Heteroligand Iron(V) Complexes Containing Porphyrazine, trans-Di[benzo]porphyrazine or Tetra[benzo]porphyrazine, Oxo and Fluoro Ligands: DFT Quantum-Chemical Study
Abstract
:1. Introduction
2. Results and Discussion
3. Methods and Materials
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Chachkov, D.V.; Mikhailov, O.V. Nickel macrocyclic complexes with porphyrazine and some [benzo]substituted, oxo and fluoro ligands: DFT analysis. J. Porphyr. Phthalocyan. 2022, 26, 222–231. [Google Scholar] [CrossRef]
- Mikhailov, O.V.; Chachkov, D.V. New heteroligand complex of cobalt with phthalocyanine, oxo and fluoro ligands: DFT consideration. J. Porphyr. Phthalocyan. 2022, 26, 316–324. [Google Scholar] [CrossRef]
- Kasuda, K.; Tsutsui, M. Some new developments in the chemistry of metallophthalocyanines. Coord. Chem. Rev. 1980, 32, 67–95. [Google Scholar] [CrossRef][Green Version]
- Thomas, A.L. Phthalocyanines Research & Applications; CRC Press: London, UK, 1990. [Google Scholar]
- Sliva, W.; Mianovska, B. Metalloporphyrin arrays. Transit. Met. Chem. 2000, 25, 491–504. [Google Scholar] [CrossRef]
- Mamardashvili, G.M.; Mamardashvili, N.Z.; Koifman, O.I. Self-assembling systems based on porphyrins. Russ. Chem. Rev. 2008, 77, 59–75. [Google Scholar] [CrossRef]
- Donzello, M.P.; Ercolani, C.; Novakova, V.; Zimcik, P.; Stuzhin, P.A. Tetrapyrazinoporphyrazines and their metal derivatives. Part I: Synthesis and basic structural information. Coord. Chem. Rev. 2016, 309, 107–179. [Google Scholar] [CrossRef]
- Lomova, T.N. Axial Coordinated Metal Porphyrins in Science and Practice; URSS: Moscow, Russia, 2018; 700p. (In Russian) [Google Scholar]
- Khelevina, O.G.; Malyasova, A.S. 40 years with porphyrazines. J. Porphyr. Phthalocyan. 2019, 23, 1251–1264. [Google Scholar] [CrossRef][Green Version]
- Mikhailov, O.V.; Chachkov, D.V. DFT Quantum-Chemical Modeling Molecular Structures of Cobalt Macrocyclic Complexes with Porphyrazine or Its Benzo-Derivatives and Two Oxygen Acido Ligands. Int. J. Mol. Sci. 2020, 21, 9085. [Google Scholar] [CrossRef]
- Mikhailov, O.V.; Chachkov, D.V. Twelve-Nitrogen-Atom Cyclic Structure Stabilized by 3d-Element Atoms: Quantum Chemical Modeling. Int. J. Mol. Sci. 2022, 23, 6560. [Google Scholar] [CrossRef]
- Chachkov, D.V.; Mikhailov, O.V. Heteroligand complexes of chromium, manganese, and iron with trans-dibenzoporphyrazine and two oxo ligands: DFT calculations. Russ. Chem. Bull. 2022, 71, 656. [Google Scholar] [CrossRef]
- Becke, A.D. Density-functional exchange-energy approximation with correct asymptotic behavior. Phys. Rev. A 1988, 38, 3098–3100. [Google Scholar] [CrossRef]
- Perdew, J.P.; Burke, K.; Wang, Y. Generalized gradient approximation for the exchange-correlation hole of a many-electron system. Phys. Rev. B 1996, 54, 16533–16539. [Google Scholar] [CrossRef][Green Version]
- Medvedev, M.G.; Bushmarinov, I.S.; Sun, J.; Perdew, J.P.; Lyssenko, K.A. Density functional theory is straying from the path toward the exact functional. Science 2017, 355, 49–52. [Google Scholar] [CrossRef]
- Mikhailov, O.V.; Chachkov, D.V. DFT Quantum-Chemical Calculations of Molecular Structures for Heteroligand M(III) Complexes of 3d Elements with Porphyrazine and Fluoride Ion. Russ. J. Inorg. Chem. 2020, 65, 887–892. [Google Scholar] [CrossRef]
- Mikhailov, O.V.; Chachkov, D.V. About possibility of stabilization of unusual copper(IV) oxidation state in complexes with porphyrazine and two fluorine ligands: Quantum-chemical design. Inorg. Chem. Commun. 2019, 106, 224–227. [Google Scholar] [CrossRef]
- Mikhailov, O.V.; Chachkov, D.V. Density Functional Theory Modeling of Molecular Structures of Heteroligand 3d M(IV) Complexes with Porphyrazine and Oxo Anion. Russ. J. Inorg. Chem. 2020, 65, 1019–1024. [Google Scholar] [CrossRef]
- Mikhailov, O.V.; Chachkov, D.V. Copper(IV) Stabilization in Macrocyclic Complexes with 3,7,11,15-Tetraazaporphine, Its Di[benzo]- or Tetra[benzo] Derivatives and Oxide Anion: Quantum-Chemical Research. Materials 2020, 13, 3162. [Google Scholar] [CrossRef]
- Mikhailov, O.V.; Chachkov, D.V. M(VI) Oxidation State Stabilization in Iron, Cobalt and Nickel Heteroligand Metal Chelates Containing 3,7,11,15-Tetraazaporphine and Two Axial Oxo Ligands: Quantum-Chemical Simulation. Int. J. Mol. Sci. 2020, 21, 1494. [Google Scholar] [CrossRef][Green Version]
- Chachkov, D.V.; Mikhailov, O.V. Quantum-chemical calculation of molecular structures of (5656)macrotetracyclic 3d-metal complexes “self-assembled” in quaternary systems M(II) ion-ethanedithioamide- formaldehyde- ammonia by the density functional theory method. Russ. J. Inorg. Chem. 2014, 59, 218–223. [Google Scholar] [CrossRef]
- Chachkov, D.V.; Mikhailov, O.V. Structure of (5656)macrotetracyclic chelates in the ternary systems M(II)-ethanedithioamide-acetone (M = Mn, Fe, Co, Ni, Cu, Zn) according to DFT calculations. Russ. J. Inorg. Chem. 2013, 58, 1073–1078. [Google Scholar] [CrossRef]
- Schaefer, A.; Horn, H.; Ahlrichs, R. Fully optimized contracted Gaussian basis sets for atoms Li to Kr. J. Chem. Phys. 1992, 97, 2571–2577. [Google Scholar] [CrossRef][Green Version]
- Schaefer, A.; Huber, C.; Ahlrichs, R. Fully optimized contracted Gaussian basis sets of triple zeta valence quality for atoms Li to Kr. J. Chem. Phys. 1994, 100, 5829–5835. [Google Scholar] [CrossRef]
- Hoe, W.M.; Cohen, A.; Handy, N.C. Assessment of a new local exchange functional OPTX. Chem. Phys. Lett. 2001, 341, 319–328. [Google Scholar] [CrossRef]
- Perdew, J.P.; Burke, K.; Ernzerhof, M. Generalized Gradient Approximation Made Simple. Phys. Rev. Lett. 1997, 78, 1396. [Google Scholar] [CrossRef][Green Version]
- Paulsen, H.; Duelund, L.; Winkler, H.; Toftlund, H.; Trautwein, A.X. Free Energy of Spin-Crossover Complexes Calculated with Density Functional Methods. Inorg. Chem. 2001, 40, 2201–2203. [Google Scholar] [CrossRef] [PubMed]
- Swart, M.; Groenhof, A.R.; Ehlers, A.W.; Lammertsma, K. Validation of Exchange−Correlation Functionals for Spin States of Iron Complexes. J. Phys. Chem. A 2004, 108, 5479–5483. [Google Scholar] [CrossRef]
- Swart, M.; Ehlers, A.W.; Lammertsma, K. Performance of the OPBE exchange-correlation functional. Mol. Phys. 2004, 102, 2467–2474. [Google Scholar] [CrossRef]
- Swart, M. Metal–ligand bonding in metallocenes: Differentiation between spin state, electrostatic and covalent bonding. Inorg. Chim. Acta 2007, 360, 179–189. [Google Scholar] [CrossRef]
- Frisch, M.J.; Trucks, G.W.; Schlegel, H.B.; Scuseria, G.E.; Robb, M.A.; Cheeseman, J.R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G.A.; et al. Gaussian 09, Revision A.01; Gaussian, Inc.: Wallingford, CT, USA, 2009. [Google Scholar]
- Weinhold, F.; Landis, C.R.; Glendening, E.D. What is NBO analysis and how is it useful? Int. Rev. Phys. Chem. 2016, 35, 399–440. [Google Scholar] [CrossRef]
- Ochterski, J.W. Thermochemistry in Gaussian; Gaussian, Inc.: Wallingford, CT, USA, 2000. [Google Scholar]
- Demazeau, G.; Buffat, B.; Pouchard, M.; Hagenmuller, P. Recent developments in the field of high oxidation states of transition elements in oxides stabilization of six-coordinated iron(V). Z. Anorg. Allgem. Chem. 1982, 491, 60–66. [Google Scholar] [CrossRef]
- Noorhasan, N.N.; Sharma, V.K.; Cabelli, D. Reactivity of ferrate(V) with aminopolycarboxylates in alkaline medium: A premix pulse radiolysis. Inorg. Chim. Acta 2008, 361, 1041–1046. [Google Scholar] [CrossRef]
- Sharma, V.K. Ferrate(VI) and ferrate(V) oxidation of organic compounds: Kinetics and mechanism. Coord. Chem. Rev. 2013, 257, 495–510. [Google Scholar] [CrossRef]
- Li, X.X.; Xue, S.S.; Lu, X.Y.; Seo, M.S.; Lee, Y.M.; Kim, W.S.; Cho, K.B.; Wonwoo Nam, W.W. Ligand Architecture Perturbation Influences the Reactivity of Nonheme Iron(V)-Oxo Tetraamido Macrocyclic Ligand Complexes: A Combined Experimental and Theoretical Study. Inorg. Chem. 2021, 60, 4058–4067. [Google Scholar] [CrossRef] [PubMed]
- Kiselev, Y.M.; Tretiyakov, Y.D. The problem of oxidation state stabilisation and some regularities of a Periodic system of the elements. Russ. Chem. Rev. 1999, 68, 365–377. [Google Scholar] [CrossRef]
- Riedel, S.; Kaupp, M. The highest oxidation states of the transition metal elements. Coord. Chem. Rev. 2009, 253, 606–624. [Google Scholar] [CrossRef]
- Jiang, X.L.; Xu, C.Q.; Lu, J.B.; Cao, C.S.; Schmidbaur, H.; Schwarz, W.H.E.; Li, J. Electronic Structure and Spectroscopic Properties of Group-7 Tri-Oxo-Halides MO3X (M = Mn–Bh, X = F–Ts). Inorg. Chem. 2021, 60, 9504–9515. [Google Scholar] [CrossRef]
Macrocyclic Compound | [FeL1(O)F] | [FeL2(O)F] | [FeL3(O)F] | |||
---|---|---|---|---|---|---|
Parameter of molecular structure | Calculated by DFT | Calculated by DFT | Calculated by DFT | |||
B3PW91/TZVP | OPBE/TZVP | B3PW91/TZVP | OPBE/TZVP | B3PW91/TZVP | OPBE/TZVP | |
The lengths of Fe–N bonds in MN4 chelate node, pm | ||||||
Fe1N1 | 192.7 | 193.0 | 194.6 | 194.5 | 195.3 | 195.3 |
Fe1N2 | 193.7 | 193.0 | 193.8 | 193.6 | 195.3 | 195.3 |
Fe1N3 | 192.7 | 193.0 | 194.6 | 194.5 | 195.3 | 195.3 |
Fe1N4 | 193.7 | 193.0 | 193.8 | 193.6 | 195.3 | 195.3 |
The lengths of Fe–O and Fe–F bonds, pm | ||||||
Fe1O1 | 172.2 | 167.0 | 165.4 | 166.9 | 165.4 | 163.7 |
Fe1F1 | 178.8 | 187.4 | 188.4 | 187.8 | 188.1 | 186.2 |
The lengths of C–N bonds in 6-numbered chelate rings, pm | ||||||
N1C3 | 136.5 | 136.6 | 135.7 | 136.7 | 135.6 | 136.4 |
N1C4 | 136.5 | 136.6 | 135.7 | 136.7 | 135.6 | 136.4 |
N2C1 | 136.0 | 136.5 | 135.1 | 136.2 | 135.6 | 136.5 |
N2C2 | 136.0 | 136.5 | 135.1 | 136.2 | 135.6 | 136.5 |
N3C7 | 136.5 | 136.6 | 135.7 | 136.7 | 135.6 | 136.4 |
N3C8 | 136.5 | 136.6 | 135.7 | 136.7 | 135.6 | 136.3 |
N4C5 | 136.0 | 136.5 | 135.1 | 136.2 | 135.6 | 136.3 |
N4C6 | 136.0 | 136.5 | 135.1 | 136.2 | 135.6 | 136.5 |
N5C2 | 131.9 | 132.1 | 132.0 | 132.2 | 131.8 | 132.2 |
N5C3 | 131.9 | 132.1 | 132.1 | 131.9 | 131.8 | 132.1 |
N6C6 | 131.9 | 132.1 | 132.0 | 132.2 | 131.8 | 132.1 |
N6C7 | 131.9 | 132.1 | 132.1 | 131.9 | 131.8 | 132.2 |
N7C4 | 131.9 | 132.1 | 132.1 | 131.9 | 131.8 | 132.1 |
N7C5 | 131.9 | 132.1 | 132.0 | 132.2 | 131.8 | 132.2 |
N8C1 | 131.9 | 132.1 | 132.0 | 132.2 | 131.8 | 132.1 |
N8C8 | 131.9 | 132.1 | 132.1 | 131.9 | 131.8 | 132.2 |
The lengths of C–C bonds in 5-numbered chelate ring (N1C4C9C10C3), pm | ||||||
C4C9 | 144.6 | 145.4 | 146.4 | 146.0 | 146.4 | 146.1 |
C9C10 | 135.3 | 135.5 | 139.6 | 140.2 | 139.6 | 140.2 |
C10C3 | 144.6 | 145.4 | 146.4 | 146.0 | 146.4 | 146.1 |
Bond angles in chelate node FeN4, deg | ||||||
(N1Fe1N2) | 90.0 | 89.9 | 89.9 | 89.9 | 89.9 | 89.9 |
(N2Fe1N3) | 90.0 | 89.9 | 89.9 | 89.9 | 89.9 | 89.9 |
(N3Fe1N4) | 90.0 | 89.9 | 89.9 | 89.9 | 89.9 | 89.9 |
(N4Fe1N1) | 90.0 | 89.9 | 89.9 | 89.9 | 89.9 | 89.9 |
Bond angles sum (BAS), deg | 360.0 | 359.6 | 359.6 | 359.6 | 359.6 | 359.6 |
Non-bond angles between N atoms in N4 grouping, deg | ||||||
(N1N2N3) | 89.7 | 90.0 | 90.2 | 90.3 | 90.0 | 90.0 |
(N2N3N4) | 90.3 | 90.0 | 89.8 | 89.7 | 90.0 | 90.0 |
(N3N4N1) | 89.7 | 90.0 | 90.2 | 90.3 | 90.0 | 90.0 |
(N4N1N2) | 90.3 | 90.0 | 89.8 | 89.7 | 90.0 | 90.0 |
Non-bond angles sum (NBAS), deg | 360.0 | 360.0 | 360.0 | 360.0 | 360.0 | 360.0 |
Bond angles in 6-numbered chelate ring (Fe1N1C4N7C5N4), deg | ||||||
(Fe1N1C4) | 126.0 | 126.0 | 125.5 | 125.3 | 125.5 | 125.6 |
(N1C4N7) | 128.0 | 127.3 | 128.2 | 127.7 | 128.2 | 128.3 |
(C4N7C5) | 122.1 | 122.3 | 122.2 | 122.2 | 122.6 | 122.2 |
(N7C5N4) | 127.8 | 127.4 | 127.9 | 127.3 | 128.2 | 128.3 |
(C5N4Fe1) | 126.1 | 126.2 | 126.2 | 125.8 | 125.5 | 125.6 |
(N4Fe1N1) | 90.0 | 89.9 | 89.9 | 89.9 | 89.9 | 89.9 |
Bond angles sum (BAS61), deg | 720.0 | 719.1 | 719.9 | 718.2 | 719.9 | 719.9 |
Bond angles in 6-numbered chelate ring (Fe1N4C6N6C7N3), deg | ||||||
(Fe1N4C6) | 126.1 | 126.2 | 126.2 | 125.8 | 125.5 | 125.6 |
(N4C6N6) | 127.8 | 127.4 | 127.9 | 127.3 | 128.2 | 128.3 |
(C6N6C7) | 122.1 | 122.3 | 122.2 | 122.2 | 122.6 | 122.2 |
(N6C7N3) | 128.0 | 127.3 | 128.2 | 127.7 | 128.2 | 128.3 |
(C7N3Fe1) | 126.0 | 126.0 | 125.5 | 125.3 | 125.5 | 125.6 |
(N3Fe1N4) | 90.0 | 89.9 | 89.9 | 89.9 | 89.9 | 89.9 |
Bond angles sum (BAS62), deg | 720.0 | 719.1 | 719.9 | 718.2 | 719.9 | 719.9 |
Bond angles in 5-numbered ring (C3N1C4C9C10), deg | ||||||
(C3N1C4) | 107.9 | 107.2 | 109.2 | 108.8 | 109.0 | 108.8 |
(N1C4C9) | 108.9 | 109.5 | 109.3 | 109.3 | 109.4 | 109.4 |
(C4C9C10) | 107.2 | 106.9 | 106.1 | 106.3 | 106.1 | 106.2 |
(C9C10C3) | 107.1 | 106.9 | 106.1 | 106.3 | 106.1 | 106.2 |
(C10C3N1) | 108.9 | 109.5 | 109.3 | 109.3 | 109.4 | 109.4 |
Bond angles sum (BAS51), deg | 540.0 | 540.0 | 540.0 | 540.0 | 540.0 | 540.0 |
Bond angles in 5-numbered ring (C1N2C2C12C11), deg | ||||||
(C1N2C2) | 107.8 | 107.2 | 107.6 | 107.2 | 109.0 | 108.8 |
(N2C2C12) | 109.1 | 109.5 | 109.6 | 109.7 | 109.4 | 109.4 |
(C2C12C11) | 107.0 | 106.9 | 106.6 | 106.7 | 106.1 | 106.2 |
(C12C11C1) | 107.0 | 106.9 | 106.6 | 106.7 | 106.1 | 106.2 |
(C11C1N2) | 109.1 | 109.5 | 109.6 | 109.7 | 109.4 | 109.4 |
Bond angles sum (BAS51), deg | 540.0 | 540.0 | 540.0 | 540.0 | 540.0 | 540.0 |
Bond angles between O, Fe and N atoms, deg | ||||||
O1Fe1N1 | 89.4 | 92.7 | 92.6 | 91.8 | 92.6 | 92.3 |
O1Fe1N2 | 91.2 | 91.8 | 92.7 | 92.6 | 92.6 | 92.6 |
O1Fe1N3 | 89.4 | 92.7 | 92.6 | 91.8 | 92.6 | 92.2 |
O1Fe1N4 | 91.2 | 91.8 | 92.7 | 92.6 | 92.6 | 92.6 |
Bond angles between F, Fe and N atoms, deg | ||||||
F1Fe1N1 | 90.6 | 87.3 | 87.4 | 88.2 | 87.4 | 87.8 |
F1Fe1N2 | 88.8 | 88.2 | 87.3 | 87.4 | 87.4 | 87.4 |
F1Fe1N3 | 90.6 | 87.3 | 87.4 | 88.2 | 87.4 | 87.7 |
F1Fe1N4 | 88.8 | 88.2 | 87.3 | 87.4 | 87.4 | 87.4 |
Bond angles between O, Fe and F atoms, deg | ||||||
O1Fe1F1 | 180.0 | 180.0 | 180.0 | 180.0 | 180.0 | 179.9 |
Macrocyclic Compound | DFT Level | Effective Charge on Atom, in Electron Charge Units (ē) | <S**2> | ||||
---|---|---|---|---|---|---|---|
Fe1 | N1 (N3) | N2 (N4) | O1 | F1 | |||
[FeL1(O)F] | OPBE/TZVP | +0.253 | −0.304 (−0.304) | −0.305 (−0.305) | −0.172 | −0.445 | 3.7919 |
B3PW91/TZVP | +0.342 | −0.357 (−0.357) | −0.360 (−0.360) | −0.103 | −0.384 | 1.6043 | |
[FeL2(O)F] | OPBE/TZVP | +0.212 | −0.283 (−0.283) | −0.310 (−0.310) | −0.196 | −0.458 | 3.7877 |
B3PW91/TZVP | +0.433 | −0.335 (−0.335) | −0.360 (−0.360) | −0.123 | −0.489 | 3.7999 | |
[FeL3(O)F] | OPBE/TZVP | +0.103 | −0.285 (−0.288) | −0.286 (−0.286) | −0.090 | −0.386 | 1.1656 |
B3PW91/TZVP | +0.212 | −0.331 (−0.331) | −0.331 (−0.331) | −0.291 | −0.545 | 3.8007 |
Complex | ∆H0f, 298, kJ/mole | S0f, 298, J/mole K | ∆G0f, 298, kJ/mole |
---|---|---|---|
[FeL1(O)F] | 200.1 | 772.2 | 421.0 |
[FeL2(O)F] | 143.7 | 955.6 | 387.7 |
[FeL3(O)F] | 85.3 | 1149.0 | 349.3 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chachkov, D.V.; Mikhailov, O.V. Heteroligand Iron(V) Complexes Containing Porphyrazine, trans-Di[benzo]porphyrazine or Tetra[benzo]porphyrazine, Oxo and Fluoro Ligands: DFT Quantum-Chemical Study. Int. J. Mol. Sci. 2023, 24, 6442. https://doi.org/10.3390/ijms24076442
Chachkov DV, Mikhailov OV. Heteroligand Iron(V) Complexes Containing Porphyrazine, trans-Di[benzo]porphyrazine or Tetra[benzo]porphyrazine, Oxo and Fluoro Ligands: DFT Quantum-Chemical Study. International Journal of Molecular Sciences. 2023; 24(7):6442. https://doi.org/10.3390/ijms24076442
Chicago/Turabian StyleChachkov, Denis V., and Oleg V. Mikhailov. 2023. "Heteroligand Iron(V) Complexes Containing Porphyrazine, trans-Di[benzo]porphyrazine or Tetra[benzo]porphyrazine, Oxo and Fluoro Ligands: DFT Quantum-Chemical Study" International Journal of Molecular Sciences 24, no. 7: 6442. https://doi.org/10.3390/ijms24076442