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Abstract: Multicomponent reactions (MCRs) have emerged as a powerful strategy in synthetic
organic chemistry due to their widespread applications in drug discovery and development. MCRs
are flexible transformations in which three or more substrates react to form structurally complex
products with high atomic efficiency. They are being increasingly appreciated as a highly exploratory
and evolutionary tool by the medicinal chemistry community, opening the door to more sustainable,
cost-effective and rapid synthesis of biologically active molecules. In recent years, MCR-based
synthetic strategies have found extensive application in the field of drug discovery, and several
anticancer drugs have been synthesized through MCRs. In this review, we present an overview of
representative and recent literature examples documenting different approaches and applications of
MCRs in the development of new anticancer drugs.

Keywords: multicomponent reactions; anticancer drugs; drug discovery; cancer

1. Introduction: Multicomponent Reactions

Multicomponent reactions (MCRs) are one-pot processes in which at least three
reagents are combined to assemble a novel complex product [1] with remarkable atom
economy [2–5], in good to excellent yields, while saving resources such as time and en-
ergy [6,7]. MCRs provide a quicker and more efficient way to prepare chemical libraries
than the methods used in traditional organic synthesis (Figure 1), offering great possibilities
for molecular diversity and complexity in fewer steps and less time.

MCRs are also gaining great interest because they are generally eco-friendly and
sustainable transformations [8]. Indeed, MCRs have strategic advantages over linear
synthesis, being particularly appreciated by its superior atom and bond economies, its cost-
and time-effective balance, and its highly exploratory nature.

Classical multicomponent reactions are well known by their proper name and scope:
Ugi [4,9], Passerini [6,10], van Leusen [11,12], Strecker [13], Orru [14], Mannich [6,15],
Biginelli [6,16,17] and Hantzsch syntheses [6,18] need to be mentioned. However, the
discovery of new multicomponent reactions is an active research field [19–27], with novel
exciting MCRs being discovered and incorporated to the synthetic armamentarium every
year. Among these MCRs with transition metal catalysis [28–34], radical process [7,21,35,36]
and organo-catalysis [37–41] should also be mentioned.

Overall, MCRs can be subcategorized into two main classes, isocyanide-based multi-
component reactions (IMCRs) and non-isocyanide-based multicomponent reactions
(NIMCRs).
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Figure 1. Traditional linear synthesis (3 steps) vs. multicomponent assembly (1 step). 
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IMCRs are generally more versatile and often show high levels of regio- and chemo-
selectivity, while the development of stereoselective IMCRs remains challenging. Iso-
cyanides, the key component of IMCRs, have unique reactivity profiles as they can exhibit
both nucleophilic and electrophilic behavior in organic reactions. Thus, isocyanides are
a popular type of reactant for the progress of innovative MCRs in the rapid synthesis of
valuable compounds [14,42–46]. Among them, the classical Passerini and Ugi reactions
must be highlighted. The Passerini reaction (P-3CR) is a well-known IMCR involving
a reaction between carboxylic acids and aldehydes or ketones and isocyanides to afford
α-acyl carboxamides in one step [47,48] (Figure 2). The second most important IMCR is
the Ugi reaction (U-3CR). This elegant four-component synthesis is a reaction between
isocyanides, carboxylic acids, ketones or aldehydes and primary amines to afford dipeptide-
like structures [49,50] (Figure 2).
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The mechanism of the Ugi reaction involves the reaction of a Schiff base reacting with
a nucleophile and an isocyanide, followed by a Mumm rearrangement. In the related
Passerini reaction, lacking the amine, the isocyanide reacts directly with the carbonyl group,
but the other aspects of the reaction are the same. This reaction can take place concurrently
with the Ugi reaction, acting as a source of impurities. These reaction mechanisms are
shown in Scheme 1.
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Scheme 1. Mechanism of Ugi and Passerini reactions.

While both transformations are functional and mechanistically linked, the Ugi re-
action is much more versatile than the Passerini reaction. The differences are not only
based on the library size or feasibility, but mostly derive from the scaffold diversity. Both
the Passerini and Ugi reactions lead to interesting peptidomimetic compounds that are
potentially bioactive. Moreover, both reactions offer cost-effective and rapid access to
generating large molecular libraries. The diversification of the starting compounds and
the subsequent cyclization approaches provide a plethora of heterocyclic cores that have
unequivocally contributed to the popularization of MCRs within the medicinal chemistry
community. Other important IMCRs, depicted in Figure 3, are the Groebke–Blackburn–
Bienayme reaction (GBB-3CR), Van Leusen reaction (VL-3CR), and Orru reaction (O-3CR).
All of these reactions derive from further modifications of the Ugi reaction. The Groebke–
Blackburn–Bienayme reaction involves the in situ formation of iminium species, followed
by a non-concerted cycloaddition with an isocyanide to give the corresponding fused imida-
zoles. GBB-3CR is used for the one-pot synthesis of fused imidazole, bridgehead nitrogen
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heterocyclic compounds formaldehyde, isocyanide and amidine building blocks [51,52].
The Van Leusen-MCR (VL-3CR) is very useful for the synthesis of poly-substituted imida-
zoles in one pot from aryl substituted tosylmethylisocyanide (TosMIC) reagents and imines
generated in situ [53]. Orru-3CR is the three-component condensation between an amine,
an aldehyde and an α-acidic isocyanide, which efficiently provides highly substituted
2-imidazolines in a one-pot reaction [54–56].
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Even though the classical IMCRs are not suited for generating heterocyclic compounds,
new variations of the Passerini three-component reaction [48,57], Ugi three- and four-
component reaction (U-4CR) [58,59], van Leusen reaction [60] and Groebke–Blackburn–
Bienaymé reaction (GBBR) [61–64] have been explored and, indeed, IMCRs are leading
today’s MCR chemistry [65]. For further information on isocyanide chemistry, the reader is
directed toward further comprehensive review articles from Prof. Heravi’s group [66–70],
Prof. Dömling’s group [71–82] and other extensive publications [83–95].

Despite its fascinating characteristics, there are several drawbacks to the use of iso-
cyanides in organic synthesis: (1) it is harmful for the environment; (2) lability; and (3) sus-
pected toxicity [96]. Due to these shortcomings, a practical solution was required for their
wider use and further progress in isocyanide chemistry. Recently, research breakthroughs
have been achieved in this direction under the title “in situ generated”, “isocyanide-less” or
“odourless” isocyanide chemistry. It involves the formation of isocyanides using precursors
and a subsequent reaction with other building blocks in the same pot to avoid the storage,
separation and purification of isocyanides [97–100].

NIMCRs usually involve activated carbonyl compounds. An earlier example of such
reactions is the Hantzsch reaction [101]. The reaction is performed with two equivalents
of β-ketoesters/1,3 diketones, aldehydes and ammonia to afford symmetric dihydropy-
ridines. Another non-isocyanide-based multicomponent reaction is the Biginelli reaction
(BG-3CR) [102], which involves the synthesis of 3,4-dihydropyrimidin-2(1H)-ones from
aldehydes, 1,3-dinucleophiles and β-ketoesters (Figure 4). In contrast to the previous
reaction discussed, this reaction generates asymmetric products, obtaining at least two
enantiomers per synthesis. In addition, depending on the 1,3-dinucleophile, more than
one regioisomer can be generated. This feature allows the generation of large libraries of
compounds in a short lap of time.
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Among NIMCRs, those involving cyanoacetic acid derivatives are extremely versatile,
capable of affording chemically diverse scaffolds. NIMCRs usually involve Knoevenagel-
type condensations of the cyanoacetic acid derivative with an aldehyde or ketone, followed
by a Michael attack of a nucleophile and subsequent ring closure via a second nucle-
ophile attack toward a nitrile. An example is the Gewald reaction (G-3CR) (Figure 4 and
Scheme 2), which has recently gained ground with the usage of cyano acetamides. The
G-3CR of cyanoacetic acid derivatives, active methylene carbonyls and elemental sulphur
is a popular MCR often used in drug discovery yielding 2-amino-3-carbonyl thiophenes.
Additionally, Gewald products can be easily transformed into more complex scaffolds by
secondary transformations.
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The Pauson–Khand reaction (PK-3CR) is also a versatile NIMCR, enabling the rapid
assembly of α,β-cyclopentenones through [2 + 2 + 1] the cycloaddition of an alkyne, an
alkene and carbon monoxide. For the generation of a diverse scaffold, other NIMCRs imple-
mented are, namely, Pavarov-3CR, Dobener-3CR, Betti-3CR, and Petasis-3CR (Figure 4). For
further information on NIMCRs chemistry, the reader is directed toward comprehensive
review articles and other very interesting recent publications [89,90,92,93,103–113].

2. Evolution of Cancer Treatment

Cancer is a process of unregulated cell growth that determines the formation of a
tumor that grows abnormally (usually for years), determining first a local disease that can
metastasize, thus disabling other organs or vital functions. Cancer is considered a multifac-
torial disease due to the interplay between numerous determinant agents, such as genetic
mutations, pollution, foods contaminants, viruses, chemicals and ionizing radiation [114].

Cancer is one of the leading causes of death worldwide [115] and accounts for 8–10 mil-
lion deaths each year [116]. It has been estimated that, by 2025, there will be approximately
20 million new cancer patients worldwide per year [117].

Cancer treatment has been evolving since the beginning of the 20th century. The first
and most obvious solution to treat a solid tumor was surgery; however, the therapy has
evolved into less invasive, non-surgical treatments focusing on the destruction of tumors
by radio and chemotherapy (Figure 5).
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Although relatively effective, they are not highly selective and might damage healthy
tissues. As a result, targeted therapies have emerged, with new therapeutic targets of a very
diverse nature [118]. This, coupled with the diversity of the known cancer types, makes the
rapid and effective search for anticancer agents essential.

3. Anticancer Compounds Obtained from MCRs Approaches

In this chapter, representative and recent (from 2014) examples of the exploitation of
MCRs for the discovery and optimization of antineoplastic drugs are selected. The selected
case studies are classified according to the MCR employed in the publication.

3.1. Passerini Reaction

In 2021, Griglio et al. [119] synthesized a series of imidazothiazole derivatives based
on a compound 14 (IC50 = 77 nM) previously synthesized by Tojo et al. [120], employing
the Passerini multicomponent reactions (Scheme 3) and Ugi multicomponent reaction
(illustrated in the next paragraph), and studied their inhibitory activities against human
Indoleamine 2,3-dioxygenase 1 (rhIDO1). The ability of the selected compounds to inhibit
rhIDO1 enzyme activity was determined in an in vitro cell-based assay in order to evaluate
their inhibitory effect, together with their ability to permeate the cell membrane. The
human melanoma A375 cell line was selected for the cellular assay because it does not
express either the rhIDO1 gene or protein under normal culture conditions.

Int. J. Mol. Sci. 2023, 24, x FOR PEER REVIEW 8 of 30 
 

 

Cancer treatment has been evolving since the beginning of the 20th century. The first 

and most obvious solution to treat a solid tumor was surgery; however, the therapy has 

evolved into less invasive, non-surgical treatments focusing on the destruction of tumors 

by radio and chemotherapy (Figure 5).  

Although relatively effective, they are not highly selective and might damage healthy 

tissues. As a result, targeted therapies have emerged, with new therapeutic targets of a 

very diverse nature [118]. This, coupled with the diversity of the known cancer types, 

makes the rapid and effective search for anticancer agents essential. 

3. Anticancer Compounds Obtained from MCRs Approaches 

In this chapter, representative and recent (from 2014) examples of the exploitation of 

MCRs for the discovery and optimization of antineoplastic drugs are selected. The se-

lected case studies are classified according to the MCR employed in the publication. 

3.1. Passerini Reaction 

In 2021, Griglio et al. [119] synthesized a series of imidazothiazole derivatives based 

on a compound 14 (IC50 = 77 nM) previously synthesized by Tojo et al. [120], employing 

the Passerini multicomponent reactions (Scheme 3) and Ugi multicomponent reaction (il-

lustrated in the next paragraph), and studied their inhibitory activities against human In-

doleamine 2,3-dioxygenase 1 (rhIDO1). The ability of the selected compounds to inhibit 

rhIDO1 enzyme activity was determined in an in vitro cell-based assay in order to evalu-

ate their inhibitory effect, together with their ability to permeate the cell membrane. The 

human melanoma A375 cell line was selected for the cellular assay because it does not 

express either the rhIDO1 gene or protein under normal culture conditions. 

 

Scheme 3. Three-Component Passerini Synthesis of α-acyloxyamides. 

Acyloxyamides, in general, showed a better inhibitory activity compared to the cor-

responding a-acylaminoamides (illustrated in the next paragraph). Electron-withdrawing 

groups (R1), such as nitro and chlorine, gave rise, at any position, to a loss of activity. The 

cyano group or hydroxyl groups, when present at position 3, did not produce a remarka-

ble effect on IDO1 inhibition, whereas, when displayed at position 4, they produced a 

significant increase in activity. Some of these compounds displayed IC50 values below 1.0 

μM against the rhIDO1 enzyme; compounds 14 a, 14 b and 14 c displayed enzymatic IC50 

values of 0.58 μM, 0.24 μM and 0.20 μM, respectively. This work describes the multicom-

ponent approach as a straightforward tool to rapidly access IDO1 inhibitors, providing a 

new direction for their future design and development. 

In 2019, Ayoup et al. [121] reported a new series of Passerini products, which were 

synthesized and evaluated as potent caspase-dependent apoptotic inducers. A series of α-

acyloxy carboxamides was prepared from p-nitrophenyl isocyanide, cyclohexanone and 

various carboxylic acids, and the principal amide-based scaffold was decorated by diverse 

substituents in good yield (Scheme 4). All of the synthesized compounds were screened 

for cytotoxicity against normal human fibroblasts and for their potential anticancer 

Scheme 3. Three-Component Passerini Synthesis of α-acyloxyamides.

Acyloxyamides, in general, showed a better inhibitory activity compared to the corre-
sponding a-acylaminoamides (illustrated in the next paragraph). Electron-withdrawing
groups (R1), such as nitro and chlorine, gave rise, at any position, to a loss of activity. The
cyano group or hydroxyl groups, when present at position 3, did not produce a remark-
able effect on IDO1 inhibition, whereas, when displayed at position 4, they produced a
significant increase in activity. Some of these compounds displayed IC50 values below
1.0 µM against the rhIDO1 enzyme; compounds 14 a, 14 b and 14 c displayed enzymatic
IC50 values of 0.58 µM, 0.24 µM and 0.20 µM, respectively. This work describes the multi-
component approach as a straightforward tool to rapidly access IDO1 inhibitors, providing
a new direction for their future design and development.

In 2019, Ayoup et al. [121] reported a new series of Passerini products, which were
synthesized and evaluated as potent caspase-dependent apoptotic inducers. A series of
α-acyloxy carboxamides was prepared from p-nitrophenyl isocyanide, cyclohexanone and
various carboxylic acids, and the principal amide-based scaffold was decorated by diverse
substituents in good yield (Scheme 4). All of the synthesized compounds were screened for
cytotoxicity against normal human fibroblasts and for their potential anticancer activities
against three human cancer cell lines: MCF-7 (breast), NFS-60 (myeloid leukemia), and
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HepG-2 (liver) utilizing 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-2H-tetrazolium bromide
(MTT) assay.

Int. J. Mol. Sci. 2023, 24, x FOR PEER REVIEW 9 of 30 
 

 

activities against three human cancer cell lines: MCF-7 (breast), NFS-60 (myeloid leuke-

mia), and HepG-2 (liver) utilizing 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-2H-tetrazo-

lium bromide (MTT) assay. 

 

Scheme 4. Three-Component Passerini Synthesis of α-acyloxycarboxamides. 

Among the tested compounds, many have IC50 values against different cell lines that 

are better than the reference compound. Some of them also have a good value of selectiv-

ity index (SI) and, therefore, of safety. 

Compounds 15, 16 a and 16 b were more potent than doxorubicin against the MCF-

7 (IC50 = 0.0087 µM, 0.0050 µM and 0.0077 µM, respectively), NFS-60 (IC50 = 0.0077 µM, 

0.0078 µM and 0.0081 µM, respectively) and HepG-2 (IC50 = 0.0141 µM, 0.0077 µM and 

0.0141 µM, respectively) cancer cell lines; in addition, these compounds were the safest 

ones, showing the highest selectivity profiles in comparison with the other investigated 

compounds and doxorubicin against the NFS-60, MCF-7 and HepG-2 cell lines. The three 

compounds significantly induced apoptosis by caspase activation in all of the screened 

cancer cell lines utilizing flow cytometric analysis and a caspase 3/7 activation assay. Both 

compounds 15 and 16 a were more potent caspase 3/7 activators than doxorubicin, while 

16 b showed comparable results. According to the physicochemical parameters, the in 

silico results showed that compounds 15, 16 a and 16 b may be considered as drug-like 

candidates. 

Pyrazine-2-carboxylic acid (PA), due to its heteroaromatic ring, can be explored as an 

anticancer agent. In a very recent paper [122], a series of twenty novels PA derivatives 

were synthesized using the Passerini reaction. Their cytotoxic activity was evaluated 

against three different cancer cell lines, including lung (A549), breast (MCF-7) and colon 

(HT-29); cisplatin was used as a reference drug. The general synthetic strategy employed 

to synthesize the PA derivatives was based on the Passerini multicomponent reaction us-

ing isocyanide, different aldehyde derivatives and PA (Scheme 5). 

Scheme 4. Three-Component Passerini Synthesis of α-acyloxycarboxamides.

Among the tested compounds, many have IC50 values against different cell lines that
are better than the reference compound. Some of them also have a good value of selectivity
index (SI) and, therefore, of safety.

Compounds 15, 16 a and 16 b were more potent than doxorubicin against the MCF-7
(IC50 = 0.0087 µM, 0.0050 µM and 0.0077 µM, respectively), NFS-60 (IC50 = 0.0077 µM,
0.0078 µM and 0.0081 µM, respectively) and HepG-2 (IC50 = 0.0141 µM, 0.0077 µM and
0.0141 µM, respectively) cancer cell lines; in addition, these compounds were the safest
ones, showing the highest selectivity profiles in comparison with the other investigated
compounds and doxorubicin against the NFS-60, MCF-7 and HepG-2 cell lines. The three
compounds significantly induced apoptosis by caspase activation in all of the screened
cancer cell lines utilizing flow cytometric analysis and a caspase 3/7 activation assay.
Both compounds 15 and 16 a were more potent caspase 3/7 activators than doxorubicin,
while 16 b showed comparable results. According to the physicochemical parameters,
the in silico results showed that compounds 15, 16 a and 16 b may be considered as
drug-like candidates.

Pyrazine-2-carboxylic acid (PA), due to its heteroaromatic ring, can be explored as
an anticancer agent. In a very recent paper [122], a series of twenty novels PA derivatives
were synthesized using the Passerini reaction. Their cytotoxic activity was evaluated
against three different cancer cell lines, including lung (A549), breast (MCF-7) and colon
(HT-29); cisplatin was used as a reference drug. The general synthetic strategy employed to
synthesize the PA derivatives was based on the Passerini multicomponent reaction using
isocyanide, different aldehyde derivatives and PA (Scheme 5).
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Scheme 5. Three-Component Passerini Synthesis of α-acyloxyamides derived from pyra-zine-2-
carboxylic acid (PA).

Almost all of the synthesized compounds showed higher anti-proliferative activity
than PA, and resulted in a satisfying selectivity of the compounds between the cancerous cell
and the non-cancerous cell line (MRC5). In all the studied cancer cell lines, the substitution
of R with electron withdrawing groups such as halogens (Cl > Br > F) could affect the
antitumor activity of compounds. When electron donor groups, such as methoxy (OCH3),
was embedded as R, the resulting compound showed significant cytotoxic activity against
the studied cancer cell lines. Among the twenty synthesized compounds, compounds
17 a and 17 b had high efficacy in suppressing cell growth and were considerably more
potent in vitro cytotoxic activity than cisplatin and the others. 17 b has shown promising
anticancer activity, with IC50 of 6.11, 10.64 and 14.92µM against the A549, MCF-7 and HT-29
cell lines, respectively. Moreover, 17 a showed moderate cytotoxicity with IC50 of 14.09, 8.90
and 16.38µM, against the A549, MCF7-7 and HT-29 cell lines, respectively (cisplatin IC50
was 9.37, 15.72 and 89.48µM against the A549, MCF-7 and HT-29 lines, respectively). An
electrophoretic mobility shift assay revealed that at higher concentrations, compound 17 b
was able to initiate reactive oxygen species (ROS)-induced DNA cleavage in the presence
of H2O2 (1.0 mM). Furthermore, compounds 17 a and 17 b induced apoptosis in A549 cells,
and these compounds can play an essential role in the future treatment of cancer.

Natural products are often an inspiration for developing new drugs [123–126]. Moving
toward this direction, Wiemann et al. [127] directed their attention to the combination of
natural products and their derivatization by isocyanide-based multicomponent reactions
(IMCRs). As a result, a set of 3–4 CR Ugi (illustrated in the next paragraph) and 3CR
Passerini products (Scheme 6) were successfully synthesized from natural triterpenoids,
i.e., oleanolic acid (OA) and maslinic acid (MA), followed by a biological evaluation of
the novel α-acylamino carboxamides and the α-acyloxy carboxamides in colorimetric SRB
assays to determine their cytotoxicity.

Int. J. Mol. Sci. 2023, 24, x FOR PEER REVIEW 10 of 30 
 

 

 

Scheme 5. Three-Component Passerini Synthesis of α-acyloxyamides. 

Almost all of the synthesized compounds showed higher anti-proliferative activity 

than PA, and resulted in a satisfying selectivity of the compounds between the cancerous 

cell and the non-cancerous cell line (MRC5). In all the studied cancer cell lines, the substi-

tution of R with electron withdrawing groups such as halogens (Cl > Br > F) could affect 

the antitumor activity of compounds. When electron donor groups, such as methoxy 

(OCH3), was embedded as R, the resulting compound showed significant cytotoxic activ-

ity against the studied cancer cell lines. Among the twenty synthesized compounds, com-

pounds 17 a and 17 b had high efficacy in suppressing cell growth and were considerably 

more potent in vitro cytotoxic activity than cisplatin and the others. 17 b has shown prom-

ising anticancer activity, with IC50 of 6.11, 10.64 and 14.92 μM against the A549, MCF-7 

and HT-29 cell lines, respectively. Moreover, 17 a showed moderate cytotoxicity with IC50 

of 14.09, 8.90 and 16.38 μM, against the A549, MCF7-7 and HT-29 cell lines, respectively 

(cisplatin IC50 was 9.37, 15.72 and 89.48 μM against the A549, MCF-7 and HT-29 lines, re-

spectively). An electrophoretic mobility shift assay revealed that at higher concentrations, 

compound 17 b was able to initiate reactive oxygen species (ROS)-induced DNA cleavage 

in the presence of H2O2 (1.0 mM). Furthermore, compounds 17 a and 17 b induced apop-

tosis in A549 cells, and these compounds can play an essential role in the future treatment 

of cancer. 

Natural products are often an inspiration for developing new drugs [123–126]. Mov-

ing toward this direction, Wiemann et al. [127] directed their attention to the combination 

of natural products and their derivatization by isocyanide-based multicomponent reac-

tions (IMCRs). As a result, a set of 3–4 CR Ugi (illustrated in the next paragraph) and 3CR 

Passerini products (Scheme 6) were successfully synthesized from natural triterpenoids, 

i.e., oleanolic acid (OA) and maslinic acid (MA), followed by a biological evaluation of the 

novel α-acylamino carboxamides and the α-acyloxy carboxamides in colorimetric SRB as-

says to determine their cytotoxicity. 

 

Scheme 6. Passerini products from natural triterpenoids: oleanolic acid (OA) and maslinic acid 

(MA). 
Scheme 6. Passerini products from natural triterpenoids: oleanolic acid (OA) and maslinic acid (MA).



Int. J. Mol. Sci. 2023, 24, 6581 10 of 28

In comparison to U-4CR, an increased reaction rate was observed, likely due to the
increased solubility of the acid component in dichloromethane (DCM). The biological
activity of these compounds was examined in colorimetric sulforhodamine B (SRB) assays,
and the EC50 values were determined for six human tumor cell lines: 518A2 (melanoma),
A2780 (ovarian carcinoma), HT29 (colorectal carcinoma), MCF7 (breast carcinoma), A549
(lung adenocarcinoma), 8505C (thyroid carcinoma) and nonmalignant mouse fibroblasts
(NIH 3T3). The EC50 values were comparable to those measured for both the Ac-OA and Ac-
MA Ugi examined. Compounds 18 a, 18 b and 18 c showed a range of EC50 = 8.8–20.0 µM,
EC50 = 6,4–11.3 µM and EC50 = 1.0–7.3 µM, respectively. However, a marked decline
in the selectivity index was observed, thus reducing the pharmacological value of these
α-acyloxy carboxamides.

In 2019, Ingold et al. [128] focused their attention on a library of NO-donor compounds
through the Ugi Reaction (illustrated in the next paragraph) and the Passerini reaction
with optimized yields under green chemistry conditions (Scheme 7). Nitroxyl or furoxanyl
groups were incorporated into the carboxylic acid component to evaluate whether the posi-
tion of the NO-donor moiety plays a fundamental role in the biological activity compared
to the previous series and, thus, to explore the chemical space in search of new chemotypes
with improved antitumor activity. The use of green solvents, such as water or ethanol,
either at room temperature or under microwave irradiation (MW) was productive and
it was also observed that the reaction could be performed under solvent-free conditions,
using MW irradiation, ultrasound or conventional heating. The authors have selected
as our standardized conditions: neat with MW irradiation in a closed vessel for 30 min
at 60 ◦C.
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Scheme 7. Three-Component Passerini Synthesis of NO-Donor Compounds.

Compounds have also been, in some cases, Boc-deprotected to increase the functional
diversity of the library for structure–activity relationship (SAR) studies. Passerini deriva-
tives 19 a and 19 b, each containing a furoxan system as a NO-donor, are potent anticancer
agents, exhibiting GI50 values against all cells in the range 0.021–5.8 µM. Compound 19 a
was almost seven times more active than cisplatin and etoposide against breast cancer
cells HBL-100, and almost 30 times more potent than cisplatin and almost 140 times more
potent than etoposide against SW1573 cancer cells. This compound, furthermore, exhibited
lower potency against noncancerous human keratinocytes (HaCaT), indicating a selectivity
against cancerous cells. In addition, compound 19 a was able to release NO in HeLa cells,
and the antiproliferative activities declined with the increasing concentration of scavenger
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(hemoglobin), suggesting a potential role of NO release in their anticancer mechanism. Fu-
ture studies should obtain a deeper insight into their antiproliferative mechanism, evaluate
the antiproliferative activity of isolated isomers and determine their in vivo activity.

3.2. Ugi Reaction and Its Modifications

In parallel with the modifications of compound 20 (Scheme 8) through the Passerini re-
action in order to obtain α-acyloxyamides derivatives (displayed above), Griglio et al. [119]
synthesized α-acylaminoamides through the Ugi reaction. In addition, in this case, the
compounds were tested for inhibitory activities against rhIDO1. In general, this type of
derivative shows a lower inhibitory activity than the α-acyloxyamides derivatives, even
if they express values in the micromolar range. In fact, compounds 20 a–20 e, shown in
Scheme 8, displayed enzymatic IC50 value of 0.69 µM 0.45 µM, 0.81 µM, 0.63 µM and
0.73 µM, respectively (see compounds 14 a and 14 b in the previous paragraph: 0.24 µM
and 0.20 µM). The effect of different substituents on the benzyl ring was investigated.
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Scheme 8. Four-Component Ugi Synthesis of α-acylaminoamides.

The cyano group produced a complete loss of activity when introduced at positions
3 and 4. The same occurred when the hydroxyl moiety was introduced at position 2; on
the contrary, the hydroxyl group at position 3 gave rise to the most active compound of
this series (18 b), with an IC50 value of 0.45 µM. The presence of a nitro group produced
a progressive increase in the activity by moving the substituent from position 4 (20 c,
IC50 = 0.81 µM) to either position 2 (20 e, IC50 = 0.73 µM) or 3 (20 d, IC50 = 0.63 µM). The
presence of a chlorine at different positions on the benzylic ring did not produce any
improvement in the activity.

An efficient four-component Ugi synthesis of quinoline-coumarin hybrids was de-
scribed by Taheri et al. [129]. This simple access to quinoline-coumarin derivatives impli-
cated the use of coumarin-3-carboxylic acid, diverse 2-chloroquinoline-3-carbaldehydes,
aniline derivatives and aliphatic isocyanides in methanol at room temperature (Scheme 9).
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Scheme 9. Formation of diamide Ugi reaction compounds.

The cytotoxic effects of fourteen products were investigated in A2780 human ovarian
cancer cells. Several methods were also performed, including cell viability, the induction
of apoptosis, a mitochondrial membrane potential (MMP) assay, the determination of
intracellular ROS, caspase 9 and a 3 activity assay. Interestingly, compound 21 showed
excellent anticancer activity, with an IC50 value of 25 µg/mL (0.042 µM). A2780 cells
were treated with various concentrations of hybrids (0–100 µg/mL) for 24 h and the
cell viability was evaluated by a 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-2H-tetrazolium
bromide (MTT) growth inhibition assay; doxorubicin was chosen as a positive control
(IC50 = 6.1 µM). Furthermore, the synergistic effect of compound 21 on apoptosis induction
might be due to the regulation of anti-apoptotic agents, including the down-regulation of
Bcl-2 and survivin and the activation of caspase 9 and 3. Further examinations indicated
that compound 21 increased the ROS levels, reduced the MMP, and induced apoptosis in
the A2780 cells through the intrinsic mitochondrial pathway.

In 2021, Butera et al. [130] focused their attention on novel therapeutic modalities, such
as small molecules or peptides, through MCR synthesis. A small library of compounds
was synthesized using the GBB-3CR, resulting in the structure–activity relationship of
imidazo [1,2-a]pyridine-based inhibitors (Scheme 10). These inhibitors were tested for
their biological activity using various biophysical assays, giving potent candidates with
low-micromolar PD-L1 affinities.
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Scheme 10. Groebke–Blackburn–Bienaymé products of imidazo[1,2-a] pyridine-based inhibitors.

The authors found the optimal reaction conditions for the used substrates in the
presence of scandium triflate (10 mol%) as a catalyst, 2:1 DCM/MeOH as the solvent
system, a concentration of 0.3 M concerning to the amidine, and 1.7 equivalent of the
isocyanide and aldehyde components. Microwave-assisted heating for 1 h generated the
corresponding GBB products in good to excellent yields (48–86%) The products were tested
for their antiproliferative activity through various biological assays, exhibiting IC50 values
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of 16.8–1.8 µM (compound 22) at a concentration of 50 µM. These results open the door to
an interesting bioactive scaffold that could lead to a new class of PD-L1 antagonists.

Wiemann and Csuk [127], in addition to the synthesis of the α-acyloxy carboxam-
ides (illustrated in the paragraph above), also synthesized a library of 34 α-acylamino
carboxamides from natural triterpene through U-4CR (Scheme 11).
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First, they studied the U-4CR derivation of oleanolic acid: the isocyanide used was
a tert-butyl isocyanide and the amino component (R2) was varied (methyl, 2-propenyl,
3-furanyl-methyl, butyl, isopropyl, benzyl, 3-fluorobenzyl). Furthermore, different iso-
cyanide groups were also used, such as n-butyl isocyanide or i-propyl isocyanide or benzyl
isocyanide and methyl isocyanoacetate (while the amine component remained unchanged
for better comparability of the biological results).

Due to the low solubility of triterpenoic acids in polar-aprotic solvents, the reactions
were characterized by long reaction times and moderate conversions. However, the increase
in the reaction temperature and the use of MW did not result in higher efficiencies, but
the reaction time could be reduced to 2 days from 7–12 days. Secondly, they studied the
U-4CR derivation of maslinic acid. Due to their better solubility, the derivatives were
synthesized in one step directly from 2,3-di-O-acetyl-MA (Ac-MA). In addition, in this case,
the biological activity of these compounds was investigated in SRB colorimetric assays,
and the EC50 values were determined for six human tumor cell lines: 518A2 (melanoma),
A2780 (ovarian carcinoma), HT29 (colorectal carcinoma), MCF7 (breast carcinoma), A549
(lung adenocarcinoma), FaDu (hypopharyngeal carcinoma with multidrug resistance) and
nonmalignant mouse fibroblasts (NIH 3T3). All of the compounds showed moderate
to good cytotoxicity for several human tumor cell lines. In particular, compounds 23
(R1 = OAc, R2 = 2-propenyl, R3 = t-butyl) and 24 (R1 = OAc, R2 = R3 = benzyl) gave
remarkable EC50 values in the low µM range (0.3 µM and 0.4 µM, respectively, for ovarian
carcinoma cells A2780) and high tumor/non-tumor cell selectivity. Further biological
assays showed that treating A2780 cells with compounds 23 or 24 led to a non-necrotic,
controlled cell death, in part occurring through the pathway of apoptosis. In addition,
Wiemann and Csuk also highlighted how varying the substrate yielded acetylated products
and compounds holding a terminal benzylamide moiety with higher selectivity, while the
presence of ester groups initiated a loss of this selectivity.

In 2020, for the investigation of new drug-type G-quadruplex selective binders,
Pelliccia et al. [131] used the design of nucleobases as a starting point as synthons in a multi-
component reaction. Thus, a series of multifunctional imidazo[2,1-i]purine derivatives were
synthesized via a convergent GBB-3CR of amino-aza-heterocycles, benzaldehydes and iso-
cyanide, followed by an SN2 with various aminoalkyl chlorides [R2 = 4-morpholinyl(CH2)2,
pyrrolidinyl(CH2)2, Me2N(CH2)3, N-phthalamidyl(CH2)2] (Scheme 12).
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Scheme 12. Groebke-Blackburn-Bienaymé-mediated three-component synthesis of imidazo[2,1-
i]purine derivatives.

The compounds 25, 26 and 27–29 were endowed with a small molecular weight
(∼=500 Da), water solubility, easy functionalization, and a selectivity profile as G-quadruplex
binders as safe and effective anti-cancer agents, as well as being non-toxic toward non-
cancerous cells. Compounds, 27, 28 and 29, were selected as the best performing ones,
both in terms of their potency and selectivity toward BCL2 and c-MYC G4s, over the
other G4 topologies screened and a duplex model. Indeed, compound 27 exhibited se-
lective antiproliferative action (IC50 = 17 µM) toward Jurkat human T lymphoblastoid
cells, without showing significant cytotoxicity toward normal cells, such as skin-derived
cells. Furthermore, a downregulation at both the mRNA and protein levels was observed
through qPCR and Western blot analyses, in which the cells were treated with the selected
compounds. On the basis of both the herein-reported biophysical and biological data and
the poor availability in the literature of selective BCL2 G4 ligands, compound 27 represents
a promising advancement toward the pathway of the specific targeting of cancer cell lines
by means of gene promoters’ G4 binders.
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Moreover, Ingold et al. [128] also obtained α-acylaminoamides derivatives (compare
α-acyloxyamides derivatives in the paragraph above) under green conditions through the
Ugi reaction (Scheme 13).
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The optimized experimental conditions for the Passerini reaction (see respective
paragraph in chapter 3.1 Passerini Reaction) failed to deliver the Ugi adduct. For this
reason, the IMCRs were optimized and performed (under eco-friendly conditions) in EtOH
and MW irradiation (closed vessel, 30 min, 60 ◦C). The compounds were also, in some
cases, Boc-deprotected to increase the functional diversity of the library for SAR studies.
The biological activity of these compounds and their cytotoxicity against six human solid
tumor cell lines (A549 (lung), HBL-100 (breast), HeLa (cervix), SW1573 (lung), T-47D
(breast), WiDr (colon) have been studied. Compounds 30 a and 30 b exhibited notable
activities against most of the tested cell lines, as revealed in their GI50 values being between
0.24–5.8µM and 0.021–3.0 µM, respectively, against all of the tested cell lines, as well as
their sensitivity against HBL-100 and SW1573 cell lines. Compound 30 a was almost eight
times more potent than cisplatin and etoposide against the resistant cell lines, T-47D and
WiDr; moreover, it was extremely potent against alveolar cell carcinoma SW1573, being
140 times more active than cisplatin and 700 times more potent than etoposide.

Furthermore, compounds 30 a and 30 b were evaluated for their ability to release NO
in cancer cells as a first approximation to their mechanism of action. Compound 30 a was
able to release NO in the presence of HeLa cells.

In a very recent publication, Xiong et al. [132] reported the synthesis of 4-tetrazolyl-3,4-
dihydroquinazoline derivatives through a sequential Palladium-catalyzed azide-isocyanide
cross-coupling/cyclization Ugi reaction, with good yields. The Ugi-azide reactions of
various 2-azidobenzaldehydes (R1 = 4-F, 4-Cl, 4-CH3O and 5-Me), amines (R2 = Ph, 4-Cl-Ph,
4-Br-Ph, 4-CH3-Ph, 4-CH3O-Ph, 2-Cl-Ph, 2,4-dimethyl-Ph, n-Bu, i-Pr, t-Bu), trimethylsilyl
azide and isocyanides (R3 = t-Bu, c-C6H11, 1-adamantyl, n-Bu) produced azide intermedi-
ates that were treated with diverse isocyanides (R4 = t-Bu, c-C6H11, 1-adamantyl, 4-CH3O-
Ph, 4-Cl-Ph, MeO2CCH2, TsCH2) to afford compound 18 examples of dihydroquinazoline
derivatives (Scheme 14).
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Scheme 14. Ugi-4CR synthesis of dihydroquinazoline derivatives.

With the advantages of mild reaction conditions, good yields and the easy availability
of raw materials, this strategy shows the synthetic potential of combining isocyanide-based
multicomponent reactions with azide-isocyanide coupling reactions to produce structural
diversity and complexity. Among the synthesized compounds, compound 31 (R1 = H,
R2 = 4-Br-Ph, R3 = c-C6H11, R4 = t-Bu,) was a promising starting point for the development
of a breast cancer drug. The proliferation of breast cancer cells treated with 31 at the
concentration of 0.3 µM was detected using the 5-ethynyl-2′-deoxyuridine (EdU) method.
The results showed that, with the increase in 31 concentrations, the number of EdU positive
cells in breast cancer decreased gradually. This evidence shows that compound 31 could
significantly inhibit the proliferation, and promote the apoptosis, of breast cancer cells.

In 2022, Nichugovskiy et al. [133] demonstrated for the first time that the anticancer
activity of lipophilic synthetic polyamines (LPAs) with fragments of piperazine is com-
parable to that of aliphatic LPAs. In their publication, they demonstrated a new method
for the synthesis of LPAs using the N-split Ugi multicomponent reaction and subsequent
reduction in amide groups by PhSiH3 (Scheme 15). The anticancer activity was evaluated
in the A-549, MCF7 and HCT116 cancer cell lines.
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Scheme 15. Synthesis of LPAs using N-split Ugi reaction.

With the application of this method, the authors reduced the synthetic steps and
increased the total yield of the LPAs from 7% to 28%. The use of PhSiH3 and NiCl2
(ethylene glycol dimethyl ether complex) effectively permitted us to reduce several amide
groups in the PA precursors and has proven to be a very reliable and efficient method. The
obtained LPAs manifest excellent preliminary biological activity in cancer cell lines, and
among these, compound 32 showed the highest anticancer activity within all the tested cell
lines: IC50 = 3.0 ± 0.4 µM (A-549 cell line), 1.0 ± 0.1 µM (MCF7 cell line) and 3.8 ± 0.5 µM
(HCT116 cell line). These IC50 values are several times higher than that of cisplatin, which
is used in medical practice.
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3.3. Biginelli Reaction

With the initiative to develop novel cancer immunotherapeutic agents via the modu-
lation of the A2B adenosine receptor, Sotelo et al. [134–138] discovered several families of
(monocyclic, bicyclic or tricyclic) pyrimidine derivatives (Scheme 16) that were readily and
efficiently assembled through a three-component Biginelli reaction.
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Scheme 16. Three-Component Biginelli Synthesis of A2B antagonists.

The synthesized compounds were evaluated for their antagonistic activity toward the
Adenosine Receptors. Many compounds have yielded good Ki values in A2B (Ki ≤ 25 nM)
and excellent receptorial subtype selectivity profiles. The most promising for A2B are the
monocyclic compounds 33 with Ki = 10.2 nM, 36 with Ki = 24.3 nM; and tricyclic compounds
34 with Ki = 3.49 nM; 35 with Ki = 11.40 nM. During the study, some A2A/A2B duals
emerged, being of particular interest in cancer immunotherapy by acting synergistically
on the immune system and tumor cells. The most promising is 37, with Ki = 176.2 and
6.1 nM for A2A and A2B, respectively. The differences in the affinity of both enantiomers
were evaluated first on 36, and confirmed in subsequent works, showing that the affinity
for A2B (and A2A) is exclusively due to one of the two enantiomers (Scheme 16).

The administration of these compounds to breast cancer patient derived cells, was
first revealed through a reduced tumor spheroids growth rate [137]. The study also demon-
strated a marked effect on immune system cells, recovering from adenosine-mediated
immunosuppression and increasing the production of proinflammatory cytokines. This
effect in the immune system has been recently verified [138].

In 2021, a new ecofriendly Biginelli reaction procedure was adapted to prepare new
dihydropyrimidines using β-aroylpyruvates as synthons [139]. All of the synthesized
compounds were evaluated for their anticancer activity against 59 human cancer cell lines,
representing different cancer types, including leukemia and melanoma, as well as lung,
colon, ovarian, renal, prostate and breast cancer. The anticancer activity was demonstrated
as a percentage growth inhibition of different human cell lines exerted by a single dose
of 10−5 M. Compound 38 (Scheme 17) showed marked wide spectrum anticancer activity
towards most of the tested cancer cell lines, with a percentage of growth inhibition of
29.04–71.68% upon a single dose administration (10−5 M). Specifically, most of the leukemia
and colon cancer cell lines were highly sensitive to the antitumor effect of compound 38,
with a growth inhibiting effect exceeding 50%, as well as the colon cancer HT29 cell line
(53.16%) and the leukemia cell lines, K-562 (64.97%) and SR (71.68%).
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Scheme 17. Synthesis of compound 38 of new dihydropyrimidines.

Recently, Li et al. [140] published on an interesting study ACS Macro Letters about the
development of a polymer-drug strategy to explore anticancer polymers. These consist in a
series of monomers containing groups with potential anti-cancer activity that were easily
prepared by the Biginelli reaction. These monomers were used to produce water-soluble
polymers by practical radical co-polymerization. A series of dihydropyrimidinones groups
(DHPMs), similar to Monastrol, a promising anticancer agent which inhibits Eg5 kinesin
protein that is highly expressed in many tumor cells and is closely related to the occurrence
and development of tumors, was prepared through the Biginelli reaction (Scheme 18).
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Scheme 18. Three-component synthesis of dihydropyrimidinones group.

The obtained polymers are biocompatible and can be used directly to suppress the
proliferation of various cancerous cells without the release of small molecules. In such
experiments, one of the DHPMs, P4, a polymer with the best anticancer ability, effectively
suppressed the proliferation of different cancer cells by inhibiting cell mitosis, similarly to
Monastrol, confirming the rationale behind the theoretical calculations. The inhibition effect
of P4 was investigated on different cells: a model of normal cells (L929), hepatoma cell
line (SMMC-7721), human cervical cancer cell line (HeLa) and a human breast cancer cell
line (MCF-7). The results suggested that P4 selectively inhibits the proliferation of cancer
cells, rather than killing them. Furthermore, immunostaining was carried out to detect the
inhibitory process of P4 during cellular proliferation, suggesting that P4 shares a similar
anticancer mechanism of the small molecular monastrol and that it could be considered a
potential anticancer polymer.

In 2020, the study by Yavuz et al. [141] aimed at developing an effective, improved and
easy method to synthesize substituted pyrimidine-5-carbonitriles, without the isolation of
their intermediates. In a single reaction step, pyrimidine derivatives were synthesized from
the triple reaction of aromatic aldehydes, ethyl cyanoacetate and a few guanyl hydrazone
derivatives (Scheme 19). In this study, the reaction conditions were optimized, monitoring
the order of addition of reagents and the best base to be used. The reaction conditions
were first optimized using different bases, such as NaOH, K2CO3, NaHCO3 and piperidine.
When NaOH (10% mol) was added into the reaction system, the products were obtained
in moderate yields in both refluxing in ethanol and at room temperature, while when
piperidine was added as a catalyst to the reaction medium, higher yield compounds were
obtained with the same reaction conditions. First, aromatic aldehyde, ethyl cyanoacetate
and a catalytic amount of piperidine were added to obtain the best yield.
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The synthesized compounds were tested in vitro against the human colon cancerous
cell line (DLD-1) and a human breast cancerous cell line (MDA-MB-231). Nearly all of
those compounds showed cytotoxic activity in the tested cell lines. However, in general,
the synthesized pyrimidine-based compounds exhibited better cytotoxicity against the
colon cancer cell line than the tested breast cancer cell line. In particular, compounds 39,
40 and 41 have a significant effect against DLD-1. Furthermore, compounds 42, 43 and
44 exhibited lower IC50 values compared to the other synthesized compounds and were
tested against MDA-MB-231.

On the other hand, in 2022, Ashma et al. [142] focused their attention on the synthesis
of nicotinic acid hydrazide metal complexes and their potential anticancer and antibacterial
activity, together with their ability to act as a catalyst. This work addressed newer bidentate
Schiff bases, such as L5 and L6, and their metal complexes Co(II), Ni(II), Cu(II) and Zn(II)
were synthesized by a one-pot method. The multicomponent reaction of Biginelli has
been tested with a catalytic amount of their transition metal complexes, Co(II), Ni(II),
Cu(II) and Zn(II), in the presence of a solvent. Hydrazone-substituted transition metal
complexes Cu (II) showed excellent catalytic activity compared to the other derivatives.
The metal complexes exhibited good anti-cancer activity, overall, in 400–800 µg for most
L5 and L6 complexes, but Co, Cu and Zn showed higher activity at the nano gram scale
for 24h treatment on the human colon cancer cell line HT29. The Zn(II) complex, in
particular, exhibited greater efficacy, even at the 600 ng concentration, which makes it a
potent candidate for further anti-cancer studies in different type of cancers cells.

3.4. Other MCRs for the Synthesis of Anticancer Drugs

In a recent paper, Alshabanah et al. [143] reported the design and synthesis of thi-
azoles and thiadiazoles linked to position 3 of coumarin as novel 3-azolylcoumarins as
potential anticancer agents, utilizing the sonication technique and using chitosan-grafted
poly(vinylpyridine) as an eco-friendly catalyst (Scheme 20).

In this study, the best reaction conditions were evaluated. Regarding the base chitosan-
grafted poly(vinylpyridine), 10 mol% was the best choice of a basic catalyst (respect to
trietilammina and chitosan) under ultrasonic irradiation (USI). In addition, heating at 50 ◦C
under USI was more efficient than conventional heating as it reduced the reaction time and
increased the product yields for the thiazoles derivatives, but not for the thiadiazole (respect
to the 25 ◦C). The cytotoxic activity of the newly prepared compounds was determined
against the liver carcinoma cell line (HEPG2-1) using the MTT assay, and doxorubicin was
used as a reference compound. Compounds 45 (Ar = 4-MePh, R1 = Me), 46 (Ar = 4-MeOPh,
R2 = Me) and 47 (Ar = Ph, R2 = NHPh), with IC50 values of 0.43 µM, 0.29 µM and 0.48 µM,
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respectively, (doxorubicin IC50 = 0.31 µM) have promising cytotoxic activities. The 1,3-
thiazole ring introduction of an electron-donating group (methyl or methoxy groups)
enhanced the antitumor activity. In contrast, the introduction of the electron-withdrawing
group (chlorine or bromine or nitro group) at C4 of the phenyl group at position 4 in
the 1,3-thiazole ring decreased the activity. In addition, for 1,3,4-thiadiazoles, generally,
on fixing the substituents at position 5, the electron-donating group (methyl) at C4 of
the phenyl ring enhances the antitumor activity, while the electron-withdrawing group
(chlorine) decreases the activity.
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Scheme 20. Three-component synthesis of thiazoles and thiadiazoles.

In 2017, a time-efficient three-component synthesis of a series of substituted aryl
thiazoles derivatives was achieved through the reaction between different (ortho, para)
substituted benzoyl hydrazides and (ortho, meta, para) aromatic isothiocyanate, fol-
lowed by aromatic α-halo ketone in the presence of triethylamine under reflux in ethanol
(Scheme 21) [144].
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Scheme 21. Three-component synthesis of aryl thiazoles derivatives.

In this study, twenty-five substituted aryl thiazoles were synthesized, and their in vitro
cytotoxicity was evaluated against MCF-7 (ER+ve breast), MDA-MB-231 (ER−ve breast),
HCT116 (colorectal) and HeLa (cervical). The activity was compared with the standard
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anticancer drug doxorubicin (IC50 = 1.56 ± 0.05 µM). Many of the twenty-five synthesized
compounds were found to be cytotoxic for all four cancer cell lines, with IC50 values ranging
between 5.37 and 46.72 µM. Compound 48 was highly toxic against the breast cancer cells,
with IC50 = 5.37 ± 0.56 µM for MCF-7 (ER+ve breast), IC50 = 17.77 ± 4.32 µM for MCF-7
(ER+ve breast) and against the HCT116 (colorectal) cell line, with IC50 = 16.99 ± 0.94 µM.
Nevertheless, compound 49 showed IC50 values of 10.96 ± 0.33 µM, 9.9 ± 0.59 µM and
8.28 ± 0.21 µM for MCF-7 (ER+ve breast), MDA-MB-231 (ER-ve breast) and HeLa (cervical),
respectively. These compounds deserve to be further investigated in vivo as anticancer
lead compounds.

In 2018, Yakaiah et al. [145] obtained novel pyrazolo-oxothiazolidine derivatives
through the condensation of 1-(benzofuran-2-yl)-3-(substituted-arylprop-2-en-1-ones),
thiosemicarbazide and dialkyl acetylenedicarboxylates. The reaction conditions were
optimized, obtaining an efficient, one-pot multicomponent reaction (Scheme 22).
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Scheme 22. Three-component synthesis of pyrazolo-oxothiazolidine derivatives.

Initially, the reactions were performed with a variety of solvents, such as methanol,
ethanol 1,4-dioxane, acetonitrile and water, to understand the solvent’s effect on the yield.
To optimize the better reaction conditions, various catalysts, such as KOH, triethylamine,
piperidine, H2SO4, acetic acid and NaOH, were tested. It was observed that the ethanol is
the best among the tested solvents in terms of yield and NaOH was identified as a suitable
catalyst, which gave the maximum isolated yield.

The synthesized compounds were evaluated for their antiproliferative activity against
the A549 lung cancer cell line and the antiproliferative activity of each individual compound
was compared with Sorafenib, a Food and Drug Administration (FDA) approved drug stan-
dard. Among all the tested compounds, 50 (IC50 = 0.930 µg/mL), 51 (IC50 = 0.808 µg/mL)
and 52 (IC50 = 0.967 µg/mL) showed promising activity compared with the standard drug,
sorafenib (IC50 = 3.779 µg/mL). From the antiproliferative activity data, it is evident that
the presence of electron-rich species, such as the methoxy group, and electron withdrawing
groups, such as fluoro and chloro on the pyrazoline ring, are fundamental for their antipro-
liferative activity. Furthermore, to gain a better understanding of the effectiveness of the
ligand analogue molecules, they studied the interaction of their derivatives docked into
the binding site of the epidermal growth factor receptor (EGFR) and vascular endothelial
growth factor receptor type 2 (VEGFR2). The molecular docking studies indicated that
compound 51 had the greatest affinity for the binding site of these receptors, and the
docking results also give us a new direction to design new inhibitors.

To conclude this roundup of examples, the recent paper by Professor Tron’s group de-
serves special attention [146]. In this work, the authors developed a novel multicomponent
reaction to prepare a library of 62 novel compounds, analogs of a potent antitubulin agent
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(TN-16), which are reported in Scheme 23. The synthesized compounds were evaluated for
their possible antiproliferative activity on human neuroblastoma SH-SY5Y cells.
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Scheme 23. Synthetic route to prepare aza-analogs of TN-16.

62 compounds were prepared via MCR between different anilines, triethylorthoac-
etate and 1-benzylpyrazolidine-3,5-dione, with a yield between 26 and 90%. When the
compounds were screened on SH-SY5Y cells, only compound 52 (EC50 = 102 nM) showed
significant cytotoxicity. These compounds were cytotoxic on cancer cell lines and, as ex-
pected from antitubulin agents, induce G2/M cell cycle arrest. In fact, these lead to a
disruption of the microtubules and an increase in α-tubulin acetylation and affect in vitro
polymerization, although they have a lesser effect in cellular tubulin polymerization assays.

4. Conclusions

Relevant, recent and representative papers dealing with the exploration of small
molecule anticancer compounds assembled via MCRs have been highlighted, underlining
the tremendous potential of MCRs in medicinal chemistry. An advantage of MCR chemistry
is the ability to explore a very large chemical space for drug discovery and medicinal
chemistry purposes. In view of the great need to synthesize compounds that enrich the
arsenal against cancer, still largely an unmet clinical need, we hope that this review will be
useful for the researchers, worldwide, interested in this field.
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Abbreviations

MCR (Multicomponent reaction), IMCRs (Isocyanide-based multicomponent reactions), NIM-
CRs (non-isocyanide-based multicomponent reactions), P-3CR (Passerini three component reaction),
U-4CR (Ugi four component reaction), GBB-3CR (Groebke-Blackburn-Bienayme three component
reaction), VL-3CR (Van Leusen three component reaction), O-3CR (Orru three component reaction),
TosMIC (Tosylmethylisocyanide), BG-3CR (Biginelli three component reaction), G-3CR (Gewald three
component reaction), PK-3CR (Pauson-Kand three component reaction), rhIDOI1(Human recombi-
nant indoleamine 2,3-dioxygenase), MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-2H-tetrazolium
bromide), PA (Pyrazine-2-carboxylic acid), ROS (Reactive oxygen species), OA (Oleanolic Acid),
MA (Maslinic Acid), SRB (Sulforhodamine B), DCM (Dichloromethane), MW (Microwave), SAR
(Structure-activity relationship), mRNA (Messenger ribonucleic acid), EC50 (Half maximal effective
concentration), MMP (Mitochondria membrane potential), EdU (5-ethynyl-2′-deoxyuridine), LPA
(Lipophilic synthetic polyamines), FDA (Food and Drug administration), DHPM (dihydropyrimidi-
none), USI (Ultrasonic irradiation), EGFR (Epidermal growth factor receptor), VEGFR2 (vascular
endothelial growth factor receptor type 2).
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