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Abstract: Atherosclerosis is the most common cardiovascular disease and is the number one cause of
death worldwide. Today, atherosclerosis is a multifactorial chronic inflammatory disease with an
autoimmune component, accompanied by the accumulation of cholesterol in the vessel wall and
the formation of atherosclerotic plaques, endothelial dysfunction, and chronic inflammation. In
the process of accumulation of atherogenic lipids, cells of the immune system, such as monocytes,
macrophages, dendritic cells, etc., play an important role, producing and/or activating the produc-
tion of various cytokines—interferons, interleukins, chemokines. In this review, we have tried to
summarize the most important cytokines involved in the processes of atherogenesis.
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1. Introduction

Atherosclerosis is a progressive multifactorial chronic disease characterized by the
accumulation of lipids in the wall of large arteries. This process leads to the formation of
atherosclerotic plaques, which cause narrowing of the artery lumen and disrupt the patency
of the vessel. All this leads to an increased risk of acute conditions, such as myocardial
infarction and stroke. In general, cardiovascular diseases (CVD) are the main cause of death
in the world [1].

Unfortunately, the aging process is the biggest risk factor for health disorders in
general and the malfunctioning of cardiovascular system in particular. The CVD is the
cause of death for 40% of people over 65 [2]. However, there is strong evidence that
CVD affects young people too, and the severity and scale of the pathological process
increases with age [3]. Numerous studies have reported that the subclinical form of
atherosclerosis is often present in a large population of young people susceptible to risk
factors for atherosclerosis [4]. In such a group there exists a difference in the etiology and
profiles of risk factors compared to older patients, which leads to differences in disease
progression, prognosis and treatment. The development of atherosclerotic lesions in young
people can be explained by the assumption that they smoke more often, they have more
other bad habits, they may not take care of their health, some men are obese, and patients
from this group may also have a burdened family history [5,6]. There are also unique
situations in which, for example, the accelerated development of atherosclerosis and an
increased risk of acute myocardial infarction in persons abusing prohibited drugs are
shown [7].

Most recent studies confirm the hypothesis that atherosclerosis is a kind of chronic
inflammatory disease with an autoimmune component. The pathological process starts
with atherogenic modification of low-density lipoproteins (LDL) and their subsequent
deposition in the vessel wall, where they can be captured by phagocytes, as well as attacked
by specific T cells and antibodies. To summarise the formation of atherosclerotic plaques
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is initiated by a combination of endothelial dysfunction, chronic inflammation, genetic
predisposition and long-term exposure to risk factors, which include hyperlipidemia,
hypertension, smoking, male sex and diabetes mellitus [8–10].

A well-known and clinically justified risk factor for atherosclerosis is the high content
of low-density lipoproteins in plasma. With the accumulation of low-density lipoproteins in
the subendothelial space of the arterial wall, their gradual oxidation occurs with the forma-
tion of modified low-density lipoproteins [11]. This provokes the onset of an inflammatory
reaction. It is characterized by excessive formation of chemotactic and proinflammatory
proteins that attract monocytes and other immune cells into the inflamed artery wall. Un-
der the influence of colony-stimulating macrophage factor (M-CSF) and possibly other
differentiation factors, most monocytes in early atheromas become macrophages and/or
dendritic cells. After monocytes have differentiated into macrophages, they excessively
absorb modified LDL and may transform into foam cells. This leads to the formation of
atherosclerotic plaques [12]. Further, macrophages continue to populate the atherosclerotic
plaque by attracting new cells from the vascular bed and proliferation of resident cells
located in the surrounding tissues. It is noteworthy that macrophage proliferation signals,
such as IL-4 [13], have been found in atherosclerotic plaques, especially in macrophage-rich
fatty streaks, where they co-localize with foam cells [14].

In addition to macrophages, an important role in the development of the pathological
process is played by dendritic cells (DCs), which also have a monocytic origin and belong
to the cells of innate immunity [15]. DCs are professional antigen-presenting cells that
initiate the immune response. DCs are present in a healthy vessel, but there is a directly
proportional relationship between their number and the stage of development of the
disease [16]. These data show the fundamental role of inflammation in atherogenesis
and its connection with the accumulation of lipids. This relationship is expressed in the
ongoing process of capture by macrophages of modified LDLs from the extracellular space
of intima. Inside macrophages, cholesterol undergoes hydrolysis in lysosomes. Next,
cholesterol molecules exit the lysosomes and are esterified in the cytoplasm, where they
accumulate in the form of cytoplasmic lipid droplets. This process completes the formation
of a foam cell. Active formation of foam cells occurs in the early stages of the development
of atherosclerotic lesions. In the later stages of lesions, foam cells are destroyed and
release their contents into the extracellular space, repeatedly provoking the development
of inflammation and causing the development of structural instability of the plaque [17].

The processes of foam cell formation can be triggered by unregulated absorption of
modified LDL through receptors (for example, CD36) and lead to an uncontrolled increase
in cholesterol. This destabilizes lysosomes, disrupts the metabolism of cholesterol and fatty
acids, and activates the NLRP3 (NLR family pyrin domain containing 3) inflammasome,
and then the production of IL-1ß. Further, macrophages, penetrating into the emerging
atherosclerotic plaques, support local inflammation by producing reactive oxygen species
(ROS) and secreting inflammatory cytokines and chemokines, including TNF-α, IL-1β, IL-6,
IL-8 and TGF-β, which attract additional immune cells [18,19].

The inflammasome is cytoplasmic multi-protein complex containing sensory protein,
inflammatory caspases and, in some cases, an adapter protein connecting them. They can
be activated by a set of endogenous and exogenous stimuli, which leads to enzymatic
activation of canonical caspase-1 [20], non-canonical caspase-11 [21] or equivalent caspase-
4 and caspase-5 in humans [22] or caspase-8 [23]. This leads to the secretion of pro-
inflammatory cytokines IL-1β and IL-18, and in some cases, apoptotic and pyroptotic cell
death is triggered. The activation of inflammasome is a vital process. It is necessary to fight
microbial pathogens or the consequences of tissue damage. At the same time, impaired
activation of inflammasomes can cause uncontrolled tissue reactions, which may cause
various diseases, including auto-inflammatory disorders, cardiometabolic diseases, cancer
and neurodegenerative diseases. Therefore, it is important for the organism to maintain a
delicate balance between the activation and inhibition of inflammasome assembly. Recently,
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there has been an increasing number of studies of the structural and molecular mechanisms
underlying the regulation of the transmission of signals by inflammasomes [24].

Next, we will try to characterize the cytokine stimuli involved in the development
of the described processes as fully as possible. The features of the proatherogenic or
antiatherogenic action of pro-inflammatory and anti-inflammatory cytokines and regulatory
molecules will be considered.

2. What Are Cytokines?

Here we describe the most important groups of cytokines in terms of their participation
in the processes of atherogenesis. Cytokines are a set of small proteins involved in cellular
signaling pathways. The cytokine superfamily is produced by various cells of the body, and
includes interferons, interleukins (IL-1, IL-6, colony-stimulating factors (CSF), transforming
growth factors (TGF), tumor necrosis factor (TNF) family, chemokines and others. Cytokines
can affect all stages of atherosclerosis development [25]. They are produced by T cells [26],
monocytes [27], macrophages [28], platelets [29], endothelial cells (EC) [30], smooth muscle
cells (SMC) [31], pericytes [32], adipocytes [33] and others in response to inflammation and
other stimuli. Increased production of proinflammatory cytokines is associated with the
progression of the disease and contributes to the development of atherosclerosis. In the
later stages of atherosclerosis, proinflammatory cytokines contribute to the destabilization
of atherosclerotic plaques by provoking apoptosis of plaque cells and matrix degradation.
This leads to the atherosclerotic plaque ruptures and the formation of blood clots [34].

2.1. Interferons

Interferons (IFN) are the most important cytokines with antimicrobial, antitumor and
immunomodulatory activity. The three types of IFN (I, II, and III) are classified by their
receptor specificity and sequence homology. IFNs are produced and secreted by cells in
response to certain stimuli. IFNs were discovered in 1957 by Isaacs and Lindenmann in a
study called “Virus interference”. They identified a new factor that can prevent the virus
from entering cells, and called it “interferon” [35]. To date, three types of IFN have been
identified based on the classification of their specific receptors. In humans, the IFN type I
(IFN-I) family consists of 13 IFNα subtypes and one each of IFNβ, ε, κ,ω subtypes. Type II
IFN (IFN-II) includes only IFNγ, and IFN type III (IFN-III) includes IFN-λ1 (IL-29), IFN-λ2
(IL28A), IFN-λ3 (IL-28B) and IFN-λ4 [36].

All interferons (IFNs) transmit signals via the JAK/STAT path. Interaction with
receptors induces sequential activation of JAK (janus kinases), TYK (tyrosine kinase) and
STAT (signal transducer and activator of transcription), which leads to the activation
of ISG (IFN-stimulated genes) transcription. In the absence of stimuli, the cytoplasmic
domain of the IFN receptor is bound by inactive JAK kinases. After IFN binding, these
JAKs undergo phosphorylation and are activated, which leads to phosphorylation of the
IFN receptor and a change in the position of STAT proteins. These STAT, now located
next to the activated JAK, are phosphorylated by tyrosine and released from the receptor.
Activated STATS undergo homo- or heterodimerization and nuclear translocation. STAT1-2
heterodimers bind to IRF9 (IFN-regulatory factor) to form the active transcription complex
ISGF3, whereas STAT homodimers are direct transcription activators. As a rule, type I and
type III IFN signaling activates TYK2 and JAK1, which leads to STAT1-2 heterodimerization
and ISGF3 formation, whereas type II IFN signaling activates JAK1 and JAK2, causing
STAT1 homodimerization [37–41].

2.1.1. The Type-I Interferons (IFNs)

The type I IFNs includes IFN-α, β, ε, κ and ω. The genetic loci of these subtypes
contain different regulatory elements that probably contribute to differentiated control
during signal transmission. These subtypes also exhibit different affinity of binding to the
receptor, which contributes to various strength of signal transmission. Type I IFNs transmit
a signal through a ubiquitously expressed heterodimeric receptor consisting of IFNAR1
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and IFNAR2 subunits. The type I IFNs activates the transcription factor ISGF3, which binds
to IFN-stimulated response elements (ISREs) inside ISG promoters. It should be added
that the priming effect is noted for IFN, due to which small amounts of IFN maintain high
basal STAT1/2 and IRF9 levels. This allows immune cells to respond quickly to the IFN
signal. In certain cell types, other members of the STAT family (STAT3, 4, 5A/5B and 6) can
also be activated by the type I IFNs. In general, the type I IFNs are the major component
of antimicrobial immune defense, and ISG-induced products act by limiting infection and
modulating/enhancing the adaptive immune response. Most cell types can respond to the
type I IFNs signaling [42,43].

2.1.2. The Type-II Interferons

IFN type II refers to IFN-γ, which binds as a dimer to the IFNGR (interferon gamma
receptor) complex, consisting of two IFNGR1 subunits and two IFNGR2 subunits. Activa-
tion of the receptor induces phosphorylation of JAK1 and JAK2, which makes it possible to
combine STAT1 subunits. The STAT1 pair is phosphorylated, homodimerized and moved
to the nucleus, where it binds gamma activated sequence (GAS) elements inside ISG pro-
moters. GAS elements can also be activated by the STAT complex, which was induced
by type I interferon. Despite the fact that IFN-γ production is limited to hematopoietic
cells, IFNGRS are widely represented in all cell types, so they are able to respond to IFN-γ
signals. IFN-γ signals can induce the expression of genes that initiate a type I IFN response.
Similarly, ISG products from type I IFN signaling can enhance IFN-γ signaling. In general,
IFN-γ plays a key role in the regulation of immune function, including the polarization
of the T-cell response and activation of myeloid cells, as well as the binding of innate and
adaptive immune responses [44,45].

2.1.3. The Type-III Interferons

Type III IFNs include IFNλ1, IFNλ2, IFNλ3 (first called IL-29, IL-28A and IL-28B)
and the recently described IFNλ4. IFN-λ binds to a heterodimeric receptor consisting of
IFNLR1 (also known as IL-28Ra) and IL-10R2. While IL-10R2 is widespread, the expression
of IFNLR1, which is uniquely used by type III interferons, is limited to epithelial cells,
subpopulations of myeloid cells and some nerve cells. Thus, it is believed that type III
interferons act mainly on barrier surfaces, including mucous membranes and the blood-
brain barrier [46]. The complex of IFN-λ and its receptor induces the same ISG as type I
IFN via ISGF3 (interferon-stimulated gene factor 3). This serves as an indirect confirmation
that IFN-λ signaling uses similar components of the JAK/STAT path that use the type-
I interferons. In addition, data has recently been obtained that JAK2 can mediate the
transmission of type III IFN signals [47]. The transmission of type I and type III IFN
signals demonstrates different kinetics, and it has been shown that these interferons work
in dynamic balance, complementing each other’s work [48–50]. The main pathways for
signaling to the cell nucleus by the interferons are shown in Figure 1.

2.2. The Interleukins

The first and most important group of interleukins to be mentioned is the Il-1 family.
The interleukin-1 (IL-1) cytokine family comprises 11 members: IL-1α, IL-1β, IL-1 receptor
antagonist (IL-1Ra), IL-18, IL-33 and IL-1F5–IL-1F10. The biology of IL-1F5–IL-1F10 is
less well characterized than that of IL-1, IL-18 and IL-33 [51]. The signal initiation mech-
anism is a step-by-step process in which a cytokine binds a related receptor. Next, the
cytokine-receptor complex activates a secondary receptor. Intracellular domains of Toll/IL-
1 receptors (TIR) are in close proximity, initiating a cascade of NF-kB signal transmission
(Figure 2). Due to the strong inflammatory response caused by IL-1 family cytokines,
there are several physiological mechanisms for inhibiting IL-1 family signaling, including
cytokine antagonists and trap receptors [52]. As described above, two members of this
family, namely IL-1β and IL-18, are the first to be released from the activated immune cell.
The secretion of these cytokines is mediated by the caspase-1-activating NLRP3 inflam-
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masome and the subsequent development of inflammation. It was found that cholesterol
crystals are able to activate the NLRP3 inflammasome in phagocytes in vitro. In addition,
studies on mice deficient in NLRP3 inflammasome components, cathepsin B, cathepsin
L, or IL-1 molecules showed that intraperitoneal injection of cholesterol crystals did not
develop acute inflammation, unlike mice without this deficiency [19]. Activation of caspase
1 leads to the activation of NF-kB (nuclear factor kappa-light-chain-enhancer of activated
B cells) and the induction of pro-IL-1β transcription, the expression of pro-IL-18 comes
constitutively and increases under conditions of pro-inflammatory activation. The secretion
of cytokines IL-1β and IL-18 promotes the activation of other immune cells to the site of
inflammation [53].
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Here we will confine ourselves to describing the signaling of the interleukin-1 (IL-1)
cytokine family as a fundamental example of the work of all cytokine families. We will not
add a description of other groups of cytokines, but in the chapters devoted to the specific
properties of certain groups we will describe each cytokine of interest to us.

2.3. The Tumor Necrosis Factor Superfamily

The next important group is the tumor necrosis factor superfamily (TNFSF). Numerous
members of the TNFSF have recently shown emerging roles in both the protection and
progression of coronary and peripheral artery disease. The cause of these diseases is
atherosclerosis. The most important role in the development of atherosclerosis is TNF-
α, TNF-related apoptosis-inducing ligand (TRAIL), TNF-like weak-inducer of apoptosis
(TWEAK), CD40L, and their cognate receptors.

Signals transmitted by TNFSF members inside the cell are capable of inducing both
pro-apoptotic signals and survival-promoting signals [54] (Figure 3). These signal paths
are common to TNF-α, TRAIL, TWEAK, and CD40. TNFSF signaling occurs through the
TNF-R1 and TNF-R2 receptors. Moreover, TNF-R1 refers to the DD-containing subgroup of
TNFR, which mediate apoptosis [55].
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Here it is worth mentioning in general about the proteins of the superfamily of
death domains (DD) and in general about the work of DD mediated TNFSF signaling.
This pathway plays a central role in signaling apoptosis and inflammation through the
formation of oligomeric complexes. This superfamily is composed of the DD, Caspase
Recruitment Domain (CARD), Death Effector Domain (DED), and Pyrin Domain (PYD)
subfamilies. These protein subfamilies are capable of forming homotypic interactions,
which facilitates the subsequent assembly of oligomeric signaling complexes. Their main
function is to promote the activation of pro-apoptotic caspases. This process can occur
through the release of Cytochrome C from mitochondria, which triggers the oligomerization
of Apaf-1 (apoptotic protease activating factor 1). Apaf-1 is then able to bind to Caspase-9
through the interaction of two CARDs and promote its activation through dimerization
and subsequent autocatalytic cleavage [56]. Also, activation of pro-apoptotic caspases
can begin along the TNFR associated death domain (TRADD) recruitment pathway. To
initiate apoptosis, TRADD binds to a second adaptor protein called Fas-associated protein
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with death domain (FADD) causing caspase-8/10 activation, triggering a series of caspase
cleavages that culminate in cellular apoptosis. The FADD complex in combination with
procaspase-8/10 is called the death-inducing signaling complex (DISC) [57–60].

On the other hand, the binding of TNF-α to the receptor can lead to trimerization and
binding of TRADD to DD. The resulting complex then helps attract additional proteins:
TNF receptor associated factor 2 (TRAF2) and receptor-interacting protein-1 (RIP1). The
activation of the cellular inhibitor of apoptosis proteins (cIAPs) with TRAF2 (TNF receptor
associated factor 2) leads to the ubiquitination of RIP1, which allows the complex to be
associated with the transforming growth factor β-activated kinase-1 (TAK1). The resulting
complex stimulates the translocation and activation of NF-κB, while the stimulation of
NF-κB follows either the canonical or non-canonical pathway. Canonical activation of
NF-κB causes degradation of the NF-κB inhibitor (IκB) through the IκB kinase complex
(IKK) [61], whereas the non-canonical pathway depends on the stimulation of IKKα by
the kinase NF-κB (NIK) [62]. Canonical stimulation appears to be more common, and this
is the pathway by which the TNF-R1 signal is transmitted. The complexity and diversity
of signaling pathways do not allow us to consider in this review all possible options for
transmitting a signal to the cell. However, even this small excursion into the theory of
TNFSF signaling already suggests the existence of a direct relationship between the change
in the level of cytokines of this group and the development of atherosclerotic lesions. This
is confirmed by both clinical and laboratory studies, including on model animals [63–66].

2.4. Chemokines

These are a large family of structurally related, chemoattracting cytokines that are
divided into subgroups based on the position of the amino-terminal cysteine residues
(CC, CXC, CX3C, XC). Chemokines are divided into four groups: two large families
represented by a plurality of members, these are the chemokines CXC and CC, as well as
two groups with a single representative in each group: fractalkine (CX3C) and lymphotactin
(C). Chemokines CC contain four cysteine and are of particular interest as chemotactic
monocyte proteins and eotaxin belong to this group. All chemokines play crucial roles in
many forms of CVD. Chemokines interact with receptors that activate heterotrimeric G
proteins and associated intracellular signaling pathways [67–69]. Chemokines and their
receptors are widely expressed in vascular cells, such as ECs, SMCs, leukocytes [68].

The main role of chemokines is to control the migration of leukocytes. This is of
great importance in the pathogenesis of atherosclerosis, where one of the leading roles
is played by the interaction between leukocytes and endothelial cells of blood vessels.
These ratios are mediated through selectins, which are constitutively expressed on white
blood cells (L-selectins, CD62L) or endothelial cells (E- and P-selectins, CD62E and CD62P).
The expression of selectins is induced by inflammatory mediators. The process of pen-
etration of leukocytes through the endothelial barrier is as follows: integrin molecules
on leukocytes (e.g., CD11/CD18) are activated by cytokines and chemotactic factors and
bind to adhesion molecules on the cell surface of endothelial cells. And then leukocytes
migrate through the endothelium into the tissues in response to a gradient of chemotactic
factors. Chemokines are induced in response to exogenous (e.g., microorganisms, toxic
components) or endogenous (e.g., pro-inflammatory cytokines) signals. Chemokines also
stimulate tissue-infiltrating leukocytes to produce proteolytic enzymes, which facilitates
the migration of cells through the basement membrane and extracellular matrix [70].

The first group of chemokines we wanted to talk about are CC-chemokines (or β-
chemokines). They are a family consisting of 28 chemotactic cytokines with an N-terminal
CC domain. These are, for example, human chemokines: CCL1, CCL3, CCL4, CCL5, CCL18,
CCL19, CCL20, CCL21, CCL25, CCL27 and CCL28; Chemokine receptors with CC motif:
CCR5, CCR6, CCR7, CCR8, CCR9 and CCR10. Molecules of this group regulate the work
of CD4+ and CD8+ lymphocytes, dendritic cells, eosinophils, macrophages, monocytes and
NK cells. They are actively involved in proliferation, apoptosis resistance, drug resistance,
migration and invasion of cancer cells [71]. However, there is greater heterogeneity within
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CC chemokines, not only with respect to the individual spectrum of action, but also in
their protein sequences and chromosomal localization. As mentioned above, chemotactic
monocyte proteins (MCPs) and eotaxin, based on structural and functional characteristics,
belong to the subfamily CC-chemokines. Four human MCPs (MCP-1–4) have currently
been described. The most well-characterized is the chemokine monocytic chemoattractant
protein-1 (MCP-1/CCL2). In particular, MCP-1 is a powerful chemokine that attracts blood
monocytes to the site of inflammation, tumor or atherosclerotic lesions [72].

The next important group of chemokines are members of the CXC family. This group
is important for us precisely in the context of the development of cardiovascular diseases,
as many of them contribute to angiogenesis. These are the following representatives:
CXCL1, CXCL2, CXCL3, CXCL5, CXCL6, CXCL7, CXCL8. Angiogenic factors in the local
microenvironment can act in different ways. For example, the first step may involve the
activation of endothelial cells by vascular endothelial growth factor (VEGF), which leads
to the activation of the anti-apoptotic molecule Bcl-2, which promotes the expression of
CXCL8 by endothelial cells. Increased expression of CXCL8, in turn, affects the formation
of the angiogenic phenotype of endothelial cells by the autocrine and paracrine routes.
CXCL8 helps improve endothelial cell survival and proliferation [73–75]. There is evidence
confirming the participation of CXCL cytokines in the remodeling of myocardial damage
after a heart attack [76].

Fractalkine (CX3CL1) is a large cytokine protein of 373 amino acids, it contains several
domains and is the only known member of the CX3C family of chemokines. The structure
of the polypeptide differs from the typical structure of other chemokines. For example, the
distance between the characteristic N-terminal cysteines is different, there are three amino
acids separating the initial pair of cysteines in CX3CL1. Fractalkin was first discovered
in 1987 Bazan et al. [77]. It is not only the only member of the CX3C subfamily, but also
an unusual chemokin with a dual function. Fractalkin acts either in soluble form or as an
adhesion molecule. Soluble CX3CL1 has a potent chemoattractant effect on T cells and
monocytes, while cell-bound chemokine promotes strong leukocyte adhesion to activated
endothelial cells, where it is predominantly expressed. CX3CL1 exhibits its adhesive and
migratory functions by interacting with the chemokine receptor CX3CR1 [78].

XCL1, or lymphotactin (Ltn), is a member of the C-class chemokine, predominantly
expressed by T cells, NT cells, synovial macrophages, and dendritic cells. This chemokine
exhibits chemotactic and immunomodulatory activity against T cells, natural killer (NK)
and macrophages, and plays an important role in the cytotoxic immune response mediated
by dendritic cells. At present, its role in the development of arthritis and progressive bone
degradation in rheumatoid arthritis is well studied [79].

3. How Cytokines Impact Cholesterol Metabolism

Next, we will describe the features of the influence of cytokines of interest to us on
the role mediated through cholesterol metabolism and inflammation in the initiation and
progression of atherosclerosis. And here and further we will adhere to the same sequence
in the description of proteins as in the previous chapter.

3.1. Impact of Interferons on Cholesterol Metabolism

In the original work [80] interferon type I (IFN) signaling has been shown to alter the
balance of lipid metabolism programs by reducing synthesis and increasing the uptake
of cholesterol and long-chain fatty acids in the cell. As it turned out, the physiological
meaning of this effect is explained by the fact that the modulation of these metabolic
pathways in macrophages is necessary for the development of resistance to viral infection.
It has been shown that spontaneous restriction of lipid uptake by biosynthesis stimulates
the IFN response of type I. And the activation of the response along the IFN pathway
of type I is associated with a decrease in the size of the pool of synthesized cholesterol
and is inhibited by replenishing cells with free cholesterol. Thus, IFN signaling reduces
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cholesterol biosynthesis, and conversely, a sharp decrease in cholesterol biosynthesis causes
type I IFN responses and stimulates cells to enhance antiviral immunity.

Interferons are able to mediate abrupt changes in cholesterol metabolism pathways by
rapidly reducing cholesterol synthesis, increasing the accumulation of cholesterol esters in
lipid droplets, and stimulating the production of cholesterol derivatives such as oxysterol
25-hydroxycholesterol (25HC) [81]. Altering lipid metabolism pathways modulates host
defense by blocking viral penetration, regulating innate immunity receptor signaling,
immune cell skewing, and increasing the phagocytic capacity of macrophages. This process
is seen as a fundamental component of the host’s immune response. At the same time,
in the case of violations of the pathway of activation and secretion of IFNs, its excess
production can stimulate an immune response without the presence of a pathogen, which
can lead to the start of a vicious circle of chronicity of inflammation [82]. It is also worth
noting that production of 25-hydroxycholesterol (25-HC) promotes macrophage foam cell
formation [83].

Speaking about the effect of IFNs on cholesterol metabolism, it is worth mentioning
that IFNs induce several genes involved in the esterification and outflow of cholesterol. Co-
incubation of macrophages with interferon increases the formation of cholesterol esters, and
it has been found that cholesterol in the culture medium is not required for the accumulation
of esterified cholesterol in response to IFN. This indicates that the source of cholesterol for
esterification may be derived from the cell membrane rather than from the extracellular
environment [81].

3.2. Impact of Interleukins on Cholesterol Metabolism
3.2.1. The Interleukin-1 (IL-1) Cytokine Family

Among the numerous inflammatory mediators, cytokines of the IL-1 family play an
important role. This group includes several pro-inflammatory cytokines (IL-1α, IL-1β, IL-
18, IL-33, IL-36α, IL-36β and IL-36γ) and one anti-inflammatory cytokine (IL-37). According
to current evidence, the most studied members of the IL-1 cytokine family are IL-1α, IL-1β,
IL-18, and IL-1Ra [84].

Many members of the IL-1 family promote atherogenesis and are important mediators
of vascular and systemic inflammation. The key mediator in the production of cytokines
of the IL-1 family is the inflammasome—NLRP3. This is one of the main signaling com-
plexes of the innate immune response. NLRP3 consists of: NOD (nucleotide oligomerization
domain)-, LRR (leucine-rich repeat)- and PYD-containing protein 3. The assembly of NLRP3
in cells of atherosclerotic lesions is activated by modified low-density lipoproteins and
cholesterol crystals. Inflammasome activation occurs in response to pathogen-associated
molecular patterns (PAMP), conserved infectious agent compounds, and damage-related
molecular patterns (DAMP). PAMP and DAMP are perceived by pattern recognition recep-
tors (PRRs) and innate and adaptive immunity cells [85]. The formation of inflammasomes
is induced by several intracellular PRRs. When activated, they form large multimolecular
signaling platforms that catalyze the maturation of pro-IL-1β and pro-IL-18 [86]. Thus,
this process contributes to the formation of an inflammatory response in the vessel wall,
which, in the absence of a stimulus to completion, leads to the development and progres-
sion of atherosclerosis. At the same time, in case of impaired functioning of the NLRP3
inflammasome, anti-atherogenic effects can be recorded. So, it was demonstrated that mice
with double knockout Apoe−/−/Caspase-1−/− showed a decrease in the spontaneous
development of atherosclerotic lesions after being fed a chow diet for 26 weeks [87]. A
similar study confirms that the accumulation of cholesterol in myeloid cells activates the
NLRP inflammasome, and a deficiency of NLRP3 or caspase-1/11 reduces the size of the
atherosclerotic lesion in LDLR−/− mice [88].

3.2.2. Interleukin 4

Interleukin-4 (IL-4) and its transcripts have been found in atherosclerotic lesions
in both humans and mice. To determine whether this local release of IL-4 affects the
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metabolism of macrophage lipids, the effect of this cytokine on intracellular cholesterol
esterification during incubation with modified LDL was investigated. IL-4 significantly
enhanced cholesterol esterification induced by acetylated LDL (AcLDL) in both mouse peri-
toneal macrophages and the J774 mouse macrophage cell line. This was not a generalized
effect on lipoprotein metabolism because IL-4 had no effect on cholesterol esterification
in the presence of LDL or beta-VLDL (very low-density lipoproteins). The determination
of binding isotherms showed that IL-4 increased the number of AcLDL binding sites on
the cell surface. IL-4-induced AcLDL cholesterol esterification was weakened by a Class
A scavenger receptor (SR-A) antagonist, fucoidan, and a monoclonal antibody against
SR-A, 2F8 in mice [89]. IL-4 is responsible for the expression of peroxide enzymes, for
example, human 15-lipoxygenase (ALOX15), involved in the oxidation processes of LDL.
This prompted the formation of a hypothesis about the possible direct participation of IL-4
in the development of atherosclerosis. However, studies to date have shown that IL-4 defi-
ciency does not affect early atherosclerosis, at least in C57BL/6 mice fed a high-cholesterol
diet [90].

3.2.3. Interleukin 5

Interleukin 5 (IL-5) is a cytokine produced by eosinophils, mast cells, macrophages,
CD4+ T, and type 2 innate lymphoid cells (ILC2). Its expression is regulated by several
transcription factors, including GATA binding protein 3 (GATA3). IL-5 may play a role
in the development of human atherosclerosis. Its level is associated with the plasma con-
centration of anti-OxLDL (oxidized low-density lipoprotein) antibodies, which may be
associated with a decrease in the rate of development of atherosclerosis [91,92]. This is
indirectly confirmed by the fact that autoantibodies against IL-5, suppressing its function,
accelerate the development of atherosclerosis [93]. And IL-5 overexpression suppresses
the development of CVD by reducing inflammation in macrophages [94] and SMC apopto-
sis [95]. It has also been shown that LXR (liver X receptor) activation induces macrophage
IL-5 expression [96]. This may indicate a role for LXR not only in stimulating ABCA1 ex-
pression and cholesterol outflow, but also in inducing IL-5 expression in macrophages. IL-5
significantly up-regulated ATP-binding cassette transporter A1 (ABCA1) expression in a
dose-dependent and time-dependent manner. As a result, IL-5 increased ABCA1-mediated
cholesterol efflux. The regulation of this process occurs through the miR-211/JAK2/STAT3
signaling pathway in THP-1-derived macrophages [97].

3.2.4. Interleukin 6

IL (interleukin)-6 is a pivotal cytokine of innate immunity, which regulates a broad
set of immunological functions traditionally associated with host defense, immune cell
regulation, proliferation, and differentiation. Enhanced release of this cytokine occurs
in response to acute infections, chronic inflammation, metabolic disorders, physiological
stress, etc. This, in turn, leads to an increase in the synthesis of acute phase proteins by
the liver, activation of endothelial cells, increased coagulation processes, activation of the
hypothalamic-pituitary-adrenal system, stimulation of proliferation and differentiation
of lymphocytes [98]. In turn, the level of C-reactive protein (CRP) in the blood plasma
can be used as a predictor of the risk of developing cardiovascular events along with the
assessment of the level of total cholesterol or low-density lipoprotein cholesterol [99,100].
It has also been shown that an increase in the level of IL-6 is associated with impaired mito-
chondrial function in vascular cells, which may be a factor accelerating the development of
atherosclerosis [101]. Given current efforts to prevent and treat atherosclerosis, at a funda-
mental level, understanding of the relationship between inflammation, cholesterol levels,
and cardiovascular risk has not changed significantly since the data described decades ago.
This may indicate that future treatments for atherosclerosis will require a combination of
inhibiting inflammation and lowering cholesterol [102].



Int. J. Mol. Sci. 2023, 24, 6426 11 of 24

3.2.5. Interleukin 7

IL-7, a member of the type I cytokine subfamily, is involved in the development and
proliferation of T- and B-lymphocytes, which play an important role in the functioning
of the innate immune system and the inflammatory response [103]. It is known that
atherosclerosis is a multifactorial disease involving various pathological mechanisms,
including cholesterol accumulation, lipoprotein modification, endothelial dysfunction, and
chronic inflammation [104]. IL-7 induces the activation of monocytes and natural killer
cells, which induces the production of inflammatory cytokines (IL-1b, IL-8, MCP-1, MIP,
etc.), and the expression of chemokine receptors (CCR1, CCR2, CCR5), which are highly
expressed in atherosclerotic plaques [105]. IL-7 acts by binding to the heterodimeric IL-7R
receptor, which consists of two glycosylated subunits: IL-7Rα (CD127, 65 kDa) specific for
IL-7 and a common γ-chain (γc, CD132, 56 kDa) common to IL-2, 4, 7, 9, 15 and 21 receptors.
The cytoplasmic domains of IL-7Rα (long, 195 residues) and γc (short, 86 residues) are
responsible for binding a large number of proteins involved in signaling pathways that
support survival and proliferation cells include Janus kinases, JAK1 and JAK3 (associated
with IL-7Rα and γc, respectively), which are involved in the JAK/STAT pathway. In
addition, binding of IL-7 to its receptor triggers the MAPK (mitogen-activated protein
kinases) and PI3K/Akt pathways, which induce mitogenic and anti-apoptotic signals [106].
PI3K/Akt-dependent and independent activation of NF-kB leads to the recruitment of
monocytes/macrophages and plays an important role in atherogenesis [107]. To date, there
is evidence that IL-7 may be a potential therapeutic target for the treatment of chronic
inflammatory diseases. For example, in animal experiments, IL-7 receptor blockade has
been shown to be effective in improving chronic inflammatory diseases by downregulating
memory T-cell responses [108]. In addition, IL-7 was found to be one of the three major
gene transcripts affected by cholesterol lowering [107].

3.2.6. Interleukin 8

IL-8 is able to induce the development of extracellular immune traps of neutrophils,
which, by activating the transmission of NF-κB signals in macrophages, can aggravate
the course of atherosclerosis at the cellular level. One study showed that PMA-induced
NETosis directly activated the TLR9 (toll-like receptor)/NF-κB pathway in macrophages
and stimulated the release of IL-8. This pathway works as follows: IL-8 interacted with its
receptor CXC chemokine receptor 2 (CXCR2) on neutrophils, which led to the formation of
neutrophil extracellular traps (NETs) through Src and extracellular signal-regulated kinase
(ERK) and p38 mitogen-activated protein kinases (MAPK) [109]. Some studies suggest that
IL-8 has an important role in the regulation of cholesterol efflux. Later was described IL-8
enhances the expression of miR-183, which then inhibits ABCA1 expression and cholesterol
efflux [110]. Cholesterol outflow plays an important role in anti-atherogenesis, and a
modification of this process could provide a new therapeutic approach to cardiovascular
disease [111].

3.2.7. Interleukin 10

Interleukin (IL)-10 is an anti-inflammatory cytokine produced mainly by macrophages
and T lymphocytes of the Th2 subtype. As for atherosclerosis, its main roles include
inhibiting the activation of macrophages, as well as inhibiting matrix metalloproteinase,
pro-inflammatory cytokines, and cyclooxygenase-2 expression in lipid-laden and activated
foam cells of macrophages [112]. The members of the interleukin (IL)-10 family, including
IL-10, IL-19, IL-20, IL-22, IL-24, IL-26, and the distantly related IL-28A, IL-28B, and IL-29,
play a crucial role in inhibiting inflammation. Increased IL-10 expression by macrophages
inhibits atherosclerosis in LDLR (−/−) mice by reducing the accumulation of cholesterol
esters in cells. Experiments with primary macrophages showed that IL-10 stimulated stim-
ulated both the uptake (by up-regulating scavenger receptors) and efflux of cholesterol (by
activating the PPARg (Peroxisome Proliferator-Activated Receptors) -LXR-ABCA1/ABCG1
pathway) [113]. Other studies confirm the findings that the anti-atherogenic properties of
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IL-10 may include enhancing effects on cholesterol efflux mechanism that involves cross-
talk with LXRα activation [114]. In turn, the deficiency of the IL10 receptor (IL-10R1) on
myeloid cells leads to polarization of macrophages along the pro-inflammatory pathway
in vitro. On the other hand, in in vivo experiments (in a mouse model), there was a signif-
icant decrease in the size and severity of atherosclerotic lesions, which was the result of
less accumulation of myeloid cells in the lesions. In addition, with a deficiency of myeloid
IL-10R1, a significant decrease in plasma and liver cholesterol levels was observed, which
was reflected in the lipid content in plaques. This was due to decreased levels of VLDL and
LDL, probably in response to decreased cholesterol absorption in the gut. In addition, mice
deficient in IL-10R1 showed significantly higher loss of sterol with feces caused by increased
outflow of non-biliary cholesterol. The induction of this process was associated with a
violation of ACAT2 (acetyl-Coenzyme A acetyltransferase 2 gene) -mediated esterification
of cholesterol in the liver and plasma. Thus, clarifying experiments on the anti-atherogenic
effect of IL10 are required [115].

3.2.8. Interleukin 12

IL-12 is produced by various cell types such as monocytes, neutrophils, dendritic cells,
and macrophages on the activation of these cells by pathogens, by CD40 ligand–expressing
T cells, or by extracellular matrix components, such as the glycosaminoglycan hyaluronan.
IL-12 is a heterodimeric (p70) cytokine, which consists of a 35-kDa light chain (p35) and
a 40-kDa heavy chain (p40) [116]. IL-12 appears to be involved in pro-atherosclerotic
reactions by stimulating the migration and adhesion of leukocytes in fat streaks, which was
shown in a mouse model of hypercholesterolemia [117].

3.2.9. Interleukin 13

Interleukin 13 (IL-13) is a protein that in humans is encoded by the IL13 gene. IL-
13 is a cytokine secreted by T helper type 2 (Th2), CD4 cells, natural killer T cells, mast
cells, basophils, eosinophils, and lymphocytes. Described results demonstrating that
IL-13 induces changes in cholesterol metabolism in the liver in a rat model leading to
hypercholesterolemia [118].

3.2.10. Interleukin 15

Interleukin 15 (IL-15) is a cytokine that belongs to the interleukin-2 (IL-2) family and
may play an important role in the development of an innate and adaptive immune response.
The structure of IL-15 is partially similar to IL-2, they have some common biological effects
including immunoregulation. IL-15 levels are elevated in some cardiovascular diseases,
such as myocardial infarction and atherosclerosis. At the same time, there is evidence
demonstrating that IL-15 has a protective effect in myocardial infarction and myocarditis,
reducing the death of cardiomyocytes [119]. So, in viral-induced myocarditis in BALB/c
mice, the treatment with IL-15 had a positive effect on the clinical course of myocarditis,
significantly improved systolic and diastolic functions of the left ventricle, and also led to a
decrease in cellular infiltrates in the myocardium [120]. In addition, IL-15 has also been
shown to be cardioprotective in an in vitro cell model under hypoxic conditions [121].

3.2.11. Interleukin 17

It has been observed that several pro-atherogenic factors, including cholesterol, mod-
ified LDL and fatty acids, can affect the expression of IL-17 both directly and indirectly
through cytokines that stimulate the secretion of IL-17. This is especially important given
that IL-17 is associated with a number of autoimmune diseases, and the analysis of the
mechanisms of mutual regulation of pro-atherogenic factors and IL-17 may provide in-
sight into the pathophysiological relationship between atherosclerosis and autoimmune
diseases [122]. At the same time, the exact role of IL-17 in the development of the disease
and the stability of plaques remain debatable [123]. Recent studies have shown that IL-17
expression is significantly increased in patients with rheumatoid arthritis and atherosclero-
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sis. Accumulating evidence indicates that specific pathways for cellular lipid metabolism
play an important role in regulating the differentiation and function of Th17 cells, which
in turn are characterized by the expression of interleukin-17 (IL-17A), IL17F, interleukin-6
(IL-6), TNF-α and interleukin-22 (IL-22) [124].

3.2.12. Interleukin 22

IL-22 is a member of the IL-10 family, is associated with Th17, and is involved in
autoimmune diseases including lupus and rheumatoid arthritis [125]. IL-22 expression has
been found in human atherosclerotic plaques in the carotid arteries, and elevated levels
have been found especially in patients with unstable plaques [126]. IL-22 expression has
also been confirmed in a variety of inflammatory cell types, including macrophages and
T cells, as well as in vascular smooth muscle cells (VSMC), further indicating a role in
atherosclerosis [127]. Recently, numerous studies showed that IL-22 is involved in the
pathogenesis of atherosclerosis by regulating VSMC proliferation and migration, angio-
genesis, inflammatory response, hypertension, and cholesterol metabolism. The exact
role of IL-22 in atherosclerosis is still controversial, although most studies point to the
pro-atherogenic function of IL-22. Mice with apoE/IL-22 double knockout detects reduced
plaque size in both the aortic root and the aorta compared to the control group knocked out
by apoE. Moreover, in another study of atherosclerosis, IL-22R1 and IL-22 are expressed in
atherosclerotic plaques of mice, and their expression levels are significantly increased in
mice with apoE knockout [128].

3.3. Impact of the Tumor Necrosis Factor Superfamily (TNFSF) on Cholesterol Metabolism
3.3.1. TNF-α

The main representative of the TNFSF family can be considered TNF-α. This main
cytokine of the immune response is pro-atherosclerotic due to its pro-inflammatory action.
According to the classical representation of Th1 cytokines such as TNF-α, IFN-γ and IL-12
play a pro-atherogenic role. A large number of studies indicate a decrease in the rate
of development of atherosclerosis with a deficiency of TNF-α. It has also been shown
that the use of TNF-α blockers in complex therapy causes a decrease in the frequency of
initiation of cardiovascular events in patients with rheumatoid arthritis (RA), the high
density lipoproteins (HDL) cholesterol content increases and the level of CRP and IL-6
decreases after 2 weeks of use. At the same time, long-term therapy has the opposite effect
on the level of lipoproteins, forming a pro-atherogenic profile [129]. Clinically significant
elevations of Thl cytokines (IFN-γ, endotoxin, TNF-α, and IL-1β) above baseline disrupt
normal cholesterol reverse transport (OTC) and cholesterol outflow and are associated with
a higher risk of coronary heart disease (CHD), acute myocardial infarction (MI), and heart
failure [130,131]. In addition, it was noted that excessive levels of TNF-α in coronary heart
disease are associated with increased uptake of modified LDL by macrophages, with a
characteristic increase in the expression of scavenger receptors [132].

3.3.2. TRAIL

TRAIL, the next representative of TNFSF that we will mention in this review, is respon-
sible for controlling several vital processes: vasodilation, angiogenesis and inflammation.
And it is interesting to note that adjustable TRAIL effects can have both pro-atherogenic
effects [133], and anti-atherogenic effect [134,135]. Overall, it should be noted that in most
studies, increases in MCP-1, IL-1β, and VCAM-1 levels were observed with TRAIL defi-
ciency rather than with increased expression [136,137]. At the same time, there are works
challenging this statement [138]. A series of clinical studies confirms the protective role of
TRAIL. TRAIL levels have been shown to be reduced in patients with CHD. And at the
same time, In CHIANTI showed that low levels of TRAIL concentrations were associated
with nearly twice the risk of cardiovascular death compared to patients with high TRAIL
levels [139,140]. This suggests that TRAIL levels may act as a good predictor of the risk of
death in patients with stable angina, stroke and some other CVD.
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3.4. Impact of Chemokines on Cholesterol Metabolism

The role of chemokines is intriguingly diverse. For example, a large body of evi-
dence suggests that CC-chemokines regulate angiogenesis caused by inflammation, while
angiogenesis caused by ischemia does so without the participation of CC-chemokines.
Differential regulation of angiogenesis with CC-chemokines may provide an alternative
strategy for the treatment of pathological diseases associated with angiogenesis [141]. C-
C motif ligand 2/Monocyte Chemoattractant Protein 1 (CCL2/MCP-1) coordinates the
movement of inflammatory monocytes between bone marrow, blood, and atherosclerotic
plaques by binding to its related CCR2 receptor [142]. In the studies, increased expression
of another representative of this group of regulatory molecules was found: chemokine
(C-C motif) ligand 1 (CCL1) in the aorta of mice prone to atherosclerosis, in addition, CCL1
provided recruitment of leukocytes to the lesion [143]. In mice dually deficient in CCL1
and ApoE, an increase in atherogenesis was observed, which was also associated with a
decrease in plasma IL-10 levels, a shift in the Th1/Th2 ratio towards Th1 in the spleen,
and a decrease in the number of regulatory T cells in the aorta and spleen. In addition, a
decrease in regulatory T cells was observed in the aorta of mice treated with CCR8-blocking
antibodies and was associated with exacerbation of atherosclerosis. Thus, disturbances
in CCL1-CCR8 can inhibit the production of IL-10, reduce the number and functions of
regulatory T cells, which leads to the development of atherosclerosis [144].

3.5. Impact of Colony-Stimulating Factors (CSF) on Cholesterol Metabolism

Colony-stimulating factors (CSFs) are glycosylated cytokines that are produced and
secreted by a number of different cell types, including immune and non-immune cells.
Initially, these factors were identified based on their in vitro ability to facilitate the dif-
ferentiation and survival of hematopoietic precursors into individual immune cell lines,
as indicated by their names. For example, granulocytes colony-stimulating factor (G-
CSF) promotes neutrophil differentiation, proliferation, and survival; M-CSF promotes the
development of monocytes and macrophages from hematopoietic precursors; granulocyte-
macrophage colony-stimulating factor (GM-CSF) affects the differentiation of stem cells
into monocyte and granulocyte lines, including neutrophils, eosinophils and basophils;
interleukin-3 (IL-3) or multi-colony-stimulating factor (multi-CSF) promotes the differentia-
tion of multipotent hematopoietic stem cells into myeloid and lymphoid lines. However, it
is becoming increasingly clear that these CSFs play a role in the specification and develop-
ment of immune cell clones beyond their intended function [145].

In atherosclerotic lesions, blood-derived monocytes differentiate into distinct macrophage
subpopulations, and further into cholesterol-filled foam cells under a complex milieu
of cytokines, which also contains M-CSF and GM-CSF. One study generated human
macrophages in the presence of either M-CSF or GM-CSF to obtain M-MØ and GM-MØ,
respectively. The macrophages were converted into cholesterol-loaded foam cells by incu-
bating them with acetyl-LDL, and their atheroinflammatory gene expression profiles were
then assessed. Compared to GM-MØ, the M-MØ expressed higher levels of CD36, SRA1,
and ACAT1, and also exhibited a greater ability to take up acetyl-LDL, esterify cholesterol,
and become converted to foam cells. M-MØ foam cells expressed higher levels of ABCA1
and ABCG1 (ATP-binding cassette transporter G1), and, correspondingly, exhibited higher
rates of cholesterol efflux to apoA-I and HDL2 [146].

3.6. Impact of Transforming Growth Factors (TGF) on Cholesterol Metabolism

B transforming growth factor (TGF-β) is a strongly pleiotropic cytokine that exists
in three isoforms in mammals (TGF-β1, TGF-β2, and TGF-β3). The importance of TGF-β
is due to the fact that it contributes to apoptosis control, angiogenesis, wound healing,
immune regulation, and tumor biology. Virtually all cells have receptors for TGF β, and
at least one of the isoforms is produced in all tissues. Immune system cells produce pre-
dominantly TGF-β1. TGF-β is also commonly found in plasma (an isoform of TGF-β1)
and is bound to extracellular matrix proteins throughout the body. It is noteworthy that
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platelets and bones contain large amounts of TGF-β1 [147]. Endothelial TGF-β signaling
is one of the main factors causing vascular inflammation associated with atherosclero-
sis. The ongoing inflammation leads to activation of TGF-β signaling and induces the
so-called endothelial-mesenchymal transition (EndMT), which leads to pro-atherogenic
consequences: increased expression of adhesion molecules ICAM-1 and VCAM-1, further
influx of inflammatory cells, fibronectin deposition, the appearance of new mesenchymal
cells that give rise to SMCs and fibroblasts [148]. The inhibition of endothelial TGF-β sig-
naling in mice with hyperlipidemia reduces inflammation in the vascular wall and vascular
permeability and leads to a halt in the progression of the disease and regression of existing
lesions. These effects of endothelial TGFβ signaling stand in stark contrast to its effects in
other cell types and identify it as an important growth factor in atherosclerotic plaques and
demonstrate some potential for therapeutic intervention [149]. For example, the mechanism
of the protective effect of ApoA-I on endothelial function through the inhibition of EndMT
induced by TGF-β1 has been shown, which can be further used as a therapeutic target in
the treatment of atherosclerosis [150].

Table 1 shows the main effects of the cytokines described above.

Table 1. The main effects of the described cytokines.

Group Action
Molecules Secreting Cells Effector Cells Effects

TNF Super
Family TNF-a

Macrophages, lymphoid
cells, mast cells,

endothelial cells, cardiac
myocytes, adipose tissue,
fibroblasts and neurons.

Macrophages,
monocytes, B cells, T

cells, NK cells,
endothelial cells.

Stimulates phagocytosis, production of IL-1
oxidants and the inflammatory lipid
prostaglandin E2 (PGE2) [151], IL-10

production, proliferation, Ig production,
HLA-DR and CD25 expression, GM-CSF

production [152], enhancement of cytotoxic
activity, cell death, induction of pro-coagulant

agents [153], adhesion molecules and
pro-inflammatory cytokines [154].

Interferons

IFN-I Fibroblasts and
monocytes.

Natural killer cells
and macrophages.

Activate immune cells, increase host defenses
by up-regulating antigen presentation by virtue

of increasing the expression of major
histocompatibility complex (MHC) antigens

[155].

IFN-II

Adaptive immune cells,
more specifically CD4+ T

helper 1 (Th1) cells,
natural killer (NK) cells,
and CD8+ cytotoxic T

cells.

Macrophages, B cells,
CD8+ cytotoxic T

cells.

Promote inflammation, antiviral or antibacterial
activity, and cell proliferation and

differentiation [156].

IFN-III Type 2 myeloid dendritic
cells.

Epithelial cells,
neutrophils, B cells
and dendritic cells.

Modulate the immune response after a
pathogen has been sensed in the organism, their

functions are mostly anti-viral and
anti-proliferative [157].

Chemokines

CC Cells of innate and
adaptive immunity.

T cells, eosinophils
and basophils,

monocytes, NK cells
and dendritic cells.

Induces monocytes to leave the bloodstream
and enter the surrounding tissue to become
tissue macrophages, induce the migration of

monocytes and other cell types such as NK cells
and dendritic cells [158].

CXC Neutrophils,
lymphocytes.

Induces the migration of neutrophils, activating
their metabolic and degranulation [159],
chemoattractant for lymphocytes [160].
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Table 1. Cont.

Group Action
Molecules Secreting Cells Effector Cells Effects

Chemokines
C T cell, dendritic cells.

Involved in cross-presentation, antigen uptake,
and induction of innate as well as adaptive

cytotoxic immunity, to increate T cells in joints
that are affected with rheumatoid arthritis [76].

CX3C T cell, monocytes,
leukocytes.

Soluble, potently chemoattracts T cells and
monocytes [77], cell-bound chemokine

promotes strong adhesion of leukocytes to
activated endothelial cells.

CSF

CSF1 Different types of cells.
Hematopoietic stem

cells, monocytes,
macrophages.

Causes hematopoietic stem cells to differentiate
into macrophages or other related cell types

[161].

CSF2

Macrophages, T cells,
mast cells, natural killer
cells, endothelial cells

and fibroblasts.

Affects more cell
types, especially

macrophages and
eosinophils.

Stimulates stem cells to produce granulocytes
(neutrophils, eosinophils, basophils) and
monocytes. Activates the maturation of

monocytes and dendritic cells [152].

CSF3

Endothelium,
macrophages, and a

number of other immune
cells.

Precursor cells in the
bone marrow,

neutrophil precursors
and mature
neutrophils,

hematopoietic stem
cell.

Stimulates the bone marrow to produce
granulocytes and stem cells and release them
into the bloodstream, stimulates the survival,
proliferation, differentiation, and function of

neutrophil precursors and mature neutrophils.

TGF

TGFα Macrophages, brain cells
and keratinocytes.

Epithelial cells,
neural cell.

Induces epithelial development, stimulates
neural cell proliferation [162].

TGFβ All white blood cell
lineages.

Macrophages, stem
cell, T cell, B cell.

Plays crucial roles in tissue regeneration, cell
differentiation [149], embryonic development
and regulation of the immune system [163].

IL-1 family

IL-1β Activated macrophages. Different cell types.

Important mediator of the inflammatory
response [164], and is involved in a variety of

cellular activities [94], including cell
proliferation, differentiation and apoptosis [53].

IL-4
Mast cells, Th2 cells,

eosinophils and
basophils.

B cell and T cell,
macrophages.

Induces differentiation of naive helper T cells
(Th0 cells) to Th2 cells [165], promotes

alternative activation of macrophages into M2
cells and inhibits classical activation of

macrophages into M1 cells [166].

IL-5 Type-2 T helper cells and
mast cells. B cell, eosinophils.

Stimulates B cell growth and increases
immunoglobulin secretion, mediator in

eosinophil activation.

IL-6
Macrophages,

osteoblasts, smooth
muscle cells.

Neutrophils, B cells, T
cells.

Stimulating acute phase protein synthesis [167],
as well as the production of neutrophils in the
bone marrow [168], it supports the growth of B
cells and is antagonistic to regulatory T cells.

IL-7

Stromal cells in the bone
marrow and thymus,

keratinocytes, dendritic
cells, hepatocytes,

neurons and epithelial
cells.

B cells, T cells and
NK cells.

Stimulates the differentiation of multipotent
(pluripotent) hematopoietic stem cells into
lymphoid progenitor cells [169], stimulates

proliferation of all cells in the lymphoid lineage
[170].
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Table 1. Cont.

Group Action
Molecules Secreting Cells Effector Cells Effects

IL-8 is a
member of

the CXC
family of

chemokines

IL-8 Macrophages and other
cell types. Granulocytes.

Induces chemotaxis in target cells, primarily
neutrophils, stimulates phagocytosis, promoter

of angiogenesis [171].

IL-10
Monocytes and, to a

lesser extent,
lymphocytes.

Th1, Macrophages, B
cell.

It downregulates the expression of Th1
cytokines, MHC class II antigens, and

co-stimulatory molecules on macrophages. It
also enhances B cell survival, proliferation, and

antibody production. IL-10 can block NF-κB
activity, and is involved in the regulation of the

JAK-STAT signaling pathway [172].

IL-12 family

IL-12

Dendritic cells,
macrophages,

neutrophils, and human
B- lymphoblastoid cells

(NC-37).

T cells, NK cells.

Stimulates the growth and function of T cells
[173], stimulates the production of

interferon-gamma (IFN-γ) and tumor necrosis
factor-alpha (TNF-α) from T cells and NK cells,

and reduces IL-4 mediated suppression of
IFN-γ, block the formation of new blood

vessels [117].

IL-13

Th2 cells, CD4 cells,
natural killer T cell, mast

cells, basophils,
eosinophils and

nuocytes.

Hematopoietic cells,
B cell.

Regulator in IgE synthesis, goblet cell
hyperplasia, mucus hypersecretion, airway
hyperresponsiveness, fibrosis and chitinase

up-regulation [174].

IL-15 Mononuclear
phagocytes. NK cells, T cells. Induces the proliferation of natural killer cells

[175].

IL17 family

IL-17A Activated T cells. Th17.

Regulates the activities of NF-kappaB and
mitogen-activated protein kinases, stimulate
the expression of IL6 and cyclooxygenase-2

(PTGS2/COX-2), as well as enhances the
production of nitric oxide (NO).

IL-22

Tissue cells, αβ T cells
classes Th1, Th22 and
Th17 along with γδ T

cells, NKT, ILC3,
neutrophils and
macrophages.

Non-hematopoietic
cells—mainly stromal

and epithelial cells.

Stimulation of cell survival, proliferation and
synthesis of antimicrobials [176].

4. Conclusions

Atherosclerosis is now recognized as an inflammatory condition thanks to decades
of research. New approaches to the treatment of this pathology are the use of anti-
inflammatory strategies. It is worth noting that modern anti-inflammatory drugs should
target atherosclerosis-specific immune mechanisms with a minimum of systemic side ef-
fects. Therapy targeting the inflammatory-interleukin-1-interleukin-6 pathway has been
successful. However, patients experience systemic health problems due to the complexity
of the effects on regulating the secretion of these interleukins.

Our research group have a special interest in the field of the investigation of interleukin
impacts on the atherosclerosis progression and we aim at summarizing all the known
facts about this. Summing up this review, it should be noted that a large number of
cytokines involved in inflammatory signaling pathways are involved in the processes of
atherogenesis. These cytokines are produced by cells of the immune system and activate
signaling pathways and genes involved in the metabolism of cholesterol, which is the
main participant in the formation of atherosclerotic plaques. To date, not all mechanisms
of cytokine involvement in the pathogenesis of atherosclerosis have been fully studied,
which represents a large field for further research. However, it can be concluded that
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some cytokines can be considered as promising targets for the treatment and prevention
of atherosclerosis.
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