGGA

Caspase-8 F TGGAGGACGTTTTCACAGGGC 133 XM_021074712
R AGTTGTAACCGGAGGCAAATCC

Caspase-9 F
R

AACTTCTGCCATGAGTCGGG
GAGGTGGCTGGCCTTGG 135 XM_013998997

Bcl-2 F AGCATGCGGCCTCTATTTGAT 107 XM_021099593
R CACTTATGGCCCAGATAGGCA
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Table 1. Cont.

Gene Product a Primer
Direction b Sequence (5′ to 3′) Product Size (bp) Accession Number

Bax F AGCAGATCATGAAGACAGGGG 137 XM_003127290
R ACACTCGCTCAACTTCTTGGT

IL-6 F GGCTGTGCAGATTAGTACC 124 JQ_839263
R CTGTGACTGCAGCTTATCC

IL-10 F CTTGTTGCTGACCGGGTCTC 110 HQ_236499
R TCTCTGCCTTCGGCATTACG

IL-17 F GACGGCCCTCAGATTACTCC 125 KF_646141
R AGCATTGATACAGCCCGAGT

IL-1β F GCCAACGTGCAGTCTATGGAGTG 91 XM_021085847
R GGTGGAGAGCCTTCAGCATGTG

TNF-α F GCCCTTCCACCAACGTTTTC 97 JF_831365
R CAAGGGCTCTTGATGGCAGA

Ifn-γ F CAGGCCATTCAAAGGAGCAT 150 MH_538101
R GAGTTCACTGATGGCTTTGCG

a GAPDH = glyceraldehyde-3-phosphate dehydrogenase. b F = forward; R = reverse.

4.10. Antioxidant Determination

The activities of antioxidant GSH-PX (A005-1-1), catalase (CAT, A007-1-1), superox-
ide dismutase (SOD, A001-3-1), total antioxidant capacity (T-AOC, A015-2-1), and the
concentration of malondialdehyde (MDA, A003-1-1) were analyzed using the correspond-
ing commercial assay kit (Nanjing Institute of Jiancheng Biological Engineering, Nanjing,
China) according to the manufacturer’s instructions. The antioxidant activity of the above
parameters was calculated based on the protein content of the cell samples, and the assay
was performed using the method described by Bradford.

4.11. Detection of Apoptosis by Flow Cytometry

The percentage of apoptotic cells was determined using a commercial Annexin V-
FITC/PI Apoptosis Detection Kit (Kangwei Biotech, Shenzhen, China). Following the
manufacturer’s instructions, the harvested cell pellets were washed twice with pre-cooled
PBS and then resuspended in 0.5 mL of 1X binding buffer. Afterward, cells were incubated
with FITC-labeled Annexin V for 15 min and were stained with 50 µg/mL of propidium
iodide for 5 min before detection. Samples were analyzed by a flow cytometer (Beckman,
Brea, CA, USA). The data analysis was performed using CytExpert software version 2.4
(Beckman Coulter, Brea, CA, USA), and the apoptosis percentage was referred to as the
ratio of apoptosis cells to total cells.

4.12. Statistical Analysis

All of the experimental data are expressed as the means ± SEM. The differences
between the groups were determined by a 1-way analysis of variance (ANOVA) test
followed by Tukey’s honestly significant difference post hoc test using GraphPad Prism 5
software (Graphpad Software Inc., San Diego, CA, USA). A p-value of <0.05 was considered
indicative of statistical significance.
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