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Abstract: The biomarker development field within molecular medicine remains limited by the
methods that are available for building predictive models. We developed an efficient method for
conservatively estimating confidence intervals for the cross validation-derived prediction errors of
biomarker models. This new method was investigated for its ability to improve the capacity of
our previously developed method, StaVarSel, for selecting stable biomarkers. Compared with
the standard cross validation method, StaVarSel markedly improved the estimated generalisable
predictive capacity of serum miRNA biomarkers for the detection of disease states that are at increased
risk of progressing to oesophageal adenocarcinoma. The incorporation of our new method for
conservatively estimating confidence intervals into StaVarSel resulted in the selection of less complex
models with increased stability and improved or similar predictive capacities. The methods developed
in this study have the potential to improve progress from biomarker discovery to biomarker driven
translational research.

Keywords: machine learning; cross validation; stability; robustness; bias–variance trade-off; biomarkers;
microRNA; miRNA; Barrett’s oesophagus; oesophageal adenocarcinoma

1. Introduction

Barrett’s oesophagus is estimated to occur in 1–2% of Western adults, and is charac-
terised by formation of a metaplastic columnar cell epithelium in the distal oesophagus [1].
Patients with non-dysplastic Barrett’s oesophagus are at an increased risk (0.3–0.5% per
year) of progressing through the stages of low-grade dysplasia and high-grade dysplasia to
adenocarcinoma of the oesophagus [2]. The annual cancer risk is estimated at over 10%
in patients with high-grade dysplasia [2,3]. Early detection of high-grade dysplasia or lo-
calised cancer has been reported to increase the 5-year survival rate to approximately 89% [4],
compared with less than 20% for patients presenting with oesophageal adenocarcinoma [5].
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We have previously demonstrated that circulating serum small extracellular vesicle
(sEV) derived microRNAs (miRNAs) can be used as biomarkers to detect advanced oe-
sophageal adenocarcinoma [6]. In the current study, we used miRNA sequencing to assess
the potential of sEV derived miRNAs as early detection biomarkers. Sequencing was
performed on serum sEV samples from patients without Barrett’s oesophagus (Controls),
patients with non-dysplastic Barrett’s oesophagus (NDB; low cancer risk), and patients
with high grade dysplasia (HGD; high cancer risk).

Biomarker based classification models derived from high-dimensional data, where
there are typically many more candidate biomarkers than samples, are prone to overfitting.
Various machine learning methods have consequently been developed to address this issue.
The general approach with these methods is to determine an optimised level of constraint,
within a cross validation framework, on the complexity of biomarker classification models.
The aim is to optimise both the model-fit during development and the generalisability,
known as the bias–variance trade-off. Development of an over-fitting model during training
(small bias) will tend to result in a poor fitting model during external validation (large
variance). This issue of poor generalisation also occurs in the historically standard approach
to biomarker development involving only a single discovery cohort and an independent
validation cohort [7]. However, a significant problem with the cross-validation approach is
that it typically results in the selection of different biomarkers from each cross validation
training set, which is often referred to as model instability [7].

The primary approach to reducing this instability in biomarker selection involves
identifying the biomarkers that are selected frequently from the different cross validation
training sets [8–11], and then determining the optimum number of these frequently selected
biomarkers to include in the final model. We previously developed a stable variable
selection method (StaVarSel) using this approach that selects a final stable biomarker
prediction model in a way that maintains the required separation between the model
selection process and the held-out test samples in a nested cross validation. This was
achieved by the addition of an extra round of cross validations over the training sets within
the nested cross validation framework [12].

However, when there is model instability, the variance of the prediction error also
needs to be assessed in addition to the prediction error point estimate [11]. The standard
way of estimating the variance of the classification error in cross validation has been
to utilise a naive biased estimator [13]. The estimator is biased because the prediction
errors are correlated across the training sets due to the overlap of the samples across the
training sets. Although this is not an important issue when model selection is stable due
to the inherently low level of variance, this naive approach can result in a significant
underestimation of the variance when model selection is unstable [13].

We used leave-one-out cross validation (LOOCV) in the outer loop of StaVarSel to
make stable biomarker selection computationally tractable. However, the use of LOOCV
in the outer loop of a standard nested cross validation, which only produces a single
prediction probability for each held out sample, has conceptually limited the range of
methods available for estimating the variance of prediction errors to either the standard
naive biased estimator that assumes that the prediction probabilities are normally dis-
tributed, or a non-parametric resampling method (e.g., bootstrap) that is applied over the
prediction probabilities (one per sample) generated for the held out samples in the outer
loop. Furthermore, no unbiased estimator of the variance exists for cross validation [13],
and these standard methods can result in large underestimates of the variance (i.e., they
can be anti-conservative) [14].

Various potential solutions to the problem of estimating the variance of cross validation
prediction errors have been proposed [15]. However, these methods rely on assumptions
or approximations that are not valid for the small sample sizes that are usually available
for biomarker discovery studies [14,16]. It has therefore been suggested that the calculation
of a conservative confidence interval that will not underestimate the variance, based on a
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holdout test, is the only rigorous and practically useful alternative for assessing classifier
performance [16,17].

The development of clinically useful molecular biomarkers requires solutions to insta-
bility that are inherent in high throughput molecular data. StaVarSel is used within a nested
cross validation framework to address this problem [12]. However, important issues remain
regarding (i) how to estimate the classification capacity of training set derived biomarker
models in a statistically conservative way so that the estimates are not optimistically biased
and (ii) how to derive a conservative estimate of the generalisable prediction error for the
final biomarker model. We therefore developed a method for conservatively assessing the
variance of cross validation classification errors. We investigated the ability of this method
to improve the robustness of the biomarker models selected by StaVarSel [12] and the
potential utility of these methods for oesophageal disease biomarker development.

2. Results
2.1. Development of a Conservative Estimator of the Variance of Cross Validation Prediction Error

We had to use leave-one-out cross validation (LOOCV) in the outer loop of a nested
cross validation in our previously implemented stable variable selection process (StaVarSel)
to make the stable biomarker selection computationally tractable. However, the standard
LOOCV framework, which only produces a single prediction probability for each held
out sample, conceptually limits the range of methods that are available for estimating the
generalisable predictive capacity of a set of stable biomarkers to those that can be overly
optimistic (i.e., they are non-conservative).

In the current study, we determined that the estimation of the generalisable predictive
capacity of a set of stable biomarkers does not need to be restricted to the standard LOOCV
framework. Each LOOCV training set can be resampled repeatedly to produce a range of
prediction probabilities for each corresponding held out sample from which conservative
non-parametric 95% confidence intervals can be derived ([18]; see Methods Section 4.10 for
a detailed explanation). The bounds of the confidence intervals for all samples can then be
used simultaneously, and therefore also conservatively [19], to derive worst case estimates
of specificity and sensitivity from the misclassification rates for each of the health states
under consideration.

To investigate the properties of this conservative prediction error variance estimator,
we compared it with a non-conservative bootstrap resampling method and with the naive
biased method that assumes that the prediction probabilities are normally distributed. We
applied these methods to serum sEV miRNA data, from samples relevant to the early
detection of oesophageal adenocarcinoma, in a standard nested cross validation which
used miRNA-ratios selected by Lasso regression to build a generalised linear logistic
regression model within each training set (i.e., a relaxed Lasso; refer to Section 4.9 for
more information). The results from applying this resampling based conservative estimator
are presented in Figure 1b,d (prediction probability plots), and for the non-conservative
bootstrap estimator in Figure 1a,c (ROC curves). The specificity and sensitivity values and
their 95% confidence interval lower bounds are also presented for each plot in Figure 1
to enable quantitative comparisons. The non-conservative bootstrap method produced
slightly higher estimates compared to the naive biased estimator for the confidence interval
lower bounds on the accuracy ((specificity + sensitivity)/2) for Controls vs. NDB (43.1%
vs. 35.9%) and NDB vs. HGD (35.6% vs. 29.6%). Our conservative estimator produced
considerably lower estimates than either of these non-conservative methods for the lower
bounds on the accuracy for both Controls vs. NDB (6.3%) and NDB vs. HGD (7.7%)
(Figure 1 and Supplementary Figure S1).
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Figure 1. Standard Nested Cross Validation ROC curves and prediction probability plots for gener-
alised linear regression (GLM) biomarker models. Panels (a,c): ROC curve error bars (red) are non-
conservative bootstrapped 95% confidence intervals. Panels (b,d): Prediction probability plot circles 
are average prediction probabilities per sample. Prediction probability error bars are the conservative 
95% confidence intervals for each sample. Top right, panel (b): blue circles are Control samples and 
red circles are NDB samples. Bottom right, panel (d): blue circles are NDB samples and red circles 
are HGD samples. 

2.2. Comparison of Stabilised (StaVarSel) vs. Standard Nested cross Validation 
We initially investigated whether increased levels of regularisation would improve 

the classification models but this resulted in no meaningful gains in predictive capacity 
(Supplementary Figure S4; see Methods Section 4.8 for details). These results are con-
sistent with our previous observations with serum miRNAs from patients with oropha-
ryngeal squamous cell carcinoma [12]. We subsequently investigated the capacity of our 
StaVarSel stable variable selection method to produce useful models for our oesophageal 
disease pathway miRNA data in comparison with standard nested cross validation. 
StaVarSel produced models with increased and potentially clinically useful predictive ca-
pacities relative to the standard nested cross validations for both Controls vs. NDB (97.6% 
vs. 64.1% accuracy; Figure 2c vs. Figure 1a;) and for NDB vs. HGD (97.6% vs. 56.9% accu-
racy; Figure 3c vs. Figure 1c). 

Figure 1. Standard Nested Cross Validation ROC curves and prediction probability plots for gen-
eralised linear regression (GLM) biomarker models. Panels (a,c): ROC curve error bars (red) are
non-conservative bootstrapped 95% confidence intervals. Panels (b,d): Prediction probability plot
circles are average prediction probabilities per sample. Prediction probability error bars are the
conservative 95% confidence intervals for each sample. Top right, panel (b): blue circles are Control
samples and red circles are NDB samples. Bottom right, panel (d): blue circles are NDB samples and
red circles are HGD samples.

2.2. Comparison of Stabilised (StaVarSel) vs. Standard Nested Cross Validation

We initially investigated whether increased levels of regularisation would improve
the classification models but this resulted in no meaningful gains in predictive capacity
(Supplementary Figure S4; see Methods Section 4.8 for details). These results are consistent
with our previous observations with serum miRNAs from patients with oropharyngeal
squamous cell carcinoma [12]. We subsequently investigated the capacity of our StaVarSel
stable variable selection method to produce useful models for our oesophageal disease
pathway miRNA data in comparison with standard nested cross validation. StaVarSel
produced models with increased and potentially clinically useful predictive capacities
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relative to the standard nested cross validations for both Controls vs. NDB (97.6% vs. 64.1%
accuracy; Figure 2c vs. Figure 1a;) and for NDB vs. HGD (97.6% vs. 56.9% accuracy;
Figure 3c vs. Figure 1c).
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Figure 2. Stabilised nested cross validation ROC curves, prediction probability plots, and associated 
specificity and sensitivity estimates for Controls vs. NDB. Panels (a,c): ROC curve error bars (red) 
are non-conservative bootstrapped 95% confidence intervals for sensitivity and specificity at each 
threshold. Panels (b,d): circles are average prediction probabilities per sample. Error bars are the 
conservative prediction probability 95% confidence intervals for each sample. Blue circles are Control 
samples and red circles are NDB samples. * confidence intervals cannot be estimated using non-
conservative bootstrap resampling when the Controls and NDBs are perfectly separated. 

Figure 2. Stabilised nested cross validation ROC curves, prediction probability plots, and associated
specificity and sensitivity estimates for Controls vs. NDB. Panels (a,c): ROC curve error bars (red)
are non-conservative bootstrapped 95% confidence intervals for sensitivity and specificity at each
threshold. Panels (b,d): circles are average prediction probabilities per sample. Error bars are
the conservative prediction probability 95% confidence intervals for each sample. Blue circles are
Control samples and red circles are NDB samples. * confidence intervals cannot be estimated using
non-conservative bootstrap resampling when the Controls and NDBs are perfectly separated.
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Figure 3. Stabilised nested cross validation ROC curves, prediction probability plots, and associated 
specificity and sensitivity estimates for NDB vs. HGD. Panels (a,c): ROC curve error bars (red) are 
non-conservative bootstrapped 95% confidence intervals for sensitivity and specificity at each 
threshold. Panels (b,d): circles are average prediction probabilities per sample. Error bars are the 
conservative prediction probability 95% confidence intervals for each sample. Blue circles are NDB 
samples and red circles are HGD samples. * confidence intervals cannot be estimated using non-
conservative bootstrap resampling when the NDBs and HGDs are perfectly separated. 

2.3. The Conservative Prediction Error Variance Estimator Identified Less Complex Models 
We subsequently assessed the effects on model complexity and on the estimates of 

generalisable prediction accuracy of our conservative method for estimating the variance 
of prediction errors within StaVarSel stabilised nested cross validation. For Controls vs. 
NDB, the non-conservative bootstrap resampling method for estimating the variance re-
sulted in an optimal model containing 6 miRNA-ratios (Figure 2c), whereas our conserva-
tive sub-sampling per sample method resulted in a less complex model containing 2 
miRNA-ratios (Figure 2b). For NDB vs. HGD, the non-conservative bootstrap resampling 
method resulted in an optimal model containing 7 miRNA-ratios (Figure 3c), whereas the 

Figure 3. Stabilised nested cross validation ROC curves, prediction probability plots, and associated
specificity and sensitivity estimates for NDB vs. HGD. Panels (a,c): ROC curve error bars (red)
are non-conservative bootstrapped 95% confidence intervals for sensitivity and specificity at each
threshold. Panels (b,d): circles are average prediction probabilities per sample. Error bars are
the conservative prediction probability 95% confidence intervals for each sample. Blue circles are
NDB samples and red circles are HGD samples. * confidence intervals cannot be estimated using
non-conservative bootstrap resampling when the NDBs and HGDs are perfectly separated.

2.3. The Conservative Prediction Error Variance Estimator Identified Less Complex Models

We subsequently assessed the effects on model complexity and on the estimates of
generalisable prediction accuracy of our conservative method for estimating the variance of
prediction errors within StaVarSel stabilised nested cross validation. For Controls vs. NDB,
the non-conservative bootstrap resampling method for estimating the variance resulted
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in an optimal model containing 6 miRNA-ratios (Figure 2c), whereas our conservative sub-
sampling per sample method resulted in a less complex model containing 2 miRNA-ratios
(Figure 2b). For NDB vs. HGD, the non-conservative bootstrap resampling method resulted
in an optimal model containing 7 miRNA-ratios (Figure 3c), whereas the conservative sub-
sampling method resulted in a less complex model containing 4 miRNA-ratios (Figure 3b).

These biomarker models were assessed, using both the non-conservative and the
conservative variance estimators, for their generalisable classification accuracy using the
held-out samples in the outer loop of the nested cross validation. For Controls vs. NDB,
the conservatively derived optimum 2 miRNA-ratio model (Figure 2b) produced higher
conservative estimates of specificity (84.6%) and sensitivity (90.5%) at the confidence interval
lower bounds than both the conservative estimates for the non-conservatively derived opti-
mum 6 miRNA-ratio model model (76.9% and 71.4%; Figure 2d) and the non-conservative
estimates for the conservatively derived optimum 2 miRNA-ratio model (61.5% and 85.7%;
Figure 2a). The non-conservative estimates of the specificity (100%) and sensitivity (85.7%)
for the non-conservatively derived optimum model (Figure 2c) were optimistic relative to
the conservative estimates (Figure 2d).

The conservatively derived optimum model for Controls vs. NDB (Figure 2b) con-
tained the following miRNA ratios: miR-181b-5p/miR-328-3p and miR-21-5p/mir-126-3p,
and the non-conservatively derived optimum model (Figure 2c) additionally selected
miR-501-3p/miR-328-3p, miR-106b-3p/miR-103a-3p, miR-21-5p/miR-103a-3p, and miR-
99a-5p/miR-30a-5p. These miRNA ratios were selected from the most frequently selected
miRNA ratios via an additional inner layer of cross validation (see Section 4.9 and Sup-
plementary schema for details). The levels of each of these six individual miRNA-ratios
are shown in Supplementary Figure S2, and details of the miRNAs in these ratios are in
Supplementary Table S1.

For NDB vs. HGD, the conservatively derived optimum 4 miRNA-ratio model (Figure 3b)
produced conservative estimates at the confidence interval lower bounds for specificity
(81.0%) and sensitivity (76.5%) that were similar to the conservative estimates for the non-
conservatively derived optimum 7 miRNA-ratio model (76.2% and 82.4%; Figure 3d),
and higher than the non-conservative estimates for the conservatively derived 4 miRNA-
ratio model (76.2 and 70.6%; Figure 3a). As with Controls vs. NDB, the non-conservative
estimates of the specificity (85.7%) and sensitivity (100%) for the non-conservatively derived
optimum NDB vs. HGD model (Figure 3c) were optimistic relative to the conservative
estimates (Figure 3d).

The conservatively derived optimum classification model for NDB vs. HGD (Figure 3b)
contained miR-324-5p/let-7b-5p, miR-17-5p/miR-126-5p, miR-146a-5p/miR-361-5p, and
miR-126-5p/miR-152-3p. The non-conservatively derived optimum model (Figure 3c) addi-
tionally selected let-7i-5p/miR-126-5p, let-7b-5p/miR-151a-3p, and miR-423-5p/miR-483-
3p. The levels of each of these seven individual miRNA-ratios are shown in Supplementary
Figure S3, and details of the miRNAs in these ratios are in Supplementary Table S2.

The conservative estimates for the conservatively derived models (Controls vs. NDB,
2 miRNA-ratio model; NDB vs. HGD, 4 miRNA-ratio model) produced the smallest 95%
confidence intervals overall for specificity and sensitivity for the held out samples (Table 1),
which indicated that the conservatively derived models are likely to be more robust than the
non-conservatively derived models when applied to new samples.



Int. J. Mol. Sci. 2023, 24, 7068 8 of 16

Table 1. Comparison of the effects of using the non-conservative prediction error variance estimator
versus the conservative estimator on 95% confidence intervals for specificity and sensitivity of the
conservatively derived models and the non-conservatively derived models. The smallest confidence
intervals are highlighted with bold text on a grey background.

Non Conservative
95% Confidence Interval

Conservative
95% Confidence Interval

Controls vs. NDB

Specificity—2-miR-ratios 38.5% 5.9%
Specificity—6-miR-ratios N/A * 23.1%

Sensitivity—2-miR-ratios 14.3% 4.7%
Sensitivity—6-miR-ratios 14.3% 28.6%

NDB vs. HGD

Specificity—4-miR-ratios 23.8% 19.0%
Specificity—7-miR-ratios 14.3% 23.8%

Sensitivity—4-miR-ratios 29.4% 17.6%
Sensitivity—7-miR-ratios N/A * 17.6%

* N/A denotes that confidence intervals cannot be estimated using the non-conservative bootstrap method for
these models.

3. Discussion

The derivation of robust, reproducible molecular biomarkers from high dimensional
data is challenging and requires the application of machine learning combined with unique
statistical methods to solve issues with classification model instability and with the estima-
tion of the variance of classification errors.

Various methods have been proposed for stabilising biomarker selection within a cross
validation framework. However, a significant challenge for stable biomarker selection has
been maintaining the separation between the model selection process and the samples that
are held out for estimating the generalisable predictive capacity of the final model [20,21].
We previously developed StaVarSel, an implementation of stable variable selection that
addresses this problem by using an additional round of cross validations across the training
sets within a nested cross validation to select an optimum number of stable biomarkers [12].

If model selection is affected by instability, then an estimate of the variance in the clas-
sification error is required for determining the optimum model complexity. We previously
utilised a non-parametric bootstrap estimator of variance within StaVarSel [12]. However,
no unbiased estimator of variance exists for cross validation [13], and it has been suggested
that conservative estimates that do not underestimate the variance could be derived using
holdout tests [14,22]. Therefore, the main goal of our current study was to develop a
conservative non-parametric estimator of the variance of cross validation prediction errors
using hold out tests. While this is more computationally intensive than non-conservative
bootstrap resampling of the LOOCV prediction probabilities, and can take several hours
to run, it is tractable for moderate sample sizes (e.g., up to 50) on a standard desktop or
laptop computer. It should also be noted, however, that this approach needs to be used
and interpreted with caution because it has the potential to produce overly conservative
confidence intervals [22].

We applied our solutions for both reducing cross validation instability and for conser-
vatively estimating prediction error variance to our circulating serum sEV derived miRNA
sequencing data. Our stable variable selection method, combined with our conservative
prediction error variance estimator, markedly improved the predictive capacity of the
biomarker models compared with standard nested cross validation, and reduced the com-
plexity of the models compared with the models derived using the non-conservative
bootstrap variance estimator. The non-conservative estimates of the variance, and therefore
the instability, were underestimated for more complex models, and the models that were
non-conservatively selected and assessed consequently had optimistic estimates of their
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predictive capacity relative to the conservative estimates. The less complex models selected
using the conservative variance estimator either had smaller confidence intervals for the per
sample prediction probabilities (Controls vs. NDB) or fewer samples with wide confidence
intervals (NDB vs. HGD), which indicates that the less complex models are more stable,
and that they may have increased generalisability to new samples, i.e., they are potentially
more robust [23].

However, we observed evidence of residual model instability in the least complex
classification model for NDB vs. HGD, which had considerable variance in the prediction
probabilities for 7 out of the 38 samples. This contrasts with the least complex model for
Controls vs. NDB where all of the samples had small to moderate sized confidence intervals
which did not affect the worst case estimates of specificity and sensitivity derived from
the confidence interval limits. This suggests that the NDB vs. HGD biomarker discovery
process may benefit from the inclusion of more samples as it has been observed that the
variance of prediction errors decreases with larger sample sizes [14]. We are undertaking
additional blood collections to increase the number of NDB and HGD samples for our
biomarker development studies.

When applied to our miRNA sequencing data, StaVarSel selected miR-324-5p/let-7b-5p
and miR-17-5p/miR-126-5p as the top two frequently selected miRNA-ratios from NDB
vs. HGD. Our previously reported 5 miRNA-ratio predictive model that was developed
to differentiate between Controls combined with NDB vs. oesophageal adenocarcinoma,
using a high throughput qPCR based technology [6], also contained miR-324-5p and miR-17-
5p. Other researchers have identified circulating sEV miR-324-5p and miR-17-5p as potential
biomarkers in gastric cancer [24,25].

The biomarker models derived in this study have the potential, if validated and
assessed as potentially being cost effective, to be readily translated into use with standard
techniques in pathology laboratories. The methods developed in this study for increasing
the robustness of stable variable selection within cross validation have the potential to
improve progress from biomarker discovery to biomarker driven translational research.

4. Materials and Methods
4.1. Patient Recruitment and Sample Selection

Patients were recruited as previously described [6]. Recruitment took place at Flinders
Medical Centre (South Australia, Australia) and at Westmead Hospital (New South Wales,
Australia). All patients had blood collected prior to endoscopy and serum was processed
as previously described [26].

Samples from the following groups were selected for this study:
Controls (n = 14, all male). This group of patients had a visibly normal oesophageal

mucosa at endoscopy. The median age was 64.7 years (min 21.2, max 75.6).
Non-dysplastic Barrett’s oesophagus (NDB; n = 21, all male). This group of patients

had endoscopically visible Barrett’s oesophagus, which was confirmed by histology to be
negative for dysplasia. The median age was 61.9 years (min 43.9, max 79.2). The median
Prague C length was 3.0 cm (min 0, max 14.0), and the median Prague M length was 5.0 cm
(min 2.0, max 15.0).

Barrett’s oesophagus with high grade dysplasia (HGD; n = 19, all male). This group
of patients had a histological confirmation of high-grade dysplasia within the Barrett’s
oesophagus segment. In one patient, the presence of T1a cancer was also noted on the
histology report. The median age was 58.0 years (min 42.3, max 83.4). The median Prague
C length was 3.0 cm (min 0.0, max 11.0), and the median Prague M length was 5.0 cm
(min 1.0, max 13.0).

4.2. Extracellular Vesicle Isolation

As described previously [27], for small extracellular vesicle isolation, 1 mL aliquots of
serum were retrieved from −80 degrees Celsius storage, quickly thawed, and centrifuged
at 16,000× g at 4 ◦C for 30 min to exclude larger microparticles. Subsequently, 250 µL
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supernatant from each sample was processed with an ExoQuickTM kit (System Biosciences,
Palo Alto, CA, USA; EXOQ20A-1) according to the manufacturer’s protocol. Samples were
incubated with ExoQuickTM at 4 ◦C for 16 h. The pellet isolated from each sample was
resuspended with 50 µL phosphate buffered saline (PBS). We have previously confirmed
that pellets obtained from serum using ExoQuickTM contain particles consistent in size
with exosomes (30–150 nm), using a Nanosight LM10 Nanoparticle Analysis System and
Nanoparticle Tracking Analysis Software (Nanosight Ltd., Malvern, UK). We refer to these
as small EVs, as recommended in the Minimal Information for Studies of Extracellular
Vesicles 2018 Guidelines [28].

4.3. RNA Extraction from Serum Small Extracellular Vesicles

As described previously [27], extraction of miRNA from small EVs was performed
using the commercial miRNeasy Serum/Plasma kit (QIAGEN, #217184, Dusseldorf, Ger-
many) according to the manufacturer’s protocol. Five microlitre (0.1 picomole) of each
of the synthetic RNA molecules ath-miR-159a and cel-miR-54 (Shanghai Genepharma
Co., Ltd., Shanghai, China) were added to the 500 L QIAzol vesicle lysate before further
processing. Twenty-four microlitres of RNase-free ultrapure water was used for the final
RNA elution step.

4.4. Qiagen Next Generation Sequencing of miRNA

Serum small EV miRNAs from patients were profiled using NGS by Qiagen (Hilden,
Germany). As described previously [27], the library preparation was done using the
QIAseq miRNA Library Kit (Qiagen, Hilden, Germany). A total of 5 µL total RNA was
converted into miRNA NGS libraries. Adapters containing unique molecular identifiers
were ligated to the RNA. The RNA was then converted to cDNA, and the cDNA was
amplified, with the addition of indices, using 22 cycles of PCR. The samples were then
purified, and library preparation QC was performed. One of the HGD samples failed
library QC and was not sequenced. The libraries were pooled in equimolar ratios based
on the quality of the inserts and the concentration measurements. The library pools were
quantified using qPCR and were then sequenced on a NextSeq550 sequencing instrument
according to the manufacturer instructions, using a single-end protocol for 75 bp with an
average of 12 million reads per sample.

Raw data was de-multiplexed and FASTQ files for each sample were generated using
the bcl2fastq software (Illumina Inc., San Diego, CA, USA). All primary analysis was carried
out using CLC Genomics Server 20.0.4. The workflow “QIAseq miRNA Quantification” of
CLC Genomics Server with standard parameters was used to map the reads to miRBase
version 22. In short, the reads were processed by (1) trimming of the common sequence,
UMI and adapters, and (2) filtering of reads with length < 15 nt or length > 55 nt. They were
then deduplicated using their Unique Molecular Identifier (UMI). Reads were grouped
into UMI groups when they (1) started at the same position based on the end of the read
to which the UMI is ligated (i.e., Read2 for paired data), (2) were from the same strand,
and (3) had identical UMIs. Groups that contained only one read (singletons) were merged
into non-singleton groups if the singleton’s UMI could be converted to a UMI of a non-
singleton group by introducing a SNP (the biggest group was chosen). All reads that did
not map to miRBase with perfect matches were mapped to the human genome GRCh38
with ENSEMBL GRCh38 version 98 annotation. This was carried out using the “RNA-Seq
Analysis” workflow of CLC Genomics Server with standard parameters. For normalisation,
the trimmed mean of M-values method based on log-fold and absolute gene-wise changes
in expression levels between samples (TMM normalisation) was used [29]. The resultant
normalised levels were expressed in counts per million (CPM).

4.5. Prefiltering of miRNAs and Samples

miRNAs with average CPM < 5 were removed and miRNAs without sequencing
counts in 100% of samples were also removed prior to data analysis. For the assessment of
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the samples, the CPM data for each miRNA was centered to a mean = 1, and samples with
mean CPM across the miRNAs greater than the overall mean +/− 3SD were identified.
This approach identified two samples that were subsequently determined to be haemolysed
according to the molecular analysis in the next Section 4.6.

4.6. Molecular Detection of Haemolysis

The levels of miR-451a, miR-16-5p, and miR-486-5p are enriched in red blood cells
and the levels of these miRNAs in cell free preparations are proportional to the degree
of haemolysis [30,31]. We, therefore, assessed the relative levels of these miRNAs in
all samples in addition to visually inspecting the serums. Data for each miRNA were
centered so that the average was one across the samples. Samples were then classified
as haemolysed when the average of the levels of miR-451a, miR-16-5p, and miR-486-5p
exceeded the average of all samples by two standard deviations. One of the control samples
and one of the HGD samples were classified as haemolysed and were not used for analysis.

4.7. miRNA Biomarkers Selection

Analyses were performed using R, version 3.4.3. The use of gene expression ratios
provides good sensitivity and specificity in RNA biomarker studies [6,12]. We consequently
calculated the ratio of the level of each miRNA with every other miRNA [12].

The miRNA-ratios were subjected to nested 2-stage cross validation consisting of
an outer loop and inner loops over the training sets. Prefiltering was done within each
training set; miRNA ratios with high variation in both of the comparison groups were
removed (coefficient of variation > 300%), and the miRNA ratios were then pre-filtered
(Mann–Whitney U-test at p > 0.2) to remove non-informative ratios [32].

Lasso regression (least absolute shrinkage and selection operator) was used to select
miRNA-ratios which, when combined in a multivariable logistic regression model, had
predictive capacity to differentiate Control patients from patients with non-dysplastic
Barrett’s oesophagus (NDB), and to differentiate patients with NDB from patients with
high grade dysplasia (HGD).

4.8. Standard Nested Cross Validation (2-Stage)

As described previously [12], we utilised leave-one-out cross validation (LOOCV)
in the outer loop of a standard nested cross validation to generate held-out test samples
that would not be used in optimisation and variable selection, and then utilised repeated
(100× in an inner loop) 10-fold cross validation within each training set (using the cv.glmnet
function from the R glmnet package v4.1-4) to optimise the penalisation parameter lambda
for Lasso regression. The average of the lambda estimates from all of the training sets
was then used in Lasso regression in each of the outer loop leave-one-out cross validation
training sets to predict the corresponding held-out test samples. The generalised prediction
error was calculated at a prediction probability cut-point threshold of 0.5.

In addition to optimising the Lasso regression model regularisation at the level that
produced the minimum cross validated prediction error (lambda.min), we repeated the
modelling using more stringent regularisation, based on the one standard error rule, to
reduce model complexity [23].

4.9. Stabilised Nested Cross Validation (StaVarSel, 3-Stage)

In the standard nested cross validation scheme, when applied to molecular data, Lasso
regression typically fits a different optimised multi-variable model to each training set.
Each of these models may contain miRNA-ratios that are different to those selected in other
training sets, and some of the miR-ratios may be selected infrequently. This can result in an
unstable cross validation. To address this issue, Rosenburg et al. (2010) [33], in an approach
that was motivated by the stability method proposed by Meinshausen and Bühlmann
(2010) [8], identified variables that were selected in at least 50% of the cross validation
training sets in order to build a final set of stable variables. As described previously [12], we
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extended this method by using an extra round of cross validations over the training sets to
determine the optimum number of miRNA-ratios, from a ranked list of the most frequently
selected miRNA-ratios, that produced the lowest average prediction error [12]. This is
an iterative step-forward process. At each step, an increasing number of the frequently
selected miR-ratios are used in an LOOCV within each training set to build multivariable
logistic regression models and derive a prediction error. The set of miRNA-ratios that
produced the lowest average prediction error across all of the training sets are then used
to build a final model in each training set using generalised linear logistic regression,
i.e., the equivalent to using the Relaxed Lasso of Meinshausen (2007) with
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training set model is then used to generate a prediction probability for the corresponding
held-out test sample that was excluded from the model selection process in the outer loop.
Estimates of the generalisable specificity and sensitivity of the final set of miRNA-ratios
are derived from the set of prediction probabilities for the held out samples. In our initial
implementation we derived confidence intervals, using 2000 bootstrap samples from the
prediction probabilities of the held out samples, for the sensitivities and specificities at each
threshold level in a Receiver Operating Characteristic (ROC) curve analysis [12,35].

4.10. Conservative Subsampling Based Estimation of Confidence Intervals Based on a Hold out Test

We used leave-one-out cross validation (LOOCV) in the outer loop of our previously
implemented stablised nested cross validation (StaVarSel) to make the stable biomarker
selection computationally tractable. However, the use of LOOCV in the outer loop of a
standard nested cross validation has conceptually limited the range of methods available
for estimating the variance of prediction errors to either a standard naive biased estimator
that assumes that the prediction probabilities are normally distributed, or a non-parametric
resampling method (e.g., bootstrap) that is applied simultaneously over the prediction
probabilities (one per sample) of the held out samples in the outer loop. We previously
utilised a non-parametric bootstrap approach for estimation of the variance of prediction
errors. However, no unbiased estimator of the variance of prediction errors exists for cross
validation [13], and these standard methods can result in a large underestimate of the
variance (i.e., they are anti-conservative) [14]. It has therefore been suggested that the only
robust and practically useful approach is to derive conservative estimates, i.e., that do not
underestimate the variance, by using holdout tests [14,22].

Furthermore, the non-conservative bootstrap estimator cannot be used to estimate the
prediction error variance when there is perfect separation between the groups. We therefore
investigated alternative approaches to this problem and determined that the estimation of
the generalisable predictive capacity of biomarkers does not need to be restricted to the
standard LOOCV framework. A training set can be resampled repeatedly to produce a
range of prediction probabilities for a held out sample from which non-parametric 95%
confidence intervals can be derived. This approach can also be used with k-fold cross
validation and is therefore applicable to the inner loops in each training set in a nested
cross validation, and therefore applicable to the model selection process.

Although this resampling approach results in each resample derived estimate being
biased relative to a single estimate derived from the entire training set, what is gained is the
ability to estimate the variance conservatively for each sample. The Jackknife resampler is
used for this instead of the bootstrap because the limiting distribution is non-normal, and
because the Jackknife estimator is never downwardly biased [18,36], i.e., it is conservative.

We therefore estimated the prediction error variance by repeated (1000×) n-2 subsam-
pling without replacement (i.e., monte carlo n-2 subsampling, which is also referred to as
a general Jackknife). The results of these analyses are presented in Prediction Probability
plots in which the average prediction probability (y-axis) for each sample (x-axis) is plotted
as a circle, and the error bars represent the 95% confidence interval of the prediction proba-
bilities per sample. A similar approach was used within the inner loops of the StaVarSel
stabilised nested cross validation to derive the optimum number of biomarkers from the
ranked list of frequently selected biomarkers.
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A schema of the nested cross validation with both the stable variable selection and the
conservative prediction error variance estimation is shown below in Scheme 1.
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Scheme 1. Nested cross validation, with stable variable selection and conservative prediction error
variance estimation. In the inner loops, the level of penalisation (lambda) for Lasso regression is
optimised, using the deviance of the logistic regression, via repeated k-fold cross validation. The
miRNA-ratios derived from applying Lasso regression with the optimised lambdas to the repeated
k-fold cross validations are collated, ranked according to frequency of selection, and then subjected
to forward stepwise regression to determine the optimum model with the least average prediction
error using LOOCV in each training set. The miR-ratios selected from the inner loop cross validations
are then used to build regression models in repeated n-2 subsamples from each training set to
make predictions for the corresponding held-out samples. Cross validation schema adapted from:
https://scikit-learn.org/stable/modules/cross_validation.html (accessed on 9 March 2023).
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CPM counts per million
GLM Generalised Linear Model
HGD High Grade Dysplasia
LASSO Least Absolute Shrinkage and Selection Operator
LOOCV Leave One Out Cross Validation
miRNA, miR MicroRNA
NDB Non Dysplastic Barrett’s oesophagus
PBS phosphate buffered saline
ROC curve Receiver Operating Characteristic curve
sEV small Extracellular Vesicles
StaVarSel Stable Variable Selection method
TMM trimmed mean of M-values
UMI Unique Molecular Identifier
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