Response Variability to Drug Testing in Two Models of Chemically Induced Colitis
Abstract
:1. Introduction
2. Results
2.1. Bioluminescence Natural Time-Course in TNBS or DSS Colitis
2.2. Bioluminescence Intensity Correlated with Intestinal Immune-Inflammatory mRNA Expression and Plasmatic Acute Phase Proteins
2.3. Therapeutic Monitoring Response by Bioluminescence and Macroscopic Evaluations Shows Differences between Colitis Models, Experimental Trials, and Mouse Sex
2.4. Immune-Inflammatory Signatures in Experimental Colitis Drug Response
2.5. Mechanism of Action Based on Co-Expression Interactive Networks
3. Discussion
4. Materials and Methods
4.1. Mice
4.2. Chemically Induced IBD Models
4.3. Experimental Groups
4.4. Real-Time In Vivo ROS Quantification by Bioluminescent Imaging
4.5. Sampling and Macroscopic Colitis Evaluation
4.6. Quantitative Real-Time Polymerase Chain Reaction
4.7. Enzyme-Linked Immunosorbent Assay
4.8. Statistics
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
APP | Acute Phase Protein |
BLI | Bioluminescence intensity |
CRP | C-Reactive Protein |
DSS | Dextran sulphate sodium |
ELISA | Enzyme-linked immunosorbent assay |
FC | Fold-change |
IBD | Inflammatory Bowel Diseases |
MPO | Myeloperoxidase |
MTADV | 5-MER peptide methionine-threonine-alanine-aspartic acid-valine |
PCR | Polymerase chain reaction |
qRT | quantitative real-time |
ROS | Reactive Oxygen Species |
SAA | Serum Amyloid Antigen |
Th | T-helper |
TNBS | 2,4,6-trinitrobenzenesulfonic acid |
Treg | T-regulatory cell |
References
- Roda, G.; Chien Ng, S.; Kotze, P.G.; Argollo, M.; Panaccione, R.; Spinelli, A.; Kaser, A.; Peyrin-Biroulet, L.; Danese, S. Crohn’s Disease. Nat. Rev. Dis. Prim. 2020, 6, 22. [Google Scholar] [CrossRef] [PubMed]
- Abraham, B.P.; Ahmed, T.; Ali, T. Inflammatory Bowel Disease: Pathophysiology and Current Therapeutic Approaches. In Gastrointestinal Pharmacology; Springer: Boston, MA, USA, 2017; pp. 115–146. [Google Scholar]
- Torres, J.; Mehandru, S.; Colombel, J.-F.; Peyrin-Biroulet, L. Crohn’s Disease. Lancet 2017, 389, 1741–1755. [Google Scholar] [CrossRef] [PubMed]
- Popov, J.; Caputi, V.; Nandeesha, N.; Rodriguez, D.A.; Pai, N. Microbiota-Immune Interactions in Ulcerative Colitis and Colitis Associated Cancer and Emerging Microbiota-Based Therapies. Int. J. Mol. Sci. 2021, 22, 11365. [Google Scholar] [CrossRef] [PubMed]
- Annese, V. Genetics and Epigenetics of IBD. Pharmacol. Res. 2020, 159, 104892. [Google Scholar] [CrossRef] [PubMed]
- Caballol, B.; Gudiño, V.; Panes, J.; Salas, A. Ulcerative Colitis: Shedding Light on Emerging Agents and Strategies in Preclinical and Early Clinical Development. Expert Opin. Investig. Drugs 2021, 30, 931–946. [Google Scholar] [CrossRef]
- Keubler, L.M.; Buettner, M.; Häger, C.; Bleich, A. A Multihit Model. Inflamm. Bowel Dis. 2015, 21, 1967–1975. [Google Scholar] [CrossRef]
- Ostanin, D.V.; Bao, J.; Koboziev, I.; Gray, L.; Robinson-Jackson, S.A.; Kosloski-Davidson, M.; Price, V.H.; Grisham, M.B. T Cell Transfer Model of Chronic Colitis: Concepts, Considerations, and Tricks of the Trade. Am. J. Physiol. Liver Physiol. 2009, 296, G135–G146. [Google Scholar] [CrossRef][Green Version]
- Waldner, M.J.; Neurath, M.F. Chemically Induced Mouse Models of Colitis. Curr. Protoc. Pharmacol. 2009, 46, 5–55. [Google Scholar] [CrossRef]
- Wirtz, S.; Popp, V.; Kindermann, M.; Gerlach, K.; Weigmann, B.; Fichtner-Feigl, S.; Neurath, M.F. Chemically Induced Mouse Models of Acute and Chronic Intestinal Inflammation. Nat. Protoc. 2017, 12, 1295–1309. [Google Scholar] [CrossRef]
- Lorén, V.; Manyé, J.; Fuentes, M.C.; Cabré, E.; Ojanguren, I.; Espadaler, J. Comparative Effect of the I3.1 Probiotic Formula in Two Animal Models of Colitis. Probiot. Antimicrob. Proteins 2017, 9, 71–80. [Google Scholar] [CrossRef]
- Elson, C.O.; Sartor, R.B.; Tennyson, G.S.; Riddell, R.H. Experimental Models of Inflammatory Bowel Disease. Gastroenterology 1995, 109, 1344–1367. [Google Scholar] [CrossRef] [PubMed]
- Peterson, T.C.; Peterson, M.R.; Raoul, J.M. The Effect of Pentoxifylline and Its Metabolite-1 on Inflammation and Fibrosis in the TNBS Model of Colitis. Eur. J. Pharmacol. 2011, 662, 47–54. [Google Scholar] [CrossRef] [PubMed]
- Fiocchi, C. Inflammatory Bowel Disease: Etiology and Pathogenesis. Gastroenterology 1998, 115, 182–205. [Google Scholar] [CrossRef] [PubMed]
- Neurath, M.; Fuss, I.; Strober, W. TNBS-Colitis. Int. Rev. Immunol. 2000, 19, 51–62. [Google Scholar] [CrossRef]
- Mañé, J.; Lorén, V.; Pedrosa, E.; Ojanguren, I.; Domènech, E.; Gassull, M.A.; Cabré, E. Therapeutic Effect of Antisecretory Factor-Rich Egg Yolk on the Late Phases of 2,4,6-Trinitrobenzenesulphonic Acid Colitis in Mice. Br. J. Nutr. 2011, 106, 1522–1528. [Google Scholar] [CrossRef][Green Version]
- Perše, M.; Cerar, A. Dextran Sodium Sulphate Colitis Mouse Model: Traps and Tricks. J. Biomed. Biotechnol. 2012, 2012, 1–13. [Google Scholar] [CrossRef][Green Version]
- Poritz, L.S.; Garver, K.I.; Green, C.; Fitzpatrick, L.; Ruggiero, F.; Koltun, W.A. Loss of the Tight Junction Protein ZO-1 in Dextran Sulfate Sodium Induced Colitis. J. Surg. Res. 2007, 140, 12–19. [Google Scholar] [CrossRef]
- Ma, X.-Y.; Son, Y.-H.; Yoo, J.-W.; Joo, M.-K.; Kim, D.-H. Tight Junction Protein Expression-Inducing Probiotics Alleviate TNBS-Induced Cognitive Impairment with Colitis in Mice. Nutrients 2022, 14, 2975. [Google Scholar] [CrossRef]
- Xiao, Y.-T.; Yan, W.-H.; Cao, Y.; Yan, J.-K.; Cai, W. Neutralization of IL-6 and TNF-α Ameliorates Intestinal Permeability in DSS-Induced Colitis. Cytokine 2016, 83, 189–192. [Google Scholar] [CrossRef]
- Kiesler, P.; Fuss, I.J.; Strober, W. Experimental Models of Inflammatory Bowel Diseases. Cell. Mol. Gastroenterol. Hepatol. 2015, 1, 154–170. [Google Scholar] [CrossRef][Green Version]
- Verdú, E.F.; Deng, Y.; Bercik, P.; Collins, S.M. Modulatory Effects of Estrogen in Two Murine Models of Experimental Colitis. Am. J. Physiol. Liver Physiol. 2002, 283, G27–G36. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Bábíčková, J.; Tóthová, Ľ.; Lengyelová, E.; Bartoňová, A.; Hodosy, J.; Gardlík, R.; Celec, P. Sex Differences in Experimentally Induced Colitis in Mice: A Role for Estrogens. Inflammation 2015, 38, 1996–2006. [Google Scholar] [CrossRef] [PubMed]
- O’Connor, M.-F.; Motivala, S.J.; Valladares, E.M.; Olmstead, R.; Irwin, M.R. Sex Differences in Monocyte Expression of IL-6: Role of Autonomic Mechanisms. Am. J. Physiol. Integr. Comp. Physiol. 2007, 293, R145–R151. [Google Scholar] [CrossRef] [PubMed]
- Wagnerova, A.; Babickova, J.; Liptak, R.; Vlkova, B.; Celec, P.; Gardlik, R. Sex Differences in the Effect of Resveratrol on DSS-Induced Colitis in Mice. Gastroenterol. Res. Pract. 2017, 2017, 1–12. [Google Scholar] [CrossRef] [PubMed][Green Version]
- AlSharari, S.D.; Bagdas, D.; Akbarali, H.I.; Lichtman, P.A.; Raborn, E.S.; Cabral, G.A.; Carroll, F.I.; McGee, E.A.; Damaj, M.I. Sex Differences and Drug Dose Influence the Role of the A7 Nicotinic Acetylcholine Receptor in the Mouse Dextran Sodium Sulfate-Induced Colitis Model. Nicotine Tob. Res. 2017, 19, 460–468. [Google Scholar] [CrossRef] [PubMed]
- Hases, L.; Birgersson, M.; Indukuri, R.; Archer, A.; Williams, C. Colitis Induces Sex-Specific Intestinal Transcriptomic Responses in Mice. Int. J. Mol. Sci. 2022, 23, 10408. [Google Scholar] [CrossRef]
- Houser, M.C.; Caudle, W.M.; Chang, J.; Kannarkat, G.T.; Yang, Y.; Kelly, S.D.; Oliver, D.; Joers, V.; Shannon, K.M.; Keshavarzian, A.; et al. Experimental Colitis Promotes Sustained, Sex-Dependent, T-Cell-Associated Neuroinflammation and Parkinsonian Neuropathology. Acta Neuropathol. Commun. 2021, 9, 139. [Google Scholar] [CrossRef]
- Zeeff, S.B.; Kunne, C.; Bouma, G.; de Vries, R.B.; te Velde, A.A. Actual Usage and Quality of Experimental Colitis Models in Preclinical Efficacy Testing. Inflamm. Bowel Dis. 2016, 22, 1296–1305. [Google Scholar] [CrossRef]
- Sies, H. Oxidative Stress: A Concept in Redox Biology and Medicine. Redox Biol. 2015, 4, 180–183. [Google Scholar] [CrossRef][Green Version]
- Keshavarzian, A.; Doria, M.I.; Sedghi, S.; Kanofsky, J.R.; Hecht, D.; Holmes, E.W.; Ibrahim, C.; List, T.; Urban, G.; Gaginella, T. Mitomycin C-Induced Colitis in Rats: A New Animal Model of Acute Colonic Inflammation Implicating Reactive Oxygen Species. J. Lab. Clin. Med. 1992, 120, 778–791. [Google Scholar]
- Asghar, M.N.; Emani, R.; Alam, C.; Helenius, T.O.; Grönroos, T.J.; Sareila, O.; Din, M.U.; Holmdahl, R.; Hänninen, A.; Toivola, D.M. In Vivo Imaging of Reactive Oxygen and Nitrogen Species in Murine Colitis. Inflamm. Bowel Dis. 2014, 20, 1435–1447. [Google Scholar] [CrossRef]
- Simmonds, N.J.; Allen, R.E.; Stevens, T.R.J.; Niall, R.; Van Someren, M.; Blake, D.R.; Rampton, D.S. Chemiluminescence Assay of Mucosal Reactive Oxygen Metabolites in Inflammatory Bowel Disease. Gastroenterology 1992, 103, 186–196. [Google Scholar] [CrossRef] [PubMed]
- Keshavarzian, A.; Sedghi, S.; Kanofsky, J.; List, T.; Robinson, C.; Ibrahim, C.; Winship, D. Excessive Production of Reactive Oxygen Metabolites by Inflamed Colon: Analysis by Chemiluminescence Probe. Gastroenterology 1992, 103, 177–185. [Google Scholar] [CrossRef] [PubMed]
- Bhardwaj, P. Oxidative Stress and Antioxidants in Gastrointestinal Diseases. Trop. Gastroenterol. 2008, 29, 129–135. [Google Scholar] [PubMed]
- Vavassori, P.; Mencarelli, A.; Renga, B.; Distrutti, E.; Fiorucci, S. The Bile Acid Receptor FXR Is a Modulator of Intestinal Innate Immunity. J. Immunol. 2009, 183, 6251–6261. [Google Scholar] [CrossRef][Green Version]
- Wang, D.; Li, S.; Ma, X.; Chen, X.; Tian, X.; Li, X.; Chen, L.; Kang, Q.; Wang, X.; Jin, P.; et al. Immunomodulatory Effects of Fentanyl and Morphine on DSS- and TNBS-Induced Colitis. Immunopharmacol. Immunotoxicol. 2022, 44, 1044–1057. [Google Scholar] [CrossRef]
- OH, S.Y.; CHO, K.-A.; KANG, J.L.; KIM, K.H.; WOO, S.-Y. Comparison of Experimental Mouse Models of Inflammatory Bowel Disease. Int. J. Mol. Med. 2014, 33, 333–340. [Google Scholar] [CrossRef][Green Version]
- Tian, Y.; Xu, J.; Li, Y.; Zhao, R.; Du, S.; Lv, C.; Wu, W.; Liu, R.; Sheng, X.; Song, Y.; et al. MicroRNA-31 Reduces Inflammatory Signaling and Promotes Regeneration in Colon Epithelium, and Delivery of Mimics in Microspheres Reduces Colitis in Mice. Gastroenterology 2019, 156, 2281–2296.e6. [Google Scholar] [CrossRef]
- Liu, Y.; Xu, W.; Fan, L.; Zhang, Y.; Xu, W.; Chen, Y.; Chen, L.; Chen, L.; Xu, W.; Wang, Y.; et al. Polydatin Alleviates DSS- and TNBS-Induced Colitis by Suppressing Th17 Cell Differentiation via Directly Inhibiting STAT3. Phytother. Res. 2022, 36, 3662–3671. [Google Scholar] [CrossRef] [PubMed]
- He, J.; Song, Y.; Li, G.; Xiao, P.; Liu, Y.; Xue, Y.; Cao, Q.; Tu, X.; Pan, T.; Jiang, Z.; et al. Fbxw7 Increases CCL2/7 in CX3CR1hi Macrophages to Promote Intestinal Inflammation. J. Clin. Investig. 2019, 129, 3877–3893. [Google Scholar] [CrossRef][Green Version]
- Scheibe, K.; Kersten, C.; Schmied, A.; Vieth, M.; Primbs, T.; Carlé, B.; Knieling, F.; Claussen, J.; Klimowicz, A.C.; Zheng, J.; et al. Inhibiting Interleukin 36 Receptor Signaling Reduces Fibrosis in Mice With Chronic Intestinal Inflammation. Gastroenterology 2019, 156, 1082–1097.e11. [Google Scholar] [CrossRef][Green Version]
- Taghipour, N.; Molaei, M.; Mosaffa, N.; Rostami-Nejad, M.; Asadzadeh Aghdaei, H.; Anissian, A.; Azimzadeh, P.; Zali, M.R. An Experimental Model of Colitis Induced by Dextran Sulfate Sodium from Acute Progresses to Chronicity in C57BL/6: Correlation between Conditions of Mice and the Environment. Gastroenterol. Hepatol. Bed Bench 2016, 9, 45–52. [Google Scholar] [PubMed]
- Hemed-Shaked, M.; Cowman, M.K.; Kim, J.R.; Huang, X.; Chau, E.; Ovadia, H.; Amar, K.-O.; Eshkar-Sebban, L.; Melamed, M.; Lev, L.B.; et al. MTADV 5-MER Peptide Suppresses Chronic Inflammations as Well as Autoimmune Pathologies and Unveils a New Potential Target-Serum Amyloid A. J. Autoimmun. 2021, 124, 102713. [Google Scholar] [CrossRef] [PubMed]
- Jena, G.; Trivedi, P.P.; Sandala, B. Oxidative Stress in Ulcerative Colitis: An Old Concept but a New Concern. Free. Radic. Res. 2012, 46, 1339–1345. [Google Scholar] [CrossRef] [PubMed]
- Alzoghaibi, M.A. Concepts of Oxidative Stress and Antioxidant Defense in Crohn’s Disease. World J. Gastroenterol. 2013, 19, 6540. [Google Scholar] [CrossRef]
- Antoniou, E.; Margonis, G.A.; Angelou, A.; Pikouli, A.; Argiri, P.; Karavokyros, I.; Papalois, A.; Pikoulis, E. The TNBS-Induced Colitis Animal Model: An Overview. Ann. Med. Surg. 2016, 11, 9–15. [Google Scholar] [CrossRef]
- Yamada, T.; Marshall, S.; Specian, R.D.; Grisham, M.B. A Comparative Analysis of Two Models of Colitis in Rats. Gastroenterology 1992, 102, 1524–1534. [Google Scholar] [CrossRef]
- Vidal-Lletjós, S.; Andriamihaja, M.; Blais, A.; Grauso, M.; Lepage, P.; Davila, A.-M.; Gaudichon, C.; Leclerc, M.; Blachier, F.; Lan, A. Mucosal Healing Progression after Acute Colitis in Mice. World J. Gastroenterol. 2019, 25, 3572–3589. [Google Scholar] [CrossRef]
- Xie, Q.W.; Kashiwabara, Y.; Nathan, C. Role of Transcription Factor NF-Kappa B/Rel in Induction of Nitric Oxide Synthase. J. Biol. Chem. 1994, 269, 4705–4708. [Google Scholar] [CrossRef]
- Rafa, H.; Saoula, H.; Belkhelfa, M.; Medjeber, O.; Soufli, I.; Toumi, R.; de Launoit, Y.; Moralès, O.; Nakmouche, M.; Delhem, N.; et al. IL-23/IL-17A Axis Correlates with the Nitric Oxide Pathway in Inflammatory Bowel Disease: Immunomodulatory Effect of Retinoic Acid. J. Interferon Cytokine Res. 2013, 33, 355–368. [Google Scholar] [CrossRef]
- Rafa, H.; Amri, M.; Saoula, H.; Belkhelfa, M.; Medjeber, O.; Boutaleb, A.; Aftis, S.; Nakmouche, M.; Touil-Boukoffa, C. Involvement of Interferon-γ in Bowel Disease Pathogenesis by Nitric Oxide Pathway: A Study in Algerian Patients. J. Interferon Cytokine Res. 2010, 30, 691–697. [Google Scholar] [CrossRef] [PubMed]
- Lorén, V.; Garcia-Jaraquemada, A.; Naves, J.E.; Carmona, X.; Mañosa, M.; Aransay, A.M.; Lavin, J.L.; Sánchez, I.; Cabré, E.; Manyé, J.; et al. ANP32E, a Protein Involved in Steroid-Refractoriness in Ulcerative Colitis, Identified by a Systems Biology Approach. J. Crohns Colitis 2019, 13, 351–361. [Google Scholar] [CrossRef] [PubMed]
- Huscher, D.; Thiele, K.; Gromnica-Ihle, E.; Hein, G.; Demary, W.; Dreher, R.; Zink, A.; Buttgereit, F. Dose-Related Patterns of Glucocorticoid-Induced Side Effects. Ann. Rheum. Dis. 2009, 68, 1119–1124. [Google Scholar] [CrossRef] [PubMed]
- Fardet, L.; Nazareth, I.; Petersen, I. Long-Term Systemic Glucocorticoid Therapy and Weight Gain: A Population-Based Cohort Study. Rheumatology 2021, 60, 1502–1511. [Google Scholar] [CrossRef]
- Chrousos, G.P. Stress and Sex Versus Immunity and Inflammation. Sci. Signal. 2010, 3. [Google Scholar] [CrossRef]
- Wine, E.; Mack, D.R.; Hyams, J.; Otley, A.R.; Markowitz, J.; Crandall, W.V.; Leleiko, N.; Muise, A.M.; Griffiths, A.M.; Turner, D. Interleukin-6 Is Associated with Steroid Resistance and Reflects Disease Activity in Severe Pediatric Ulcerative Colitis. J. Crohn’s Colitis 2013, 7, 916–922. [Google Scholar] [CrossRef][Green Version]
- Kriel, M.; Sayers, A.; Fraser, W.D.; Williams, A.M.; Koch, A.; Zacharowski, K.; Probert, C.S.; Tobias, J.H. IL-6 May Modulate the Skeletal Response to Glucocorticoids During Exacerbations of Inflammatory Bowel Disease. Calcif. Tissue Int. 2010, 86, 375–381. [Google Scholar] [CrossRef]
- Gabay, C.; Kushner, I. Acute-Phase Proteins and Other Systemic Responses to Inflammation. N. Engl. J. Med. 1999, 340, 448–454. [Google Scholar] [CrossRef]
- Cushing, K.; Higgins, P.D.R. Management of Crohn Disease. JAMA 2021, 325, 69–80. [Google Scholar] [CrossRef]
- Silva, I.; Solas, J.; Pinto, R.; Mateus, V. Chronic Experimental Model of TNBS-Induced Colitis to Study Inflammatory Bowel Disease. Int. J. Mol. Sci. 2022, 23, 4739. [Google Scholar] [CrossRef]
- Lindsay, J.; van Montfrans, C.; Brennan, F.; van Deventer, S.; Drillenburg, P.; Hodgson, H.; te Velde, A.; Pena, M.S.R. IL-10 Gene Therapy Prevents TNBS-Induced Colitis. Gene Ther. 2002, 9, 1715–1721. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Scaldaferri, F.; Vetrano, S.; Sans, M.; Arena, V.; Straface, G.; Stigliano, E.; Repici, A.; Sturm, A.; Malesci, A.; Panes, J.; et al. VEGF-A Links Angiogenesis and Inflammation in Inflammatory Bowel Disease Pathogenesis. Gastroenterology 2009, 136, 585–595.e5. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Giatromanolaki, A.; Sivridis, E.; Maltezos, E.; Papazoglou, D.; Simopoulos, C.; Gatter, K.C.; Harris, A.L.; Koukourakis, M.I. Hypoxia Inducible Factor 1 and 2 Overexpression in Inflammatory Bowel Disease. J. Clin. Pathol. 2003, 56, 209–213. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Kruschewski, M.; Foitzik, T.; Perez-Cantó, A.; Hübotter, A.; Buhr, H.J. Changes of Colonic Mucosal Microcirculation and Histology in Two Colitis Models: An Experimental Study Using Intravital Microscopy and a New Histological Scoring System. Dig. Dis. Sci. 2001, 46, 2336–2343. [Google Scholar] [CrossRef] [PubMed]
- Karhausen, J.; Furuta, G.T.; Tomaszewski, J.E.; Johnson, R.S.; Colgan, S.P.; Haase, V.H. Epithelial Hypoxia-Inducible Factor-1 Is Protective in Murine Experimental Colitis. J. Clin. Investig. 2004, 114, 1098–1106. [Google Scholar] [CrossRef]
- Buckley, A.; Turner, J.R. Cell Biology of Tight Junction Barrier Regulation and Mucosal Disease. Cold Spring Harb. Perspect. Biol. 2018, 10, a029314. [Google Scholar] [CrossRef]
- Zolotarevsky, Y.; Hecht, G.; Koutsouris, A.; Gonzalez, D.E.; Quan, C.; Tom, J.; Mrsny, R.J.; Turner, J.R. A Membrane-Permeant Peptide That Inhibits MLC Kinase Restores Barrier Function in In Vitro Models of Intestinal Disease. Gastroenterology 2002, 123, 163–172. [Google Scholar] [CrossRef]
- Kerber, E.L.; Padberg, C.; Koll, N.; Schuetzhold, V.; Fandrey, J.; Winning, S. The Importance of Hypoxia-Inducible Factors (HIF-1 and HIF-2) for the Pathophysiology of Inflammatory Bowel Disease. Int. J. Mol. Sci. 2020, 21, 8551. [Google Scholar] [CrossRef]
- Kim, Y.-E.; Lee, M.; Gu, H.; Kim, J.; Jeong, S.; Yeo, S.; Lee, Y.J.; Im, S.-H.; Sung, Y.-C.; Kim, H.J.; et al. Hypoxia-Inducible Factor-1 (HIF-1) Activation in Myeloid Cells Accelerates DSS-Induced Colitis Progression in Mice. Dis. Model. Mech. 2018, 11, dmm033241. [Google Scholar] [CrossRef][Green Version]
- Wallace, J.L.; MacNaughton, W.K.; Morris, G.P.; Beck, P.L. Inhibition of Leukotriene Synthesis Markedly Accelerates Healing in a Rat Model of Inflammatory Bowel Disease. Gastroenterology 1989, 96, 29–36. [Google Scholar] [CrossRef]
- Livak, K.J.; Schmittgen, T.D. Analysis of Relative Gene Expression Data Using Real-Time Quantitative PCR and the 2−ΔΔCT Method. Methods 2001, 25, 402–408. [Google Scholar] [CrossRef] [PubMed]
Intestinal mRNA | Plasmatic APP | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Il10 | Tgfb1 | Il6 | Vegfa | Tjp1 | Nos2 | Tnfa | Hif1a | Il1b1 | CRP | SAA | ||||
Both sexes | TNBS | Ther | p | 0.77 | 0.56 | 0.41 | 0.82 | 0.02 | 0.85 | 0.23 | 0.38 | 0.69 | 0.74 | 0.63 |
R | 0.07 | −0.11 | 0.16 | −0.04 | −0.42 | 0.03 | 0.22 | −0.16 | 0.08 | 0.06 | 0.12 | |||
Prev | p | 0.46 | 0.77 | 0.48 | 0.85 | 0.96 | 0.08 | 0.91 | 0.78 | 0.61 | 0.03 | 0.32 | ||
R | −0.17 | 0.06 | −0.15 | −0.04 | 0.01 | 0.33 | 0.02 | 0.06 | −0.11 | −0.42 | −0.26 | |||
DSS | Ther | p | 0.09 | 0.01 | 0.04 | 0.13 | 0.17 | 0.61 | 0.12 | 0.38 | 0.08 | 0.12 | 0.01 | |
R | −0.32 | −0.46 | 0.40 | −0.30 | −0.27 | −0.10 | 0.30 | 0.17 | 0.35 | 0.30 | 0.64 | |||
Prev | p | 0.50 | 0.35 | 0.05 | 0.53 | 0.10 | 0.10 | 0.58 | 0.13 | 0.69 | 0.66 | 0.39 | ||
R | −0.15 | −0.19 | −0.39 | −0.13 | 0.32 | 0.32 | −0.11 | −0.30 | −0.08 | −0.09 | −0.23 | |||
F | TNBS | Ther | p | 0.84 | 0.42 | 0.01 | 0.90 | 0.06 | 0.67 | 0.01 | 0.91 | 0.02 | 0.64 | 0.52 |
R | −0.08 | 0.22 | 0.61 | −0.04 | −0.48 | 0.11 | 0.64 | 0.03 | 0.60 | 0.13 | 0.25 | |||
Prev | p | 0.82 | 0.42 | 0.17 | 0.47 | 0.96 | 0.36 | 0.96 | 0.95 | 0.31 | 0.13 | 0.64 | ||
R | 0.08 | −0.22 | −0.37 | −0.20 | −0.01 | −0.25 | 0.01 | −0.02 | −0.28 | −0.41 | −0.17 | |||
DSS | Ther | p | 0.68 | 0.08 | 0.28 | 0.22 | 0.21 | 0.75 | 0.83 | 0.06 | 0.34 | 0.22 | 0.58 | |
R | 0.12 | 0.47 | 0.30 | 0.34 | 0.34 | −0.09 | −0.06 | 0.50 | 0.27 | 0.34 | 0.22 | |||
Prev | p | 0.31 | 0.53 | 0.13 | 0.23 | 0.04 | 0.48 | 0.07 | 0.72 | 0.53 | 0.95 | 0.44 | ||
R | −0.34 | −0.20 | −0.47 | 0.38 | 0.61 | 0.22 | 0.55 | −0.12 | 0.20 | 0.02 | −0.30 | |||
M | TNBS | Ther | p | 0.79 | 0.07 | 0.14 | 0.81 | 0.20 | 0.93 | 0.39 | 0.18 | 0.10 | 0.65 | 0.71 |
R | 0.10 | −0.45 | −0.45 | −0.06 | −0.33 | −0.02 | −0.22 | −0.34 | −0.43 | 0.12 | 0.13 | |||
Prev | p | 0.97 | 0.61 | 0.97 | 0.88 | 0.39 | 0.11 | 0.45 | 0.61 | 0.82 | 0.82 | 0.56 | ||
R | 0.02 | 0.17 | −0.02 | 0.05 | −0.29 | 0.46 | 0.25 | 0.17 | 0.08 | −0.08 | −0.29 | |||
DSS | Ther | p | 0.18 | 0.00 | 0.88 | 0.03 | 0.05 | 0.26 | 0.22 | 0.58 | 0.16 | 0.30 | 0.92 | |
R | −0.40 | −0.81 | 0.05 | −0.60 | −0.57 | 0.37 | 0.37 | −0.17 | −0.43 | −0.31 | −0.09 | |||
Prev | p | 0.67 | 0.58 | 0.08 | 0.17 | 0.33 | 0.23 | 0.19 | 0.04 | 0.36 | 0.37 | 0.30 | ||
R | −0.14 | −0.15 | −0.46 | −0.38 | 0.27 | 0.33 | −0.36 | −0.54 | −0.25 | −0.26 | −0.37 |
Hif1a | Il10 | Il6 | Nos2 | Tgfb1 | Tnfa | Vegfa | Tjp1 | Il1b1 | ||
---|---|---|---|---|---|---|---|---|---|---|
Hif1a | 0.17 | 0.43 | 0.09 | 0.58 | 0.08 | 0.59 | 0.52 | 0.11 | Ther | |
Il10 | 0.49 | 0.08 | 0.61 | 0.23 | 0.66 | −0.15 | −0.09 | 0.82 | ||
Il6 | 0.70 | 0.28 | 0.29 | 0.61 | 0.50 | 0.52 | 0.33 | 0.52 | ||
Nos2 | 0.41 | 0.55 | 0.27 | 0.17 | 0.57 | 0.05 | −0.15 | 0.47 | ||
Tgfb1 | 0.75 | 0.23 | 0.76 | 0.32 | 0.40 | 0.28 | 0.35 | 0.39 | ||
Tnfa | 0.64 | 0.38 | 0.69 | 0.61 | 0.62 | −0.21 | −0.26 | 0.76 | ||
Vegfa | 0.75 | 0.23 | 0.87 | 0.18 | 0.71 | 0.61 | 0.48 | −0.28 | ||
Tjp1 | 0.40 | 0.36 | 0.17 | −0.05 | 0.29 | −0.01 | 0.31 | −0.24 | ||
Il1b1 | 0.61 | 0.05 | 0.90 | 0.46 | 0.72 | 0.66 | 0.79 | −0.05 | ||
Preventive |
Hif1a | Il10 | Il6 | Nos2 | Tgfb1 | Tnfa | Vegfa | Tjp1 | Il1b1 | ||
---|---|---|---|---|---|---|---|---|---|---|
Hif1a | 0.18 | 0.32 | −0.13 | 0.30 | 0.14 | 0.27 | 0.46 | 0.44 | Ther | |
Il10 | −0.13 | 0.1 | −0.19 | 0.5 | −0.23 | 0.43 | 0.34 | 0.20 | ||
Il6 | 0.74 | 0.23 | 0.4 | −0.03 | 0.38 | −0.22 | −0.19 | 0.91 | ||
Nos2 | −0.02 | −0.37 | −0.13 | −0.28 | 0.82 | −0.68 | −0.73 | 0.39 | ||
Tgfb1 | 0.73 | 0.21 | 0.76 | −0.16 | 0.05 | 0.59 | 0.52 | 0.09 | ||
Tnfa | 0.49 | −0.16 | 0.44 | 0.44 | 0.39 | −0.43 | −0.43 | 0.36 | ||
Vegfa | 0.26 | −0.09 | 0.20 | −0.24 | 0.58 | 0.34 | 0.82 | −0.19 | ||
Tjp1 | 0.08 | −0.58 | −0.19 | 0.05 | −0.11 | 0.11 | 0.16 | −0.13 | ||
Il1b1 | 0.64 | 0.17 | 0.77 | 0.08 | 0.68 | 0.57 | 0.21 | −0.10 | ||
Prev |
Model | Approach | Both Sexes | F | M |
---|---|---|---|---|
TNBS-colitis | Therapeutic | Tjp1 | Tnfa | Tgfb1t |
Il6 | ||||
Il1b1 | Il6t | |||
Tjp1t Il10/Il1b1 Tgfb1/Il1b1 Il10/Il6t | Il1b1t Il10/Il6t | |||
Preventive | CRP | CRPt | Nos2t | |
Il10/Il6t | ||||
Il10/Il1b1t | ||||
DSS-colitis | Therapeutic | Tgfb1 | Tgfb1t | Tgfb1 |
Il6 | Il6 | |||
SAA | Vegfa | |||
Il10/Il6 | ||||
Tgfb1/Il6 | Hif1at | Tjp1 | ||
Tgfb1/Tnfa | Il10/Tnfa | |||
Il10/Il1b1 | Tgfb1/Tnfa | |||
Tgfb1/Il1b1 | ||||
Preventive | Il6 | Tjp1 | Hif1a | |
Tnfat | Il6t | |||
Tgfb1/Il6 | Tgfb1/Il6t | Tgfb1/Il6 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Suau, R.; Garcia, A.; Bernal, C.; Llaves, M.; Schiering, K.; Jou-Ollé, E.; Pertegaz, A.; Garcia-Jaraquemada, A.; Bartolí, R.; Lorén, V.; Vergara, P.; Mañosa, M.; Domènech, E.; Manyé, J. Response Variability to Drug Testing in Two Models of Chemically Induced Colitis. Int. J. Mol. Sci. 2023, 24, 6424. https://doi.org/10.3390/ijms24076424
Suau R, Garcia A, Bernal C, Llaves M, Schiering K, Jou-Ollé E, Pertegaz A, Garcia-Jaraquemada A, Bartolí R, Lorén V, Vergara P, Mañosa M, Domènech E, Manyé J. Response Variability to Drug Testing in Two Models of Chemically Induced Colitis. International Journal of Molecular Sciences. 2023; 24(7):6424. https://doi.org/10.3390/ijms24076424
Chicago/Turabian StyleSuau, Roger, Anna Garcia, Carla Bernal, Mariona Llaves, Katharina Schiering, Eva Jou-Ollé, Alex Pertegaz, Arce Garcia-Jaraquemada, Ramon Bartolí, Violeta Lorén, Patri Vergara, Míriam Mañosa, Eugeni Domènech, and Josep Manyé. 2023. "Response Variability to Drug Testing in Two Models of Chemically Induced Colitis" International Journal of Molecular Sciences 24, no. 7: 6424. https://doi.org/10.3390/ijms24076424