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Abstract: Type 2 diabetes mellitus (T2DM) is associated with an increased fracture risk. Our study
aimed to explore differences in bone alterations between T2DM women and controls and to assess
clinical predictors of bone impairment in T2DM. For this observational case control study, we recruited
126 T2DM female patients and 117 non-diabetic, age- and BMI-comparable women, who underwent
clinical examination, routine biochemistry and dual-energy X-ray absorptiometry (DXA) scans for
bone mineral density (BMD) and trabecular bone score (TBS) assessment-derived indexes. These
were correlated to metabolic parameters, such as glycemic control and lipid profile, by bivariate
analyses, and significant variables were entered in multivariate adjusted models to detect independent
determinants of altered bone status in diabetes. The T2DM patients were less represented in the
normal bone category compared with controls (5% vs. 12%; p = 0.04); T2DM was associated with
low TBS (OR: 2.47, C.I. 95%: 1.19–5.16, p = 0.016) in a regression model adjusted for age, menopausal
status and BMI. In women with T2DM, TBS directly correlated with plasma high-density lipoprotein
cholesterol (HDL-c) (p = 0.029) and vitamin D (p = 0.017) levels. An inverse association was observed
with menopausal status (p < 0.001), metabolic syndrome (p = 0.014), BMI (p = 0.005), and waist
circumference (p < 0.001). In the multivariate regression analysis, lower HDL-c represented the
main predictor of altered bone quality in T2DM, regardless of age, menopausal status, BMI, waist
circumference, statin treatment, physical activity, and vitamin D (p = 0.029; R2 = 0.47), which likely
underlies common pathways between metabolic disease and bone health in diabetes.

Keywords: osteoporosis; osteopenia; fracture risk; lipid metabolism; metabolic syndrome; insulin
resistance; trabecular bone score

1. Introduction

Type 2 diabetes mellitus (T2DM) and osteoporosis are chronic conditions with increas-
ing prevalence worldwide, in part due to aging populations. In 2021, the global T2DM
prevalence was estimated to be 10.5% and is expected to rise to 12.2% in 2045 [1], causing
life threatening, disabling, costly complications, and reducing life expectancy [2]. On the
other hand, the prevalence of osteoporosis in the world is reported to be 18.3%, increasing
to 23.1% in females [3]. In Italy, only 8.1% of the population report having osteoporosis,
and the prevalence progressively increases with advancing age, particularly in females,
affecting 47% of females aged > 74 years [4].

Over the last years, a considerable amount of data has indicated that the metabolic
and endocrine alterations of diabetes affect bone health. The exact mechanisms leading to
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bone structure alterations in T2DM are still not fully understood [5]. Different pathways
have been proposed in the recent years: inhibition of osteoblastogenesis [6] and alteration
of osteoblast’s gene expression by hyperglycaemia [7], advanced glycation end products
(AGEs) cross-linking with collagen fibers [8], and increased levels of pro-inflammatory
cytokines [9].

The coexistence of T2DM and osteoporosis determines poorer health outcomes [10–14].
Patients with T2DM have a 19% increased risk of any fragility fracture [10], independent of
the frequency of falls and despite having higher BMD [11,12]. Diabetic patients also have
an increased risk of impaired fracture healing [13] and higher post-fracture mortality [14]
when compared with non-diabetic patients.

In the absence of fragility fractures, osteoporosis is usually diagnosed through BMD
measurement by dual-energy X-ray absorptiometry (DXA) [15]. However, in patients with
T2DM, BMD is often normal to increased [16], making it an unreliable parameter to assess
fracture risk. Bone fragility in diabetes is dependent not only on bone mineralization, but
also on bone structure alterations. Data indicate the presence of cortical bone alterations
in patients with T2DM [17], but the effects on trabecular bone remain controversial. In
fact, studies conducted on bone biopsies in T2DM have shown the presence of fewer and
thinner trabeculae leading to increased bone fragility, both in rats [18] and in humans [19].
Conversely, bone trabecular microarchitecture was shown to be preserved or even improved
in diabetic patients when explored with other imaging techniques, such as High-Resolution
Peripheral Quantitative Computed Tomography (HR-pQCT) [17,20]. The Trabecular Bone
Score (TBS) is a BMD-independent parameter of the spine DXA image which evaluates
bone texture and is, therefore, an indirect estimator of the trabecular bone quality. Evidence
points towards a role of TBS in fracture risk prediction in patients with T2DM [21]. However,
there are limited prospective data on TBS modifications in patients with T2DM when treated
with different therapies for osteoporosis or diabetes, and to what extent TBS modifications
influence fracture risk [22].

Clinical determinants of poor bone strength in diabetes are not fully understood. For
instance, the association between glycaemic control and bone fragility is controversial. Poor
glycaemic control has been associated with lower bone mineralization in most studies [23,24],
but not in others [25]. It is known that some antidiabetic drugs affect bone metabolism. Sulfony-
lureas, insulin treatment and thiazolidinediones determine an increase in fracture risk [26–28].
In contrast, the effect of other antidiabetic drugs on fracture risk remains unclear [29].

The aim of our study was to investigate bone mineralization and micro-architecture
in women with T2DM and good glycemic control who are treated with metformin in
monotherapy and to explore non-glycemic determinants of bone alterations.

2. Results
2.1. Characteristics of the Study Population

This study involved 126 female patients with T2DM referred to our Endocrinology
and Diabetes outpatient clinic of Sapienza University, Rome, Italy, for metabolic evaluations
(mean age 62.96 ± 6.73 years, BMI 31.63 ± 7.09 kg/m2) who met the study’s inclusion
criteria (Figure 1).

We also recruited 117 women without T2DM, comparable for age and body mass
index (BMI) (mean age 61.91 ± 5.8 years, BMI 32.64 ± 7.12 kg/m2), as a comparison group.
The main clinical features of the study population are shown in Table 1.

Women with T2DM compared with controls had significantly higher glycaemia
(p < 0.001), HbA1c (p < 0.001), triglycerides (p = 0.001), gamma-glutamyl transferase
(GGT) (p = 0.005) and parathyroid hormone (PTH) (p = 0.018). However, they showed
lower waist circumference (p = 0.015) and lower levels of total, high-density lipoprotein
(HDL-c) and low-density lipoprotein (LDL-c) cholesterol (p < 0.001). Statin treatment was
significantly more frequent in patients with T2DM (p = 0.002). Similar prevalence of vitamin
D supplementation (consisting of oral colecalcipherol, Vitamin D3) treatment was reported
in women with and without T2DM.



Int. J. Mol. Sci. 2023, 24, 6474 3 of 12Int. J. Mol. Sci. 2023, 24, x FOR PEER REVIEW  3  of  13 
 

 

 

Figure 1. CONSORT flow-chart of the study. Abbreviations: BMI: body mass index, HbA1c: 

glycosylated hemoglobin. 

We also recruited 117 women without T2DM, comparable  for age and body mass 

index (BMI) (mean age 61.91 ± 5.8 years, BMI 32.64 ± 7.12 kg/m2), as a comparison group. 

The main clinical features of the study population are shown in Table 1. 

Table 1. Differences in clinical and biochemical features between T2DM patients and controls. 

Clinical Parameters 
T2DM 

(n = 126) 

Controls 

(n = 117) 
p Value 

Age (years)  63 ± 6.7  61.9 ± 5.8  0.20 

BMI (kg/m2)  31.6 ± 7.1  32.6 ± 7.1  0.27 

Waist circumference (cm)  106.2 ± 15.7  111.6 ± 14.6  0.015 

Menopause onset age (years)  49.2 ± 4.6  49.1 ± 4.7  0.81 

SBP (mmHg)  131.4 ± 20.8  133.1 ± 15.4  0.49 

DBP (mmHg)  82.5 ± 9.1  81.9 ± 11.3  0.66 

FBG (mg/dL)  117.5± 19.6  88.3 ± 8.2  <0.001 

HbA1c (mmol/mol)  45.5 ± 0.1  35.3 ± 0.1  <0.001 

Total cholesterol (mg/dL)  182.8 ± 35.5  209.7 ± 35.8  <0.001 

HDL-C-c (mg/dL)  53.4 ± 13.3  59.7 ± 14.4  <0.001 

LDL-c (mg/dL)  104.6 ± 33.8  128.7 ± 32.8  <0.001 

Triglycerides (mg/dL)  135.4 ± 62.3  111.7 ± 47.3  0.001 

AST (IU/L)  22.8 ± 13.5  20.6 ± 9.4  0.18 

ALT (IU/L)  25.1 ± 15.6  22.4 ± 11.7  0.16 

GGT (IU/L)  31.9 ± 30  20.7 ± 18  0.005 

Serum Creatinine (mg/dL)  0.7 ± 0.2  0.7 ± 0.1  0.83 

TSH (mU/L)  2.1 ± 1.3  2 ± 2  0.87 

PTH (pg/mL)  57 ± 39.8  46 ± 22  0.018 

Figure 1. CONSORT flow-chart of the study. Abbreviations: BMI: body mass index, HbA1c: glycosy-
lated hemoglobin.

Table 1. Differences in clinical and biochemical features between T2DM patients and controls.

Clinical Parameters T2DM
(n = 126)

Controls
(n = 117) p Value

Age (years) 63 ± 6.7 61.9 ± 5.8 0.20
BMI (kg/m2) 31.6 ± 7.1 32.6 ± 7.1 0.27
Waist circumference (cm) 106.2 ± 15.7 111.6 ± 14.6 0.015
Menopause onset age (years) 49.2 ± 4.6 49.1 ± 4.7 0.81
SBP (mmHg) 131.4 ± 20.8 133.1 ± 15.4 0.49
DBP (mmHg) 82.5 ± 9.1 81.9 ± 11.3 0.66
FBG (mg/dL) 117.5± 19.6 88.3 ± 8.2 <0.001
HbA1c (mmol/mol) 45.5 ± 0.1 35.3 ± 0.1 <0.001
Total cholesterol (mg/dL) 182.8 ± 35.5 209.7 ± 35.8 <0.001
HDL-C-c (mg/dL) 53.4 ± 13.3 59.7 ± 14.4 <0.001
LDL-c (mg/dL) 104.6 ± 33.8 128.7 ± 32.8 <0.001
Triglycerides (mg/dL) 135.4 ± 62.3 111.7 ± 47.3 0.001
AST (IU/L) 22.8 ± 13.5 20.6 ± 9.4 0.18
ALT (IU/L) 25.1 ± 15.6 22.4 ± 11.7 0.16
GGT (IU/L) 31.9 ± 30 20.7 ± 18 0.005
Serum Creatinine (mg/dL) 0.7 ± 0.2 0.7 ± 0.1 0.83
TSH (mU/L) 2.1 ± 1.3 2 ± 2 0.87
PTH (pg/mL) 57 ± 39.8 46 ± 22 0.018
Vitamin D (ng/mL) 24.7 ± 16.1 23.4 ± 13.6 0.54
Calcium (mg/dL) 9.5 ± 0.4 9.4 ± 0.5 0.13
Phosphate (mg/mL) 3.6 ± 0.5 3.6 ± 0.5 0.47
Presence of menopausal state 92.1% 97.4% 0.063
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Table 1. Cont.

Clinical Parameters T2DM
(n = 126)

Controls
(n = 117) p Value

Physical activity
None-low intensity 46% 46.1% 0.53
Moderate intensity 46% 43.6%
High intensity 8% 10.3%

Presence of statin treatment 42.2% 21.3% 0.002
Atorvastatin 37.7% 40%
Simvastatin 34% 28% 0.56
Rosuvastatin 28.3% 32%

Presence of Vitamin D
supplementation 25% 22.2% 0.64

Data are shown as mean values ± standard deviation (SD) or percentages. Significant p values are reported
in bold. Abbreviations: T2DM: type 2 diabetes mellitus; BMI: body mass index; SBP: systolic blood pressure;
DBP: diastolic blood pressure; FBG: fasting blood glucose; HbA1c: glycosylated hemoglobin; HDL-C: high-density
lipoprotein; LDL: low-density lipoprotein; AST: aspartate aminotransferase; ALT: alanine aminotransferase;
GGT: gamma-glutamyl transferase; TSH: thyroid stimulating hormone; PTH: parathyroid hormone.

2.2. DXA Results

The T2DM patients showed higher BMD and T-scores at all levels, and lower TBS
than non-diabetic controls, as shown in Table 2. When dividing the study population
according to TBS cut-offs [30], we observed that the prevalence of normal bone texture was
significantly lower in the T2DM group compared with controls (p = 0.01).

Table 2. Differences in bone parameters between patients with T2DM and controls.

DXA-Derived Parameters T2DM
(n = 126)

Controls
(n = 117) p Value

Lumbar spine BMD (g/cm2) 1.010 ± 0.165 0.937 ± 0.161 0.031
Lumbar spine T-score −0.620 ± 1.258 −0.787 ± 1.524 0.359
Total hip BMD (g/cm2) 0.936 ± 0.131 0.891 ± 0.145 0.080
Total hip T-score −0.384 ± 0.961 −0.491 ± 1.132 0.801
Femoral neck BMD (g/cm2) 0.744 ± 0.125 0.725 ± 0.119 0.391
Femoral neck T-score −1.002 ± 1.137 −1.213 ± 0.903 0.373

TBS 1.180 ± 0.112 1.209 ± 0.120 0.060
Individuals with degraded bone architecture

(TBS ≤ 1.23) 62.7% 59.5% 0.61

Individuals with partially degraded bone
architecture
(1.23 < TBS ≤ 1.31)

30.2% 22.4% 0.17

Individuals with normal bone architecture
(TBS > 1.31) 7.1% 18.1% 0.01

Data are shown as mean values ± standard deviation (SD) or percentages. Abbreviations: BMD: bone mineral
density; DXA: dual-energy X-ray absorptiometry; TBS: trabecular bone score; T2DM: type 2 diabetes mellitus.

The presence of T2DM was associated with TBS in the lowest tertile vs. highest tertile
with adjusted OR: 2.47 (C.I. 95%: 1.19–5.16, p = 0.016). Conversely, diabetes status was
confirmed to correlate with greater lumbar spine BMD (OR: 0.43, C.I. 95%: 0.21–0.89,
p = 0.024), but not with BMD values measured in the other districts (femoral neck OR: 0.65,
C.I. 95%: 0.22–1.92, p = 0.433; total hip BMD OR: 0.56, C.I. 95%: 0.28–1.12).

2.3. Metabolic Correlates of Impaired TBS in T2DM Patients

In the univariate regression analyses, in T2DM women, TBS positively correlated
with HDL-c (Standardized β coefficient: 0.21, p = 0.029) and Vitamin D (Standardized β

coefficient: 0.25, p = 0.017) and negatively with the presence of menopausal status (Stan-
dardized β coefficient: −0.35, p < 0.001), number of components of metabolic syndrome
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(Standardized β coefficient: −0.23, p = 0.014), insulin resistance (HOMA-IR, Standardized
β coefficient: −0.19, p = 0.014), BMI (Standardized β coefficient: −0.25, p = 0.005), and waist
circumference (Standardized β coefficient: −0.33, p < 0.001). Similar results were obtained
when performing the analyses in the whole study population (Supplementary Table S1).
Lower HDL-c levels represented the major determinant of reduced TBS, independently of
possible confounders, such as age, menopausal status, BMI, waist circumference, statin
treatment, vitamin D, and physical activity, in the multivariate linear regression model
(Table 3).

Table 3. Multivariate linear regression analyses for TBS value.

Variables
Unstandardized Coefficient Standardized

Coefficient p Value
β Standard Error β

Age −0.004 0.005 −0.162 0.464
Menopausal state 0.008 0.005 0.303 0.175

BMI −0.007 0.008 −0.304 0.411
Waist circumference 0.002 0.004 0.199 0.634

HDL-c 0.006 0.002 0.603 0.028
Physical activity −0.056 0.069 −0.214 0.432
Statin treatment 0.016 0.061 0.066 0.793

Vitamin D 0.002 0.061 0.066 0.793
Constant 0.686 0.514 - 0.205

TBS is the dependent variable. Model’s R: 0.682, R2: 0.465. Abbreviations. BMI—body mass index; HDL-c—high-
density lipoprotein cholesterol.

3. Discussion

In this study, we evaluated bone health in a population of T2DM women compared
with women without diabetes comparable for age and BMI, recruited as a control group.
We then explored metabolic predictors of bone quality in T2DM. We demonstrated that
women with T2DM have more degraded bone texture, as assessed by TBS, compared with
healthy women, also in the presence of similar or even increased BMD.

We showed that in women with T2DM, HDL cholesterol is the main predictor of bone
alterations, independently of possible confounders such as age, BMI, waist circumference,
menopausal status, physical activity, statin treatment and vitamin D levels. Previous reports
investigating the association between lipid profile and bone metabolism in terms of BMD
and fracture risk have shown inconsistent results, likely due to differences in study design,
populations and methodology applied [31]. There are a few studies that have assessed the
possible association between lipid profile and bone quality as evaluated by TBS, but not
conducted in patients with T2DM. Panahi et al. showed a negative association between
TBS and HDL-c in elderly men, but not in women [32]. Recently, an observational study
conducted in postmenopausal women demonstrated that the triglycerides/HDL-c ratio
was independently associated with degraded bone texture [33]. To our knowledge, there
are no studies that have investigated the association between qualitative bone alterations
and the metabolic profile in T2DM.

Several pathophysiological mechanisms may explain the association between low
HDL-c levels and impaired trabecular bone structure, as shown in Figure 2. Firstly, adipose
and bone tissues share a common progenitor: the multipotent mesenchymal stem cells
(MSCs) in the bone marrow (BM), which can differentiate into osteoblasts, adipocytes and
chondrocytes, depending on the characteristics of the medullary microenvironment [34].
Chronic immuno-inflammatory changes in BM influence the differentiation of MSCs
into adipocytes and inhibit osteogenesis [35]. Moreover, the activation of peroxisome
proliferator-activated receptor gamma (PPAR-γ) by lipid metabolites could also play a
pivotal role in changes in bone in patients with insulin resistance and T2DM. PPAR-γ,
which is activated by lipid oxidation products, inhibits osteoblast’s differentiation and
promotes adipogenesis, causing bone changes in patients with metabolic disorders [31].
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Animal models have shown interesting data linking bone and lipid metabolism. Mar-
tineau et al. investigated the role of Scavenger receptor class B type I (Scarb1), the principal
HDL-c receptor, in bone metabolism. Scarb1-deficient mice showed increased HDL-c levels,
higher bone volume and number of trabeculae, and enhanced bone formation [36]. In
contrast, mice lacking Apolipoprotein A1 (Apo A1), which is the main protein component
of HDL-c particles [37], displayed reduced bone formation and mass, lower osteoblastoge-
nesis, higher adipogenesis and increased BM adiposity compared with the wild-types [38].
The mechanism proposed is the increased committed adipoblasts in the overall mesenchy-
mal stem cell (MSC) pool, as shown by the greatly increased PPAR-γ mRNA levels. Thus,
HDL-c, probably through Apo A1, have a central role in the regulation of bone remodeling
and maintenance of bone quality. Apo A1 deficiency and consequently low HDL-c levels
reduce the capacity of MSC to differentiate toward osteoblasts but promote adipogenesis,
affecting bone quality and stability.

Finally, growing evidence is suggesting that inflammation also plays a fundamental
role in the development of osteoporosis. Data indicate that pro-inflammatory cytokines,
such as IFN-γ, IL-17A, IL-15 and TNFα, promote osteoclastogenesis and impair osteoblas-
togenesis [39]. Interestingly, HDL-c is able to inhibit the interaction between T lymphocytes
and antigen presenting cells (APCs), preventing the activation of the latter and associ-
ated TNFα and IL-1β production [40] and suppressing gene expression of mediators of
the type I interferon response pathway [41]. Therefore, HDL-c may indirectly influence
bone metabolism due to its systemic and tissue-specific anti-inflammatory properties [42].
Figure 2 summarizes the main mechanisms potentially linking low HDL and impaired
bone metabolism.

The association between glycaemic control and bone fragility is controversial [23–25]. It
is well known that some antidiabetic drugs affect bone metabolism, increasing fracture risk
(sulfonylureas, thiazolidinediones and insulin treatment) [26–28]. On the other hand, the effect
of Glucagon-Like Peptide 1 Agonists (GLP1a) and Dipeptidyl Peptidase 4 Inhibitors (DPP4i)
on fracture risk remains unclear, whereas metformin and Sodium-Glucose Cotransporter 2
Inhibitors (SGLT2i) seem to have a neutral action [43–46]. In order to identify non-glycaemic
predictors of altered bone metabolism, our study was designed to minimize the influence
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of glycaemic control and different anti-diabetic therapies on bone health by selecting
patients in good glycemic control (HbA1c ≤ 53 mmol/mol) and who were treated only
with metformin without a history of other antidiabetic treatments.

Besides being affected by glycaemic control and antidiabetic agents, bone health can
also be influenced by lifestyle interventions [47]. Diet and physical activity can ameliorate
glycaemic control and favour weight loss [48]. Similarly exercise and consumption of dairy
products have beneficial effects on bone health [49,50]. To assess the effect of physical
activity in both glycaemic, lipid and bone metabolism, we administered the International
Physical Activity Questionnaire [51] to all study participants and included physical activity
intensity in the stepwise multivariate linear regression model.

Bone fragility in diabetes results, not only from alterations in bone mineralization,
but also from alterations in bone microstructure [19] that can be indirectly assessed by
TBS. Nearly all the subjects included in our study were overweight or obese, so higher
BMD and lower TBS are influenced by higher BMI [52,53], which leads to errors in DXA
measurements caused by soft tissue thickness [54]. Therefore, we included controls with
a comparable BMI distribution to our study’s population. Nevertheless, T2DM women
showed higher BMD in all scans compared with controls. Although the mean TBS value
was similar in T2DM patients and controls, when dividing the two cohorts into subgroups
according to TBS cut-offs, we observed that the prevalence of individuals in the T2DM
group with normal bone structure was less than half of that in the controls. This was also in
the presence of normal or even increased BMD, in line with other studies [21,55]. Similarly,
we found that the presence of T2DM was associated with TBS values in the lowest tertile,
compared with the highest tertile, with OR 2.47 (C.I. 95%: 1.19–5.16) adjusted for age,
menopausal status, and BMI.

This study has some limitations. First, the cross-sectional design does not allow us to
establish a causal nexus mediating the association between low HDL-c and impaired TBS
in T2DM. However, the experimental evidence on the HDL-c anti-inflammatory properties
and its beneficial interaction with bone precursor cells may point to a causal role of reduced
HDL-c in increased bone fragility in metabolic diseases. Studies with longitudinal designs
on larger populations are warranted to further explore this novel finding. Secondly, TBS
does not represent the gold standard technique for evaluating bone microarchitecture as
it is an indirect estimator of lumbar bone structure based on analyzing pixel gray-level
variations. Data obtained with the HRpQCT technique, which explores 3D cortical and
trabecular bone quality at the radius and tibia levels, would provide the best estimation of
bone architecture; however, this is a costly method not readily available in clinical practice.

All the T2DM patients were on metformin treatment, as specified by the inclusion
criteria, and one in four had been taking vitamin D supplementation at the time of the study
recruitment. Although we cannot exclude an influence of these agents on bone outcomes,
as metformin use at a stable dose in the previous 3 months was reported in the entire T2DM
cohort, it is unlikely that this agent had an influence on the association between low HDL-c
and impaired TBS in these patients. As for vitamin D, the percentage of study participants
among the T2DM women and control group taking vitamin D supplementation at the time
of study enrolment was comparable; moreover, the study results were adjusted for serum
vitamin D levels, which did not impact the association between impaired TBS and low
HDL-c in the multivariate regression analysis.

Finally, TBS may represent a valuable tool in the prediction of bone fragility in diabetes,
in addition to BMD. In fact, some studies have shown that TBS is able to predict osteoporotic
fractures in patients with T2DM [21,56]. Further studies are needed to validate TBS’s use in
clinical practice to better assess fracture risk in patients with T2DM.

4. Materials and Methods
4.1. Study Population

For this observational case-control study, we recruited 126 eligible women with T2DM
consecutively referred to our Endocrinology and Diabetes outpatient clinic at Sapienza
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University, Rome, Italy, for metabolic evaluations (mean age 62.96 ± 6.73 years), who met
the following inclusion criteria: age 18 or older; T2DM diagnosis according to American
Diabetes Association (ADA) Guidelines [57]; BMI between 20 and 40 kg/m2 and body
weight ≤ 120 kg (due to limitations of the DXA equipment); HbA1c < 53 mmol/mol; and
metformin monotherapy at a stable dose for at least 3 months. As a reference group, we
also recruited 117 healthy women with age and BMI distribution comparable to that of the
T2DM cohort (mean age: 61.91± 5.8 years, BMI: 32.64 ± 7.12 kg/m2).

The main exclusion criteria were as follows: drugs affecting bone metabolism (bispho-
sphonates, hormone replacement therapy, calcitonin, corticosteroids etc.); secondary causes
of osteoporosis (Paget’s disease, osteomalacia, hyperparathyroidism, hyperthyroidism,
liver or kidney failure) and current or history of therapy with antidiabetic agents other
than metformin.

4.2. Metabolic Evaluations

Each participant underwent a medical history collection and physical examination
at the study site. All ongoing therapies were recorded, including Vitamin D and calcium
supplements. Weight (kg), height (m) and waist circumference (cm) were measured. Blood
pressure (mmHg) was assessed after 5 min of resting, using the average of the second and
third measurement in the analysis. To assess physical activity intensity, the International
Physical Activity Questionnaire [51] was administered to all participants.

Fasting blood samples were drawn and the following blood tests were performed
by centralized standard methods at Sapienza University: FBG (mg/dL), insulin (IU/mL),
HbA1c (mmol/mol), total cholesterol (mg/dL), HDL-C cholesterol (mg/dl), triglycerides
(mg/dL), ALT(IU/L), AST(IU/L), GGT (mg/dL), serum creatinine (mg/dL), TSH (mU/L),
PTH (pg/mL), vitamin D (ng/mL), calcium (mg/dL) and phosphate (mg/dL). LDL lev-
els were obtained using the Friedewald formula; insulin resistance was estimated using
HOMA-IR.

4.3. DXA and TBS Assessment

We assessed BMD at the lumbar spine (L1–L4 anteroposterior) and hip (total hip
and femoral neck). Scans were performed by densitometers Hologic Discovery A (S/N
84191, Bedford, MA, USA) in the Bone Metabolism Service of Sapienza University of
Rome by a trained technician using standardized procedures. BMD was expressed in
g/cm2. According to the WHO criteria, osteoporosis was diagnosed in subjects with a
T-score ≤ −2.5, and osteopenia in those with a T-score between −2.5 and −1.0 [58].

The integrated software TBS iNsight, version 2.1.2.0, was applied by the same techni-
cian to the site-matched spine scans for the evaluation of TBS. We used the following cut-off
points for TBS evaluation as described by McCloskey et al. [30]: TBS > 1.31 as normal,
TBS between 1.23 and 1.31 for partially degraded bone texture, and TBS < 1.23 indicating
degraded texture.

4.4. Statistics

Descriptive statistics are presented as mean ± standard deviation (SD) for continuous
variables or percentage for categorical variables. Differences between independent groups
were compared by Student’s t-test for continuous variables and by χ2 test for categorical
variables.

To test the association between presence of diabetes and bone health, we stratified
the whole study population in tertiles according to TBS and BMD (total hip, femoral neck
and lumbar spine) and calculated odds ratios for the lowest vs. highest tertile with 95%
confidence intervals (CIs) associated with diabetes status, by logistic regression analyses
adjusted for age, menopausal status, and BMI. Moreover, the prevalence of individuals with
normal vs. degraded bone structure within the T2DM group and controls was calculated
by a χ2 test.
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In order to identify predictors of impaired TBS in T2DM, TBS was analysed as the
dependent variable in univariate analyses, and a multivariate model was built that included
variables significantly associated with TBS in the univariate analyses and potential clinical
confounders. R2 was calculated as a goodness-of-fit measure, and both R and R2 were
reported. A p value < 0.05 was taken to indicate a statistically significant effect. Statistical
analyses were performed using IBM Corp. Released 2020. IBM SPSS Statistics for Macintosh,
Version 27.0. Armonk, NY: IBM Corp [59].

Sample size and power calculation. The sample size of this investigation was cal-
culated according to data from the cross-sectional study by Leslie WD and coinvestiga-
tors [21]. In a BMI-, age- and disease-adjusted analysis, they found that mean ± SD
TBS = 1.245 ± 0.125 in non-diabetic women vs. TBS = 1.194 ± 0.112 in T2DM women (see
also [60]). Based on these findings, n = 116 individuals per group were needed for sufficient
statistical power to detect the effect of T2DM on TBS, with an α-error = 0.05 and power = 90%.

5. Conclusions

Our study demonstrates that women with T2DM have altered bone microstructure as
evaluated by TBS, even though they show normal or increased bone mineral mass. The
specific increase in BMD impairs the classical diagnosis of osteoporosis in the absence of
fragility fractures. Therefore, TBS is a useful tool in addition to BMD for assessing bone
health in patients with T2DM in clinical practice. To our knowledge, our study is the first to
have investigated the association between qualitative bone alterations and lipid metabolism
in T2DM and to have demonstrated that low HDL-c is significantly and independently
associated with degraded bone quality in this population. The measurement of HDL-c
is highly utilized by clinicians to help predict cardiovascular risk, especially in patients
with T2DM. Therefore, low HDL-c could be considered not only to detect patients at high
cardiovascular risk, but also to alert clinicians to the presence of an impaired trabecular
bone structure in women and increased fracture risk. Further studies are needed to confirm
these results and continue to deepen the knowledge of the underlying links between lipid
and bone metabolism.
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