
Citation: Liu, Y.; Yang, S.; Khan, A.R.;

Gan, Y. TOE1/TOE2 Interacting with

GIS to Control Trichome

Development in Arabidopsis. Int. J.

Mol. Sci. 2023, 24, 6698. https://

doi.org/10.3390/ijms24076698

Academic Editor: Robert Hasterok

Received: 4 March 2023

Revised: 29 March 2023

Accepted: 2 April 2023

Published: 3 April 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

 International Journal of 

Molecular Sciences

Article

TOE1/TOE2 Interacting with GIS to Control Trichome
Development in Arabidopsis
Yihua Liu 1,*,†, Shuaiqi Yang 2,†, Ali Raza Khan 2 and Yinbo Gan 2,*

1 College of Agriculture and Forestry Sciences, Linyi University, Linyi 276000, China
2 Zhejiang Key Lab of Crop Germplasm, Department of Agronomy, College of Agriculture and Biotechnology,

Zhejiang University, Hangzhou 310027, China
* Correspondence: liuyihua@lyu.edu.cn (Y.L.); ygan@zju.edu.cn (Y.G.)
† These authors contributed equally to this work.

Abstract: Trichomes are common appendages originating and projecting from the epidermal cell
layer of most terrestrial plants. They act as a first line of defense and protect plants against different
types of adverse environmental factors. GL3/EGL3-GL1-TTG1 transcriptional activator complex and
GIS family genes regulate trichome initiation through gibberellin (GA) signaling in Arabidopsis. Here,
our novel findings show that TOE1/TOE2, which are involved in developmental timing, control the
initiation of the main-stem inflorescence trichome in Arabidopsis. Phenotype analysis showed that the
35S:TOE1 transgenic line increases trichome density of the main-stem inflorescence in Arabidopsis,
while 35S:miR172b, toe1, toe2 and toe1toe2 have the opposite phenotypes. Quantitative RT-PCR results
showed that TOE1/TOE2 positively regulate the expression of GL3 and GL1. In addition, protein-
protein interaction analysis experiments further demonstrated that TOE1/TOE2 interacting with
GIS/GIS2/ZFP8 regulate trichome initiation in Arabidopsis. Furthermore, phenotype and expression
analysis also demonstrated that TOE1 is involved in GA signaling to control trichome initiation in
Arabidopsis. Taken together, our results suggest that TOE1/TOE2 interact with GIS to control trichome
development in Arabidopsis. This report could provide valuable information for further study of the
interaction of TOE1/TOE2 with GIS in controlling trichome development in plants.
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1. Introduction

Trichomes are a common structure on the upper side of most terrestrial plants. They
have different shapes and sizes and are often used as an important basis for plant species
identification [1–4]. On the basis of their diversity and ease of access and observation,
trichomes have become an excellent molecular model for studying cell-differentiation pro-
cesses such as fate determination, cell-cycle control and cell morphogenesis in
plants [5,6]. As the first layer of the physical protection barrier, trichomes can effectively
protect plants from mechanical damage, ultraviolet radiation, pest erosion and water loss
via transpiration and help maintain the normal growth of plants [2,7–10].

Previously, various regulatory factors involved in controlling the development of
trichomes have been identified through deep studies of trichome growth and develop-
ment [1,5,11,12]. MYB-bHLH-WD40 (MBW) acts as a trichome-formation complex and
regulates trichome development in Arabidopsis. It consists of R2R3 MYB transcription
factor GL1 (GLABROUS1) or MYB23, bHLH transcription factor GL3 (GLABRA3) or EGL3
(ENHANCER OF GLABRA3) and WD40 repeat protein TTG1 (TRANSPARENT TESTA
GLABRA1) [1,3,5,13,14]. The MYB-bHLH-WD40 complex can bind to the promoter of
HD-ZIP transcription factor GL2 (GLABRA2), which can activate the expression of GL2 and
induce trichome formation. GL2 is directly involved in regulating the growth and devel-
opment of trichomes [15–18]. The transcription factors GIS (glabrous inflorescence stems),
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GIS2, GIS3, ZFP5 (zinc-finger protein 5), ZFP6 and ZFP8 encode C2H2 type zinc-finger pro-
teins and control trichome development by functioning upstream of the trichome-formation
complex MBW in Arabidopsis [19–24]. The functions of GIS and its subfamily members are
partially redundant and complementary. In addition, various studies have reported the
involvement of phytohormones in trichome formation via using their biosynthesis and
signaling mutants [24–29]. Gibberellins (GA), as the most widely studied phytohormone,
regulate the expression level of the GIS family and trichome-formation-complex genes via
forming a gibberellin-responsive regulatory network to control trichome development in
Arabidopsis [20,22,24].

TOE1 (TARGET OF EARLY ACTIVATION TAGGED 1) transcription factor belongs
to the evolutionarily conservative AP2/ERF gene family [30–33]. The C-terminal of its
amino acid sequence contains the conserved AP2 domain EAR motif, which can identify
specific DNA cis-elements [34–36]. Previous studies have shown that TOE1 transcripts
are targeted and degraded by miR172, and TOE1 is involved in a variety of plant growth
and development processes, including the transformation of growth-stage and stress re-
sponses [32,33,35,37,38]. Previous studies have found that TOE1/TOE2 are controlled by
the miR156-SPL regulation module of developmental timing and influence flowering time
in Arabidopsis [32,33]. Recent results have shown that TOE1 may regulate transcriptional
repression of GL1 through histone deacetylation and influence trichome production on
the abaxial (lower) surface of the rosette leaf in Arabidopsis [30]. However, the regulation
pathway of abaxial trichome is different from that of the adaxial and main-stem inflores-
cence trichome [14,30,39]. Consequently, whether TOE1/TOE2 are involved in Arabidopsis
trichome formation of the adaxial side and main-stem inflorescence is unclear. The pur-
pose of this study was to investigate the function of TOE1/TOE2 in controlling trichome
initiation in Arabidopsis thaliana. Our results showed that TOE1/TOE2 could interact with
GIS gene family proteins and further regulate the expression of GL1 and GL3 to control the
growth and development of the main-stem inflorescence trichome in Arabidopsis. These
results will provide significant information on the function of TOE1/TOE2 in regulating
trichome initiation in Arabidopsis.

2. Results
2.1. TOE1/TOE2 Are Involved in Main-Stem Inflorescence Trichome Initiation in Arabidopsis

In order to explore the role of TOE1/TOE2 in Arabidopsis trichome, Arabidopsis wild
type, 35S:miR172b and 35S:TOE1 transgenic lines, toe1, toe2 and toe1toe2 mutants were used
for this study. 35S:TOE1 is an overexpression transgenic line of TOE1, while toe1, toe2
and toe1toe2 are T-DNA insertion mutants. 35S:miR172b is an overexpression transgenic
line of miR172b which targets and degrades the mRNA transcripts of TOE1 and TOE2.
Our phenotypic observation results showed that the trichome production of sepals in
the main-stem inflorescence of 35S:TOE1 was obviously higher than that of the wild type
(Figure 1) and the trichome production of sepals in the main-stem inflorescence of
35S:miR172b, toe1, toe2 and toe1toe2 was obviously lower than that of wild type. More-
over, toe1toe2 had fewer trichomes than toe1 and toe2. In addition, the defect phenotype of
35S:miR172b in the inflorescence trichome is most likely due to the downregulation of TOE1
which is targeted by miR172b. To further verify these results, the numbers of Arabidopsis tri-
chomes in the wild type and different lines were statistically analyzed. The results showed
that 35S:TOE1 transgenic lines exhibited a much higher number of trichomes on the sepals,
the second branch, the main stem and the cauline leaf than WT plants in the main-stem
inflorescence. However, 35S:miR172b, toe1, toe2 and toe1toe2 showed opposite phenotypes
(Figure 2). These results are consistent with those shown in Figure 1. Collectively, these
results suggested that miR172 and TOE1/TOE2 regulate the development of the trichome
in the main-stem inflorescence of Arabidopsis.
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Figure 1. Phenotypes of main inflorescence stems of the Arabidopsis thaliana. Main inflorescence 
stems of the Arabidopsis thaliana WT, 35S:miR172b and 35S:TOE1 above, main inflorescence stems of 
the Arabidopsis thaliana toe1, toe2 and toe1toe2 below. Main-stem inflorescence analyzed when the 
first flower opens. Bars = 0.2 cm. 

 
Figure 2. Arabidopsis trichomes in different lines. Trichome numbers on the sepals (A), the second 
cauline leaves (B), the second branches (C) and the main stems (D). Trichome number was the av-
erage number of counting at least 16 plants. Error bars indicate standard error. **, p < 0.01. 

2.2. TOE1/TOE2 Act Upstream of GL1 and GL3 

Figure 1. Phenotypes of main inflorescence stems of the Arabidopsis thaliana. Main inflorescence stems
of the Arabidopsis thaliana WT, 35S:miR172b and 35S:TOE1 above, main inflorescence stems of the
Arabidopsis thaliana toe1, toe2 and toe1toe2 below. Main-stem inflorescence analyzed when the first
flower opens. Bars = 0.2 cm.
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Figure 2. Arabidopsis trichomes in different lines. Trichome numbers on the sepals (A), the second
cauline leaves (B), the second branches (C) and the main stems (D). Trichome number was the average
number of counting at least 16 plants. Error bars indicate standard error. **, p < 0.01.
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2.2. TOE1/TOE2 Act Upstream of GL1 and GL3

The formation and development of trichomes is mainly regulated by trichome-formation
complex MBW and zinc-finger protein transcription factors [3,5] In order to find the genetic
position of TOE1/TOE2 in the trichome initiation pathway, we examined the relative expression
level of TTG1/GL1/GL3 in WT, 35S:TOE1, toe1, toe2 and 35S:miR172b transgenic lines. The results
showed that the expression levels of GL1 and GL3 in the lines of 35S:TOE1 was significantly
higher as compared to the wild type. In addition, the expression levels of GL1 and GL3 in
the lines of toe1, toe2 and 35S:miR172b was significantly lower as compared to the wild type
(Figure 3). These results clearly showed that TOE1/TOE2 acting on the upstream of GL3 and
GL1 leads to positive regulation of the expression of GL3 and GL1, which promotes trichome
formation and development in Arabidopsis.
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medium for 2 d. Twelve uniform single colonies were selected as replicates and trans-
ferred to SD/-Trp/-Leu/-His/-Ade medium. The normal single colony which grows on SD/-
Trp/-Leu medium indicated that the two proteins directly interact. As shown in Figure 4, 
the single yeast colony co-transformed by GIS/GIS2/ZFP8-BD and TOE1/TOE2-AD could 
grow normally on the SD/-Trp/-Leu/-His/-Ade medium. Therefore, yeast two-hybrid as-
says confirmed the protein–protein interaction between TOE1/TOE2 and GIS. 

Figure 3. The expression on main stem of GL1, GL3 and TTG1 in the WT, 35S:TOE1, toe1, toe2
and 35S:miR172b. Error bars represent SE. Student’s t-test was calculated at the probability of
either 5% (*, p < 0.05) or 1% (**, p < 0.01).

2.3. TOE1/TOE2 Interact with GIS

Previous research has proved that GIS family genes act on the upstream of trichome
initiation complex TTG1/GL1/MYB23/GL3/EGL3 in Arabidopsis and participate in the reg-
ulation of trichome development [19–24]. In this study, the results showed that TOE1/TOE2
positively regulate the expression level of GL3 and GL1 and promote trichome development
by functioning upstream of GL3 and GL1. Due to both TOE1/TOE2 and GIS family genes
acting upstream of GL3 and GL1, we explored whether TOE1/TOE2 and GIS/GIS2/ZFP8
could physically interact to regulate the formation of trichome synergistically. For confir-
mation of this hypothesis, we performed the yeast two-hybrid experiment. The constructed
vectors TOE1/TOE2-AD (pGADT7) and GIS/GIS2/ZFP8-BD (pGBKT7) were co-transformed
into yeast AH109 strain and cultured on SD/-Trp/-Leu medium for 2 d. Twelve uniform
single colonies were selected as replicates and transferred to SD/-Trp/-Leu/-His/-Ade
medium. The normal single colony which grows on SD/-Trp/-Leu medium indicated
that the two proteins directly interact. As shown in Figure 4, the single yeast colony
co-transformed by GIS/GIS2/ZFP8-BD and TOE1/TOE2-AD could grow normally on the
SD/-Trp/-Leu/-His/-Ade medium. Therefore, yeast two-hybrid assays confirmed the
protein–protein interaction between TOE1/TOE2 and GIS.
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tetrahydric medium (SD/-Trp/-Leu/-His/-Ade). AD-T+BK-53 is the positive control and AD-T+BK-
Lam is the negative control.

To further verify the interaction between TOE1/TOE2 and GIS/GIS2/ZFP8 protein, the
constructs of TOE1/TOE2-cYFP and GIS/GIS2/ZFP8-nYFP were generated and transformed
into Agrobacterium GV3101 for the bimolecular fluorescent complementation (BiFC) assay.
By using the transient expression system of tobacco epidermal cells, the two Agrobac-
terium bacterial solutions of TOE1/TOE2-cYFP and GIS/GIS2/ZFP8-nYFP were mixed and
injected into the tobacco epidermal cells. The YFP (yellow fluorescent protein) fluores-
cence was examined in the nuclei of tobacco epidermal cells when TOE1/TOE2-cYFP and
GIS/GIS2/ZFP8-nYFP were co-expressed. The results showed that TOE1/TOE2-cYFP and
GIS/GIS2/ZFP8-nYFP had fluorescence in the nucleus of tobacco epidermal cells (Figure 5).
In contrast, the negative control did not show any YFP fluorescence signal. These YFP
signals clearly verified the yeast two-hybrid results and further confirmed the interaction
of TOE1/TOE2 with GIS/GIS2/ZFP8.
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2.4. TOE1 Regulates Trichome Initiation through GA Signaling Pathway

In Arabidopsis, GA plays a key role in trichome initiation by controlling the ex-
pressions of GIS family genes which function upstream of the MYB/bHLH/WD-repeat
complex [14,40,41]. Our results indicated that TOE1/TOE2 interact with GIS/GIS2/ZFP8
function acting on the upstream of GL3 and GL1. However, whether TOE1 is involved
in the GA signaling pathway to regulate trichomes initiation is not yet explored. There-
fore, for the confirmation of these pathways, we checked the expression level of TOE1 on
main stems treated with different concentrations of GA and their corresponding negative
controls. The results showed that the expression of TOE1 was significantly upregulated
after GA3 treatment (Figure 6A). Moreover, the expression of TOE1 was decreased signifi-
cantly in the ga1-3 and gai mutants as compared to WT (Figure 6B). For further clarification
of these results, we used the exogenous GA hormone treatment approach. Twenty-day-
old seedlings of WT, toe1, toe2 and toe1toe2 were sprayed with different concentrations
of GA for the trichome phenotype observation experiment. The results showed that
there was an increasing tendency of trichome production with the increasing concentra-
tion of GA in wild-type plants (Figure 6C). On the contrary, toe1, toe2 and toe1toe2 were
insensitive to GA application (Figure 6B). These results indicated that TOE1/TOE2 are
required for GA signaling to regulate trichome initiation in the main-stem inflorescence
in Arabidopsis thaliana.
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3. Discussion

Trichome is regulated by a variety of genetic factors, including R2R3 MYB transcrip-
tion factors, bHLH transcription factors, WD40 repeat proteins, HD-ZIP transcription
factors, single repeat MYBs, C2H2 zinc-finger protein transcription factors, microRNA
and ubiquitin/26S protease [3,5,14]. Previous research has found that miR156 directly
targets SPL (squamosa promoter-binding protein-like), affects the mRNA level of SPLs and
regulates the growth and development of trichomes in Arabidopsis [42]. In addition, SPL
can promote the expression of miR172, while miR172 directly targets AP2-like transcription
factors [31,33]. It has been reported that the miR156/SPL/miRNA172/AP2 regulatory
model is involved in a variety of growth and development processes, including plant aging,
flowering time, tuber formation, fruit growth and nodulation [32,33,35,37,38]. However,
it is unclear whether miRNA172 and AP2-like transcription factors are involved in the
regulation of trichome development in Arabidopsis. TOE1 which encodes a transcription
factor belonging to the evolutionarily conserved AP2/ethylene responsive factor (ERF)
plant family, plays a key role in flowering time, vegetative phase changes and stress re-
sponse [32,33,35,37,38]. TOE1 physically interacting with KAN1, binds to the downstream
of GL1 and represses abaxial trichome initiation in Arabidopsis [30]. It is worth mentioning
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that the regulation pathway of adaxial trichomes is different from that of abaxial trichomes
based on their presence and utility in Arabidopsis. Arabidopsis adaxial trichomes are mainly
regulated by trichome activator complex MYB-bHLH-WD40 (MBW) [14,40,41]. In this
study, we found that TOE1/TOE2 positively regulate the development of trichomes in the
main-stem inflorescence, while miR172 has the opposite function (Figures 1 and 2). Further
experimental results showed that TOE1/TOE2 act upstream of GL3 and GL1 and positively
regulate the expression of GL3 and GL1 (Figure 3). These results indicate that miR172-
TOE1/TOE2 are involved in the main-stem inflorescence trichome initiation via regulating
the expression of GL3 and GL1 in Arabidopsis. Similarly, C2H2 zinc-finger transcription
factor GIS and its sub-family genes regulate trichome initiation through acting upstream of
MBW trichome initiation complex in Arabidopsis [14,40,41]. However, whether there is an
interaction between miR172-TOE1/TOE2 and GIS family genes in trichome development
regulation is still unknown. Our results indicate that TOE1/TOE2 physically interact with
GIS, GIS2 and ZFP8, suggesting a novel mechanism for regulation of TOE1/TOE2-GIS
upstream of MBW in trichome development regulation (Figures 4 and 5).

GAs plays a crucial role in various plant growth and developmental regulatory path-
way, such as floral induction, juvenile-to-adult transition, leaf expansion, hypocotyl and
stem elongation and trichome initiation [14,40,41]. In Arabidopsis, the involvement of GA
pathways in regulating trichome initiation is mainly by using pharmacological approach
and GA-related gene mutants. External GA application promotes trichome initiation in the
main-stem inflorescence in Arabidopsis. GA regulates trichome initiation accompanied by
controlling key genes of trichome formation [1,5,11,12]. Previously, it has been reported that
GA biosynthesis mutant ga1-3 showed glabrous and stimulates earlier trichome initiation by
GA application [41,43]. The GA-insensitive gai mutants is deficient in trichome production
on stem inflorescence [41]. Significant low accumulation level of GIS family genes and GL1
of inflorescence organs in ga1-3 and gai mutants compared to wild-type plants [21–23,41,44].
In addition, the analyses of molecular, genetic and phenotype indicated that GIS family
genes function upstream of trichome initiation complex and influence trichome initiation
through GA signaling pathway in Arabidopsis [21–23,41,44]. However, miR156-targeted SPL
regulating trichome development is independent of the GA-GIS pathway in Arabidopsis [45].
Our phenotype and genes expression data suggested that TOE1/TOE2 are required for GA
signaling to regulate trichome initiation in the main-stem inflorescence (Figure 6).

In addition, the same genetic factor may participate in a variety of growth and de-
velopment regulatory pathway, and different plant growth and development processes
also have interaction with each other. It is reported that flowering regulation and trichome
formation share some phytohormones and transcription factors [14,39]. Previous study
demonstrated that miR172-TOE1/TOE2 are involved in the plant phase transition and
flowering time regulation [33]. Our results demonstrated that miR172-TOE1/TOE2 act
upstream of MBW trichome-formation complex, interact with GIS, GIS2 and ZFP8 and reg-
ulate trichome initiation though GA signaling in Arabidopsis. These findings will increase
our understanding of how flowering regulation and trichome initiation are intimately
connected in plants. Further multifaceted biology approaches are expected to elucidate the
molecular mechanism of the interaction between TOE1/TOE2 and GIS/GIS2/ZFP8 and
the crosstalk between flowering regulation and trichome initiation in Arabidopsis.

4. Materials and Methods
4.1. Plant Materials and Treatments

All the transgenic lines and their corresponding wild-type seeds were surface-sterilized
with chlorine gas for 4–5 h and then soaked in sterile water. The mutant lines toe1
(At2g28550, Salk_069677) and toe2 (At5g60120, Salk_065370) were obtained from the Ara-
bidopsis Biological Resource Center (ABRC) [33]. In addition, the ga1-3 (At2g01570, CS3104)
and gai (At1g14920, CS63) mutants were obtained from the Nottingham Arabidopsis Stock
Centre (NASC) [41]. Following with 4 ◦C treatment in the dark for 3–7 d, sterilized seeds
were grown on Murashige and Skoog medium, then placed in a plant growth chamber
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under 16 h light at 22 ◦C and 8 h dark at 18 ◦C cycle. After 7–8 d, well-grown seedlings
were potted in soil pots to continue growth [22,44,46,47].

4.2. RNA Extraction and Quantitative Real-Time PCR (qPCR)

Total RNA was extracted with Trizol reagent, then reverse-transcribed into cDNA
strand by the M-MLV reverse transcriptase following the manufacturer’s protocol (Takara).
Quantitative real-time PCR was carried out using a CFX96TM Real-time Detection System
according to SYBR Premix Ex TaqII (TaKaRa). The actin gene was used as a reference
gene. Relative expression level of genes was calculated by the 2−∆∆Ct formula [48,49].
Quantitative real-time PCR experiments were performed at least twice on three biological
triplicates with similar results [50,51].

4.3. Gene Cloning and Vector Construction

The full-length CDS of TOE1, TOE2, GIS, GIS2 and ZFP8 were amplified by PCR
using KOD FX (TOYOBO) and inserted into the NotI and SalI sites of the Gateway entry
vector pENTR-1A vector (Invitrogen). Then, the ends of the insert from reconstructed
pENTR-1A vectors were sequenced and subsequently recombined into the corresponding
destination vector [52,53]. For the yeast two-hybridization experiment, the destination
vectors pGBKT7 and pGADT7 were used for creating the constructs of TOE1-AD, TOE2-AD,
GIS-BD, GIS2-BD and ZFP8-BD. P2YN and P2YC were employed to generate the constructs
of TOE1-cYFP, TOE2-cYFP, GIS-nYFP, GIS2-nYFP and ZFP8-nYFP for the bimolecular
fluorescent complementation analysis experiment. Escherichia coli DH5α was used for
preserving the reconstructed vector. Yeast Strains AH109 and Agrobacterium tumefaciens
strain GV3101 were used for yeast two-hybridization and BiFC analysis, respectively.

4.4. Trichome Production Analysis

Trichomes on the sepals, main stems, branches and leaves at the similar positions
were selected and measured in the same developmental stage. All sepals from the stem
inflorescence were evaluated for counting trichomes. Main-stem trichome density was
evaluated by counting trichomes on 2 cm of main stem length, 1.5 cm from the base of the
main stem. Trichome number on branches was monitored by counting all trichomes on
the second branches per plant. Total leaf trichome production on the second cauline leaves
was measured for leaf trichome-number counting. For each of the treatment×genotype
combinations, a minimum 16 plants were used for the statistical analysis of trichome
production [22,23,44].

4.5. Yeast Two-Hybridization Assay

The reconstructed vectors pGBKT7 and pGADT7 were co-transformed into yeast
strain AH109 following yeast strain AH109 competence transformation methods. pGADT7-
RecT+pGBKT7-Lam and pGADT7-RecT+pGBKT7-53 were used as a negative control (CK)
and a positive control (CK+), respectively. The transformants were selected on synthetic
dropout (SD) medium lacking leucine and tryptophan (-Leu and -Trp) in the dark at 30 ◦C
for 48 h. The colonies on the positive and negative controls were then screened for growth
on SD medium lacking adenine, histidine, leucine and tryptophan (–Ade, -His, -Leu and
-Trp) at 30 ◦C in the dark [8,54].

4.6. Bimolecular Fluorescent Complementation (BiFC) Assay

All P2YN and P2YC constructed vectors were transformed into Agrobacterium tume-
faciens strain GV3101 which was used for the infiltration of Nicotiana benthamiana leaves.
Different combinations of constructs were mixed 1:1 and co-transformed into leaves of
Nicotiana benthamiana (Nicotiana benthamiana plant grew for 4–6 weeks) and incubated in the
dark at 23 ◦C for 24–72 h. Fluorescence in the lower epidermal cells of Nicotiana benthamiana
leaves was examined and imaged using a fluorescence microscope (Nikon) [55–57].
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4.7. GA Treatment

Plant hormone GA3 (Sigma) was used in external GA treatment experiments, as
previously described. For gene expression analysis with GA treatment, Arabidopsis plants
were sprayed with different concentrations (10 µM and 100 µM) of GA and negative control
when the first five to six leaves had emerged. After 4 h treatment, a minimum of eight plants
were harvested for RNA extraction. Twenty-day-old plants were sprayed twice a week with
10 µM GA3, 100 µM GA3 or their corresponding negative control to observe the trichome
phenotype with GA treatment. The trichomes were then harvested for counting analysis
when young inflorescence shoots of plants had come into the mature period [24,58].

4.8. Statistical Analysis

All data were tested by means of ANOVA for significance by using IBM SPSS Statis-
tics. The significant difference between means was analyzed using Student’s t-test at the
probability with 5% (*, p < 0.05 with significant level) or 1% (**, p < 0.01 with significant
level), as previously described [20,23,24,46,58].
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