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Abstract: A variety of plant species found in nature contain agrobacterial T-DNAs in their genomes
which they transmit in a series of sexual generations. Such T-DNAs are called cellular T-DNAs
(cT-DNAs). cT-DNAs have been discovered in dozens of plant genera, and are suggested to be
used in phylogenetic studies, since they are well-defined and unrelated to other plant sequences.
Their integration into a particular chromosomal site indicates a founder event and a clear start
of a new clade. cT-DNA inserts do not disseminate in the genome after insertion. They can be
large and old enough to generate a range of variants, thereby allowing the construction of detailed
trees. Unusual cT-DNAs (containing the rolB/C-like gene) were found in our previous study in the
genome data of two Vaccinium L. species. Here, we present a deeper study of these sequences in
Vaccinium L. Molecular-genetic and bioinformatics methods were applied for sequencing, assembly,
and analysis of the rolB/C-like gene. The rolB/C-like gene was discovered in 26 new Vaccinium species
and Agapetes serpens (Wight) Sleumer. Most samples were found to contain full-size genes. It allowed
us to develop approaches for the phasing of cT-DNA alleles and reconstruct a Vaccinium phylogenetic
relationship. Intra- and interspecific polymorphism found in cT-DNA makes it possible to use it for
phylogenetic and phylogeographic studies of the Vaccinium genus.

Keywords: Vaccinium L.; cellular T-DNA; allele phasing; phylogenetics

1. Introduction

“Agrobacterium” is a soil bacterium with a unique mechanism to transfer well-defined
DNA fragments (T-DNAs) into the chromosomes of a large variety of dicotyledonous
plant species [1–6]. Normally, the transfers result in crown gall disease (in the case of
Agrobacterium tumefaciens Conn or A. vitis Ophel and Kerr) or hairy roots formation (in
the case of A. rhizogenes, also called Rhizobium rhizogenes Young). It has been experimen-
tally demonstrated that hairy roots can regenerate into fertile plants [7–9]. Moreover, a
variety of plant species, found in nature, contain T-DNA in their genomes, which they
transmit in a series of sexual generations. Such T-DNA is called cellular (cT-DNA), and
the plants containing it are called naturally transgenic or genetically-modified organisms
(nGMO). Initially, such sequences were discovered in Nicotiana glauca Graham and other
Nicotiana L. species [10–12], and further nGMOs were found inside genera Linaria Mill. [13],
Ipomoea L. [14], Cuscuta L. [15], and dozens of other species [6,16–18]. These discoveries
enabled making a number of generalizations regarding the distribution, structures, and
possible functions of cT-DNA, summarized in our previous paper [19]. Sequences of cT-
DNAs have been used in phylogenetic studies of Linaria [20], Ipomoea [21], Nicotiana [22],
and Camellia [23]. They present several advantages for exploring the origin and evolution
of nGMO species. To begin with, cT-DNAs are well-defined, highly specific, and well
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recognizable DNA fragments, unrelated to plant sequences. They do not occur in non-
transformed ancestors, and their integration at a particular chromosomal site constitutes a
founder event which creates a clear start for a new clade. Moreover, unlike transposable el-
ements, cT-DNA inserts do not amplify and disseminate in the genome after insertion. This
prevents the generation of multiple paralogs, which is a significant advantage over classical
nuclear markers. Additionally, cT-DNAs can be large and old enough to generate a range of
variants, thereby allowing the construction of detailed trees [23]. Phasing of T-DNA alleles
enables the reconstruction of more precise phylogenetic relationships and identification of
hybridization events in the evolution of plant species [24]. These approaches have been
successfully applied in the study of the genus Camellia [23].

We also found unusual sequences of the rolB/C-like gene in the genome data of
Vaccinium corymbosum L. and Vaccinium macrocarpon Ait. [6,16]. This gene belongs to the
plast-gene family. It is more similar to plast-genes present in fungus Laccaria bicolor (Maire)
P.D.Orton (and absent in most basidiomycetes), plant Nyssa sinensis Oliv., and bacteria
Ensifer sp. Casida, than to ones from known strains of Agrobacterium (Rhizobium) rhizogenes,
which indicates the transfer of this sequence from an unknown «Agrobacterium» strain [16].

Based on the results of previous phylogenetic studies, we can try to reconstruct phyloge-
netic relationships between species of Vaccinium genus, using the rolB/C-like gene sequence.
This task is quite relevant since the phylogeny of Vaccinium genus is highly controversial.

The Vaccinium genus was first described by Carl Linnaeus in 1753 [25]. After that,
there were no large-scale phylogenetic studies of this genus until the beginning of the
20th century, when active breeding of cranberries and blueberries started in the United
States [26,27]. Therefore, the first studies of Vaccinium phylogeny and taxonomy mainly
involved species distributed in North America. The main difficulties in such studies were
caused by the absence of fertility barriers in morphologically different organisms, which
leads to the formation of a large number of hybrids, along with polyploidy distribution
throughout the genus [27].

Camp was one of the first to introduce the system of Vaccinium genus in 1945 [28]. He
conducted his classification according to morphological features. As a result, the genus
was divided into several sections. The North American blueberry section Cyanococcus
included 9 diploid, 12 tetraploid, and 3 hexaploid species [29]. Later, some of the species
were merged into V. corymbosum with three levels of ploidy; therefore, in the new Kloet’s
classification, the Cyanococcus section contained 6 diploid, 5 tetraploid, and 1 hexaploid
blueberry species [29], while dividing into sections did not change itself [30].

Thereby, Vaccinium species differentiation is complicated by polyploidy, similar mor-
phology, and introgressions during hybridization [29]. Additionally, the application of
morphological traits for phylogenetic studies of this genus does not always enable an
ambiguous assessment of the evolutionary relationships between the studied species. This
problem can be partially solved by the application of modern methods of phylogeny.

Methods such as DNA barcoding, fingerprinting, phylogenomics, and chemosystemat-
ics have been used recently in the study of Vaccinium genus. They allowed us to reconsider
the taxonomy proposed by K. Kloet. An example of such study is the application of matK
and ITS markers to determine phylogenetic relationships of various representatives of the
entire tribe Vaccinieae [31]. The resulting dendrograms did not confirm traditional generic
boundaries, but several well-supported clades were found on the tree: Andean; Mesoamer-
ican/Caribbean; East Malaysian; Agapetes (consisting of some Asiatic Vaccinium and
Agapetes); Bracteata-Oarianthe (represented by the respective sections); Orthaea/Notopora
(containing the genera Orthaea Klotzsch and Notopora Hook); Myrtillus; and Vaccinium
clades. Moreover, most of the discovered clades combined representatives of various gen-
era, while the clades Vaccinium and Myrtillus contained species from different Vaccinium
sections according to the previous classifications. Based on the obtained results, the authors
concluded that it is necessary to reassess the taxonomy of the genus Vaccinium, since it
is not monophyletic. Although work on this reassessment began in 2003 [32], a number
of researchers pointed at too radical differences from the accepted structure of the genus.
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Inconsistencies can be explained by the difficult interpretation of the results of phylogenetic
analysis based on ITS and matK, in taxon, where hybridization and polyploidization played
a significant evolutionary role [33].

Since the use of DNA barcoding does not enable unambiguous reconstruction of the phy-
logeny of Vaccinium genus, more time-consuming and expensive methods of molecular phylo-
genetics were used in genetic studies of economically important species. Recent assemblies of
the genomes of V. macrocarpon, V. microcarpum (Turcz. ex Rupr.) Schmalh., V. oxycoccos L., and
V. corymbosum made it possible to conduct their comparative genomics [34,35]. Molecular dat-
ing has shown that V. macrocarpon diverged from V. oxycoccos 2 mya, and from V. microcarpum
4.5 mya. Divergence time estimated for V. macrocarpon and V. corymbosum differs from 5 to
10.4 mya [34,35].

An analysis of the intra- and interspecific variability of American blueberry species by
double digest restriction-site-associated DNA sequencing [36], showed that the rabbit eye
blueberry and northern highbush blueberry are relatively homogeneous, but the southern
highbush blueberry contains a significantly more mixed genetic background. Considering
the pedigree of blueberries, the most optimal solution was to separate the entire dataset into
nine hypothetical genomes, which correspond to the number of species actively used in breed-
ing, V. darrowii Camp, V. elliottii Chapm, V. tenellum Ait., V. angustifolium Ait., V. corymbosum,
V. constablaei A. Gray, V. virgatum Ait, V. myrtilloides Michx., and V. pallidum Ait. The trends
identified in this way are consistent with the history of blueberry breeding [36].

Thereby, attempts to reconstruct the phylogenetic relationships of species of the genus
Vaccinium by various methods have led to contradictory results. The use of phylogenetic
markers ITS and matK leads to the construction of a phylogenetic tree with significant
differences from the classical system. The use of more expensive and time-consuming methods
of genome studies gives a more plausible picture, that is more consistent with the classical
system. However, expensive methods can currently be applied to a narrow list of economically
important species. For more extensive studies of various representatives of the genus, easy-to-
use and cheap markers are required. They can be developed based on genome regions newly
acquired in the course of evolution with a known structure and localization. An example of
such sequences would be cellular T-DNA. Therefore, our study aims to characterize cellular
T-DNA polymorphism in the genomes of plants of Vaccinium genus, and to evaluate the
possibility of its application for phylogenetic studies of the genus.

2. Results
2.1. Vaccinium rolB/C-like Gene: General Description

Until recently, the rolB/C-like gene has been described only in V. corymbosum and
V. macrocarpon. In the framework of this study, using BLAST algorithm, this gene was
described in the WGS data for V. myrtillus and V. darrowii. Their ORFs correspond to the
amino acid sequences from 290 (in V. myrtillus) to 292 amino acids (in V. macrocarpon).

In blueberries, the gene is located on chromosome 3 (in the cranberry genome, this
region corresponds to chromosome 4). Located on both sides of it, at a distance of 5 kb, are
genes of plant origin with functions that have not been described yet. No other agrobacterial
genes were found in the genome of plants of Vaccinium genus.

Our search for homologues of the rolB/C-like gene in SRA database revealed new
species of naturally transgenic plants in the Vaccinium genus, summarized in Table 1.

Natural GMOs were found in the sections Oxycoccoides, Oxycoccus, Cyanococcus,
Hemimyrtillus, Myrtillus, Polycodium, Bracteata, Vaccinium, and Vitis-idaea, indicating that
their common ancestor was transformed before the sections diverged.
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Table 1. Natural transgene of Vaccinium species, based on NGS data.

Section Species NGS Data SRR Accession
Number(s)

Oxycoccoides (Hooker f.) Sleumer V. japonicum Miq.
rolB/C-like gene is present in the

genome, and coverage is sufficient to
assemble a full-length gene

SRR13349629

Oxycoccus (Hill) Koch V. macrocarpon Aiton
rolB/C-like gene described earlier, in

new SRA data coverage is sufficient to
assemble a full-length gene

SRR13376387
SRR13376383
SRR13376388

V. oxycoccos L.
rolB/C-like gene is present in the

genome, and coverage is sufficient to
assemble a full-length gene

SRR14876344

Cyanococcus A. Gray V. virgatum Aiton/V. ashei Reade
rolB/C-like gene is present in the

genome, and coverage is sufficient to
assemble a full-length gene

SRR12686860
SRR12686864

V. darrowii Camp
rolB/C-like gene is present in the

genome, and coverage is sufficient to
assemble a full-length gene

SRR13865261
SRR15673719

V. corymbosum L.
rolB/C-like gene was described earlier,
in new SRA data coverage is sufficient

to assemble a full-length gene

SRR8298002
SRR8298006

V. stenophyllum Steud.
rolB/C-like gene is present in the

genome, but coverage is not sufficient
to assemble a full-length gene

SRR19401505

V. tenellum Aiton
rolB/C-like gene is present in the

genome, but coverage is not sufficient
to assemble a full-length gene

SRR19908712

Hemimyrtillus Sleumer V. smallii A. Gray
rolB/C-like gene is present in the

genome, but coverage is not sufficient
to assemble a full-length gene

SRR19400793

Myrtillus Dumortier V. myrtillus L.
rolB/C-like gene is present in the

genome, and coverage is sufficient to
assemble a full-length gene

SRR7523927
SRR7523930
SRR7523926

V. scoparium Leiberg ex Coville
rolB/C-like gene is present in the

genome, but coverage is not sufficient
to assemble a full-length gene

SRR19405468

V. yatabe Makino
rolB/C-like gene is present in the

genome, but coverage is not sufficient
to assemble a full-length gene

SRR19400792

Polycodium (Rafinesque) Rehder V. stamineum L.
rolB/C-like gene is present in the

genome, but coverage is not sufficient
to assemble a full-length gene

SRR19401493

Pseudocephalanthos C.Y.Wu and R.C.Fang. V. dunalianum Wight
rolB/C-like gene is present in the

genome, and coverage is sufficient to
assemble a full-length gene

SRR7768528
SRR2057022

Bracteata J.J. Smith V. bracteatum Thunb.
rolB/C-like gene is present in the

genome, and coverage is sufficient to
assemble a full-length gene

SRR17459400
SRR17459403
SRR17459408

V. wrightii A.Gray
rolB/C-like gene is present in the

genome, but coverage is not sufficient
to assemble a full-length gene

SRR19401672

Vaccinium L. V. uliginosum L.
rolB/C-like gene is present in the

genome, and coverage is sufficient to
assemble a full-length gene

SRR7686610
SRR7686609

Vitis-idaea (Moench) Koch V. vitis-idaea L.
rolB/C-like gene is present in the

genome, and coverage is sufficient to
assemble a full-length gene

SRR5799277
SRR5799278
SRR5799279
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Table 1. Cont.

Section Species NGS Data SRR Accession
Number(s)

Relation to any section is not defined V. talamancense (Wilbur and
Luteyn) Luteyn

rolB/C-like gene is present in the
genome, but coverage is not sufficient

to assemble a full-length gene
SRR19401435

V. schoddei Sleumer
rolB/C-like gene is present in the

genome, but coverage is not sufficient
to assemble a full-length gene

SRR19401400

V. stanleyi Schweinf
rolB/C-like gene is present in the

genome, and coverage is sufficient to
assemble a full-length gene

SRR19354672

V. wollastonii Wernham
rolB/C-like gene is present in the

genome, but coverage is not sufficient
to assemble a full-length gene

SRR19401324

Genomic data for different species varies in coverage quality. In some cases, the presence
of a transgene can be inferred from single reads. In other cases (in V. selerianum, V. shastense,
V. striicaule, V. symplocifolium, V. vidalii, and V. whitmeei), the transgene was not found at all, but
this does not mean its absence from the genome, it indicates, however, that additional studies
are required.

Sequences with good coverage were used further to assemble full-length sequences.
For a deeper understanding of the gene variability, field material was collected, which was
included in further variability analysis of the rolB/C-like gene. In all studied species, except
for V. oxycoccos (see below), only full-length sequences of the roB/C-like gene were found.

When studying SNPs within full-length sequences, one can see that there are nu-
cleotide differences characteristic of the species, distinguishing each of them from other
representatives of the genus Vaccinium. They are represented by substitutions and indels.
Moreover, indels are equal or multiples of three nucleotides. This is evidence in favor of the
gene product functionality. Examples of such polymorphism can be SNPs in V. uliginosum
and V. vitis-idaea shown in Figure S1, as well as indels in different Vaccinium species shown
in Figure S2.

Modeling of protein structures based on the predicted amino acid sequences (Table S1)
shows their similarity in representatives of the genus Vaccinium, as well as in Laccaria,
Nyssa, and Ensifer. The closest of the described agrobacterial proteins is the RolB protein
(Figure 1).

Collectively, these data allow us to outline the directions for future research in terms
of these sequences’ functionality.

2.2. Intraspecific Variability of rolB/C-like Gene

To assess intraspecific variability of the rolB/C-like gene, we used sequences of several
independent samples presented in the SRA for V. bracteatum, V. corymbosum, V. darrowii,
V. dunalianum, V. macrocarpon, V. myrtillus, V. oxycoccos, V. uliginosum, V. virgatum/ashei, and
V. vitis-idaea. In addition, samples of V. myrtillus, V. oxycoccos, V. uliginosum, and V. vitis-idaea
collected from different geographic locations were characterized for polymorphism of the
studied gene. For each genotype, alleles were reconstructed, based on Sanger sequencing
data, or SRA reads.

PCR with primers VaccR and VaccF, followed by sequencing of the products have
shown that 8 out of 15 samples of V. oxycoccos were homozygous for a deletion spanning
from nucleotides 198 to 800 of CDS (Figure 2). Three samples had deletions other than the
most common. They spanned nucleotides 354–798, 390–548, and 159 to the end of the gene,
respectively. Four samples contained full size genes. All samples of other species contained
only full-size intact genes.
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Figure 1. Predicted structures of various Plast-proteins. (A) RolB/C-protein from plants and fungus;
(B) various plast-proteins from Agrobacterium. Abbreviations: Vm—V. macrocarpon, Vu—V. uliginosum,
Vv—V. vitis-idaea, Lt—L. trichodermophora, Ns—N. sinensis, Rr—R. rhizogenes, and At—A. tumefaciens.

Within each species, there are SNPs represented by nucleotide substitutions that
distinguish different alleles of a gene from each other. Based on these data, we can assess the
diversity of alleles within a species, the frequency of occurrence of homo- and heterozygotes
in populations, and the geographical distribution of alleles for some species. Data on the
number of investigated alleles are presented in Table 2. Figure 3 shows allele frequency
diagrams for Vaccinium species. This diagram does not claim to be an accurate estimate of
allele frequencies, however, it stimulates the consideration that there are more common
and rarer alleles. For example, A in V. vitis-idaea was found in most of the analyzed samples.
The remaining alleles were found in a smaller number of samples and sometimes specific
for certain locations. The proportion of homo- and heterozygotes and allelic diversity
differ in the studied species, which can be explained by different reproduction biology. For
example, blueberry species are more prone to cross-pollination, compared to cranberries.
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Table 2. Studied genotypes of Vaccinium and their allelic status.

Species Number of
Genotypes

Number of Unique
Alleles

Number of
Homozygotes

Number of
Heterozygotes

Ploidy of
Studied Species

Max.
Alleles per Plant

V. myrtillus 13 10 10 3 Diploids 2
V. corymbosum 2 6 0 2 Tetraploids 4
V. macrocarpon 3 1 3 0 Diploids 1

V. oxycoccos 4 4 3 1
Diploids,

tetraploids
and hexaploids

2

V. virgatum/ashei 5 9 3 2 Hexaploids 3
V. japonicum 2 2 2 0 Diploids 1
V. vitis-idaea 18 9 5 13 Diploids 2

V. uliginosum 14 18 0 14
Diploids,

tetraploids
and hexaploids

3

V. dunalianum 2 1 2 0 Diploids 1
V. bracteatum 3 5 1 2 Diploids 2

V. darrowii 2 3 0 2 Diploids 2

Reconstruction of the phylogenetic relationships, based on molecular genetic studies of
taxonomically significant regions of DNA, often relies on the evaluation of single specimens
from the studied species. To avoid possible mistakes, especially when working with new
markers, it is logical to test them out on a wider material. Since we used samples from
collection points that are geographically distant from each other, it was decided to compare
interspecific and intraspecific differences between them. Independent alleles were used for
phylogenetic tree construction. Only full-length sequences were included in the analysis
(Figure 4).

The resulting phylogenetic tree, in general, was consistent with our expectations. A total
of 8 clades, that mostly correspond to analyzed species, can be distinguished on this tree.
Interestingly, the clades represented by wild species (A, B, E, F) are homogeneous, despite
the wide geography of sampling. At the same time, clades D and H are mosaic. Clade H is
represented by alleles from V. virgatum and V. ashei Reade. Species name given by the authors
of sequences was kept, but at the same time, we understand them as synonyms and refer
them to the same species. Two V. corymbosym alleles C and E are noted in this clade. Both of
them belong to the variety Draper, in the breeding of which V. virgatum and V. darrowii were
involved [37]. Clade G consists of the related species V. corymbosum and V. darrowii, with an
admixture of two alleles of V. virgatum. Their presence may be explained by hybridization
during development of cultivars of North American Rabbit-eye blueberries.
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V. macrocarpon and V. oxycoccos are related species that form clade D. These species
require more detailed study in the future, since the American cranberry is a cultivated
species, and, therefore, hybridization was used in the early stages of its breeding. In turn,
swamp cranberries are the only species known today where the transgene was extensively
mutated in many of the studied samples.

In general, our studies have shown that, at least in the analyzed species, the intraspe-
cific variability of transgene is lower than interspecific, and the mosaic distribution of alleles
on the tree in American blueberries can be explained in terms of interspecific hybridization
documented during the creation of studied varieties.

Therefore, we compiled consensus sequences, as a characteristic of each of the species
analyzed at the previous stage, and supplemented this list with sequences obtained on the
basis of gene sequences we obtained from single samples of the collection of the Komarov
Botanical Institute.

2.3. Reconstruction of Phylogenetic Relationship of Vaccinium Species Based on
rolB/C-like Sequence

In the final part of this study, several types of data were used. First of which, were the
consensus sequences of the rolB/C-like gene of species studied in the previous stage. Alleles of
presumably hybrid origin were excluded at the stage of constructing consensus sequences.

In addition, sequences of species sufficient for gene assembly but not sufficient for
allele phasing were included in our analysis.

Finally, we obtained sequences of the rolB/C-like gene from additional species, repre-
sented by single samples in the collection of the Komarov Botanical Institute.

The phylogenetic tree presented in Figure 5 included, in addition to studied above, such
species as V. myrtilloides (Sec. Cyanococcus), V. ovalifolium Sm. (Sec. Myrtillus), V. praestans Lamb.
(Sec. Praestantia), V. smallii A. Gray (Sec. Hemimyrtillus), V. vulcanorum Kom. (Sec. Vaccinium),
V. conchophyllum Rehder, V. emarginatum Hayata (Sec. Conchophyllum), and Agapetes serpens
(Wight) Sleumer (based on previous studies, Agapetes can be considered a closely related
genus in relation to Vaccinium, so its involvement in the work seems logical) [31].

As can be seen from Figure 5, species assigned to the same section in the classical
system of Vaccinium genus are clustered together when constructing a tree based on the
proposed DNA marker. Marked with ovals in Figure 5.

Another phylogenetic tree was constructed based on ITS sequences of samples studied
in this work, combined with sequences from Kron et al. research [31]. This tree is presented
in Figure 6. We can distinguish Andean, Meso-American/Caribbean, East Malaysian,
Agapetes, Bracteata-Oarianthe, Orthaea/Notopora, Myrtillus, and Vaccinium clades, which
were previously identified by Kron et al., composition of these clades differs significantly
from the traditional taxonomy. Thereby, species V. macrocarpon and V. oxycoccos belong to
the section Oxycoccus, but on ITS tree these species are separated by species V. vitis-idaea,
which belongs to the section Vitis-idaea, Clade Myrtillus unites species of sections Myrtillus
and Macropelma. Clade Bracteata-Oarianthe also includes species from sections Hemimyr-
tillus, Oarianthe, Bracteata, and Baccula-Nigra. Clade Agapetes includes representatives of
genus Agapetes and some representatives of genus Vaccinium from sections Rigiolepis, Con-
chophyllum, and Galeopetalum, while some other species from these sections are spread over
the tree. Orthaea/Notopora clade includes representatives of different genera, Notopora,
Orthaea, and Vaccinium. The combination of Vaccinium representatives with other genera is
also characteristic of Meso-American/Caribbean clades, which includes a representative of
section Oreades.

There are much fewer of such contradictions in the phylogenetic tree based on the
rolB/C-like gene.
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3. Discussion

Vaccinium is the fifth genus of natural GMOs after Nicotiana, Linaria, Ipomoea, and Camellia,
where the cT-DNA structure was characterized in greater detail in many species. [11,13,14,23].

In addition to the unusual plast-gene found in plant genomes, a distinguishing feature
of the Vaccinium genus is also the fact that the gene has been preserved intact in most of the
studied species. The plast-genes family includes most of the oncogenes of R. rhizogenes (coding
for RolB, RolC, Orf13, and Orf14 proteins), and some T-DNA genes of A. tumefaciens (coding
for p5, p7, 6a, 6b) [38]. They have also been found in naturally transgenic plants, fungi, and
some other bacteria [10,13,14,38]. Plast genes were described in detail in the review by Leon
Otten [38], where he defined them on the basis of weak, but significant, protein similarity, and
highlighted their capacity to change plant development, being introduced into plant genomes
during the genetic transformation process. Levesque et al. [39] suggested that plast genes
could have similar functions because of their common ancestry, and their diversification could
be an adaptation to different plant species. Describing the biodiversity of plast genes can be
very important in order to find their basic function and some common features of all these
genes. In this regard, the discovery of plast genes, that are not quite similar to previously
known ones (as in our case), is very valuable for future research.

In accordance with the analysis of previously assembled genomes and sequences, the
representatives of two Vaccinium subgenera and Agapetes have a common localization site
of the rolB/C-like sequence in the genome. This indicates a common origin of the sequence,
as a result of a single transformation event of the ancestral form, and, accordingly, the
monophyletic origin of all species containing transgene, included in our analysis. During
evolution, the newly acquired sequence seems to have accumulated mutations. This
variability can be assessed and used to estimate species divergence.

This is very important for the Vaccinium genus since there is still no consensus on the
genus system.

Phylogenetic studies of the Vaccinium genus have been conducted since the middle of
last century [26,27]. The traditional system of the genus involves its division into 2 subgen-
era and 33 sections. This division is based on morphological features [30]. The use of DNA
barcoding methods showed the polyphyletic nature of the genus. At the same time, the
construction of phylogenetic trees, based on ITS and matK, revealed contradictions with the
traditional system. The trees constructed using ITS sequences by Kron et al. [31], and recon-
structed in our study, based on an extended list of species, have shown a similar topology.
They contained several well-maintained clades, such as Andean; Mesoamerican/Caribbean;
East Malaysian; Agapetes, consisting of some Asiatic Vaccinium and Agapetes; Bracteata-
Oarianthe, uniting representatives of the respective sections; Orthaea/Notopora, which
includes the genera Orthaea and Notopora; Myrtillus; and Vaccinium. These clades con-
tained species of the genus Vaccinium, which, in previous classifications, belonged to
different sections. Moreover, representatives of the oxycoccus subgenus were separated on
the tree by V. vitis-idea. Representatives of the Cyanococcus section also fell into different
clades, clustering with species of other sections.

This contradiction could be related to the manifestation peculiarities of used DNA
markers in species of hybrid origin. The ITS of hybrid species retain the features of only
one parent, and chloroplast markers are inherited mainly through the maternal line [40].
At the same time, the phylogeny based on genomic data is in better agreement with the
traditional system [34,35,41,42]. Collectively, these data indicate that additional research
is required, including the search for new cheap and reliable markers for the molecular
phylogeny of Vaccinium.

In this article, we propose such a marker. An important feature of the work carried out
by us was the use of a large number of forms of cranberries, lingonberries, and blueberries
of different geographical origin, as well as the phasing of natural transgene alleles using
SRA data in order to assess intraspecific variability. Such an approach was first used
to study cellular T-DNA of representatives of the Camellia genus [23]. The analysis of
individual alleles in phylogenetic studies makes it possible to identify acts of hybridization,
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including interspecific hybridization. This is important to understand when assessing the
degree of speciation. Alleles identification makes it possible to better describe intraspecific
variability in order to assess the occurrence of alleles and their geography. In the future,
this marker can be used to describe the allelic state of a gene in various populations in
order to mark them and control unauthorized picking of wild berries. In addition to the
general assessment of variability, the description of alleles makes it possible to identify
the facts of hybridization in the pedigree of specific isolates, varieties, lines of cultivated
Vaccinium plants, as well as to identify homo- and heterozygotes for this marker. This
may be useful in interpreting controversial results of the origin of hybrid forms, as well as
illustrating the incomplete isolation of species, as previously demonstrated in case of the
genus Camellia [23].

Based on the phylogenetic analysis of allelic variants, obtained in our research, it can be
concluded that intraspecific variability of marker in Vaccinium is less than the interspecific
one. Therefore, it can be used to study the phylogenetic relationships of Vaccinium species.

A phylogenetic analysis of the genus Vaccinium was performed, using sequences of
the rolB/C-like gene, as well as ITS sequences from previous studies [31], supplemented by
sequences of our samples. The addition of new species to phylogenetic analysis, based on
ITS, did not significantly change the topology of the tree.

The comparison of trees built based on ITS and rolB/C-like gene shows that they have
similarities and differences. Species of Myrtillus section (V. myrtillus and V. ovalifolium)
cluster together in both trees. Species of Cyanococcus section are clustered on both trees
in a similar way. No other similarities in the topology of these trees were found. Species
V. conchophyllum and V. emarginatum belonging to section Conchophyllum cluster together on
the rolB/C-like tree, but not on ITS tree. Species V. macrocarpon and V. oxycoccos from section
Oxycoccus, V. vulcanorum and V. uliginosum from section Vaccinium form separate clades on
the rolB/C-like tree, but are scattered across different parts of the ITS tree.

Bracteata, Hemimyrtillus, Vitis-idaea, Oxycoccoides, and Praestantia sections are repre-
sented by single species on the rolB/C-tree. These sections require additional research
involving new species. Reconstruction of phylogeny using the rolB/C-like gene is consis-
tent with data obtained by other researchers using more expensive and time-consuming
methods [34,35,42].

Therefore, a phylogeny, built on the basis of the rolB/C-like gene, has fewer contra-
dictions with classical ideas, compared to a tree built based on ITS. The rolB/C-like gene,
as a molecular marker, is cheap, easy to use, and is not time consuming. Given minimal
amounts of biological material, new species can easily be included in further analyses.

4. Materials and Methods
4.1. Plant Material

Plant material was represented by samples of Vaccinium myrtillus L., V. oxycoccos,
V. vitis-idaea L., and V. uliginosum L., collected from various habitats in Russia and Belgium.
Samples of 9 species of the studied genus were taken from the collection of the Komarov
Botanical Institute (St. Petersburg, Russia). A detailed description of the samples is
presented in Table S2.

4.2. SRA Data

Sequences of Vaccinium species from SRA database, used in this study are presented
in Table S3.

4.3. DNA Isolation

Leaves and stems of plants were grounded in liquid nitrogen. Plant DNA was isolated
by a CTAB method described by Draper and co-authors [43].
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4.4. PCR

Type I. Classic PCR was performed using the primers shown in Table 3, in the Tercyc
gene cycler (DNA Technology, Moscow, Russia). Primers were selected on the basis of cran-
berry genome fragment (JOTO01169953.1). The 40 µL reaction mixture contained DreamTaq
Green PCR Master Mix (2X) buffer (Thermo Fisher, Waltham, MA, USA), 100 ng DNA, and
10 µM primers. The following program was used for PCR, 5 min at 93 ◦C; 40 cycles of 17 s
at 93 ◦C, 30 s at X ◦C and 90 s at 72 ◦C; then 5 min at 72 ◦C, where X was the annealing
temperature, depending on the primers used.

Table 3. Primers used in the work.

Primers
Tm Amplicon

Size
Purpose of Use

Name Sequence

VaccFvn tcctaaccctaaccctgacc
50 1503

Amplification of the entire gene and
flanking sequencesVaccRvn aactcgtgattgtacctcgtt

VaccR ttactggccggtcctcatca
55 1002 Amplification and sequencing of the entire gene

VaccF cacgtgtaaagcccgtgatgtt

Vacc_ts_F taaagcctgccactgcgatt
55 838

Efficient amplification of 838 out of 876 bp of coding
sequence in any of studied Vaccinium genotypeVacc_ts_pR ccaatcgccacgagtaactaac

Vacc_reR ccgaagttcgccgtcctg
n/a * n/a Primers for sequencing of gene fragments

Vacc_reF tccaagccatcgacctactc

pJET1.2 Forward
Sequencing Primer cgactcactatagggagagcggc

58 n/a Real-time PCR from colonies and sequencing
pJET1.2 Reverse

Sequencing Primer aagaacatcgattttccatggcag

* n/a—not applicable.

Type II. Real-time PCR from colonies was performed for additional control of early
threshold values to search for clones containing the target insert. Real-time PCR was carried
out in ANK-32 cycler (Sintol, Moscow, Russia). Primers for plasmid pJET1.2 from the CloneJET
PCR Cloning Kit (Thermo Fisher, Waltham, MA, USA) were used in the reaction. The 20 µL of
the reaction mixture contained SsoAdvanced Universal SYBR Green Supermix buffer (Bio-Rad,
Hercules, CA, USA), 10 µM primers, and a suspension of E. coli bacterial cells taken from a
colony of transformants. The following program was used for real-time PCR: 60 s at 50 ◦C,
40 cycles of 5 min at 95 ◦C, 30 s at 58 ◦C, 60 s 72 ◦C, and 18 s at 95 ◦C.

PCR products were separated on agarose gel in 1x TBE buffer and visualized using
GelDoc Go (BioRad, Hercules, CA, USA).

4.5. Molecular Cloning

PCR products were cloned into pJET1.2 vector, using CloneJET PCR Cloning Kit
(Thermo Fisher, Waltham, MA, USA) according to the manufacturer instructions, and trans-
formed into DH5 alpha chemically competent cells according to Inoue and co-authors [44].

4.6. DNA Sequencing

PCR fragments were sequenced using Sanger method, and BrilliantDye™ Terminator
(v3.1) Cycle Sequencing Kit (NimaGen, Nijmegen, The Netherlands). Then, sequencing
mixtures were separated at the Resource Center of St. Petersburg University “Development
of Molecular and Cellular Technologies” using an ABI Prism 3500 xl sequencer (Applied
Biosystems, Waltham, MA, USA).

4.7. Allele Reconstruction from Sanger Sequencing Data

In order to determine the sequences of alleles, we represented in binary form each
sample as a set of polymorphic positions, where “1” indicates the most frequent nucleotide
in a given position in the species, and “0” the least frequent. Then, for each sample, all



Int. J. Mol. Sci. 2023, 24, 6932 14 of 17

possible combinations of values were written for polymorphic positions. Since homozy-
gotes and samples with one SNP were found among the samples, we were able to obtain a
primary pool of alleles, and these alleles were subsequently found in the remaining samples.
Since each of these alleles, in a diploid, must match to an allele with alternative values in
polymorphic positions, a homologous pair can be found for the primary allele [45].

In cases where the number of sequences was insufficient to resolve the set of sequences
per allele, they were cloned into pJET 1.2 according to Clone Jet PCR Cloning Kit (Thermo
Fisher Scientific, Waltham, MA, USA) manufacturer’s instructions. Then, inserts from
individual clones, that represent individual alleles, were sequenced.

4.8. Allele Phasing

The NCBI SRA database was used to search for T-DNA in the Vaccinium genus. The
search was carried out using BLAST against the reference (JOTO01169953.1). Resulting
reads were aligned to the reference using BWA 0.7.17 [46]. The processing of SAM files
was carried out in SAMtools 1.7 [47]. The alignment visualization for ploidy estimation
was performed in IGV 2.12.3 [48]. Allele phasing was performed using variant calling with
GATK 4.2 [49] followed by WhatsHap 1.0 [50]. Additionally, the SAMtools phase was used
for alternative analysis. In the case of small coverage, alleles were phased manually, with
some only partially successful. Upon the assumption of SNP being artificial, its presence
was verified in other samples.

4.9. Phylogenetic Analysis

Sequences were aligned using the MAFFT online service for multiple sequence align-
ment [51]. The evolutionary history was inferred by using the Maximum Likelihood
method and General Time Reversible model [52]. Initial tree(s) for the heuristic search were
obtained automatically by applying Neighbor-Join and BioNJ algorithms to a matrix of
pairwise distances estimated using the Maximum Composite Likelihood (MCL) approach,
and then selecting the topology with superior log likelihood value. Trees were drawn to
scale, with branch lengths measured in the number of substitutions per site. All positions
with less than 95% site coverage were eliminated, i.e., fewer than 5% alignment gaps,
missing data, and ambiguous bases were allowed at any position (partial deletion option).
Evolutionary analyses were conducted in MEGA11 [53].

4.10. Prediction of Protein’s Structure

AlphaFold prediction [54] of the structures of various Plast-proteins was made using the
Colabfold web resource at https://colab.research.google.com/github/sokrypton/ColabFold/
blob/main/AlphaFold2.ipynb (accessed on 18 April 2022), using default settings.

5. Conclusions

In this study, new species of natural GMOs were described within the genera Vaccinium
and Agapetes. The natural transgene of these plants can be used for phylogenetic studies of
the genus. This nuclear marker is cheap, easy to use, and is not time consuming. It can also
be recommended for further research. The allele phasing approach makes it possible to
track hybridization events in the evolution of studied plants. Data, regarding intraspecific
variability of the proposed marker, can be used to mark populations of wild berries of the
Vaccinium genus, in order to prevent their unauthorized harvesting.
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