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Abstract: The current study was focused on the potential of pure P25 TiO2 nanoparticles (NPs) and
Fe(1%)-N co-doped P25 TiO2 NPs to induce cyto- and genotoxic effects in MRC-5 human pulmonary fi-
broblasts. The oxidative lesions of P25 NPs were reflected in the amount of 8-hydroxydeoxyguanosine
accumulated in DNA and the lysosomal damage produced, but iron-doping partially suppressed
these effects. However, neither P25 nor Fe(1%)-N co-doped P25 NPs had such a serious effect of
inducing DNA fragmentation or activating apoptosis signaling. Moreover, oxo-guanine glycosylase
1/2, a key enzyme of the base excision repair mechanism, was overexpressed in response to the
oxidative DNA deterioration induced by P25 and P25-Fe(1%)-N NPs.

Keywords: titanium dioxide; P25 Degussa nanoparticles; iron doping; nanoparticle genotoxicity;
human pulmonary fibroblasts; MRC-5 cells; OGG1/2 DNA repair glycosylase; base excision repair

1. Introduction

In recent years, NPs have become a major development opportunity for biomedical [1],
agricultural [2], and different industrial applications such as electronics [3], aerospace
and automotive coatings [4], active food packaging [5], or environmental remediation [6].
According to some estimates, the most produced metal-based nanomaterials worldwide
are made of silver, titanium, zinc, or gold [7,8]. In particular, TiO2 NPs are widely used
in commercially available products or pilot applications, including cosmetics and sun-
screens, paints, food products and active packaging, photoactive cement, or innovative
textiles [9–12], due to their special optical and photocatalytic characteristics.

Different studies proved that TiO2 NPs, especially anatase-rutile mixtures, exhibit cyto-
and genotoxicity [13–15], which probably derive from their ability to generate excessive
ROS levels that could determine oxidative stress when the cellular antioxidant systems
are overwhelmed. The toxicological response of living systems to TiO2 NPs depends
on the particles’ physicochemical properties that can be modulated by various proce-
dures [16,17]. TiO2 is present in several stoichiometric (anatase, rutile, brookite) [18,19]
and non-stoichiometric crystalline structures [20,21], the toxicity of the first ones being
exhaustively investigated over time. Anatase and rutile are the main crystalline forms
of TiO2. Evidence shows that their toxic effects might differ when nano-dimensioned
particles under ultraviolet or visible irradiation are considered [22,23]. Concerning the
non-stoichiometric forms, results on their toxicological effects are nearly inexistent. To
the best of our knowledge, only one study investigated the biological activity of TiO2−x,
reporting eryptosis via ROS and Ca2+ signaling [24].

Within the nano-size range, smaller NPs are generally considered more cytotoxic
because of their large specific surface area, which probably leads to the formation of higher
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amounts of ROS [25–27]. Agglomeration of small TiO2 NPs might enhance toxicity, while
larger agglomerated NPs could lessen that effect [28]. The health risks of NPs are currently
disputed, probably because of the heterogenic characteristics of the investigated NPs.
However, oxidative stress is generally accepted as their main source of toxicity [29,30].

Nowadays, oxidative stress can be considered a serious threat to human health, as
it is associated with the development of different metabolic chronic disorders [31,32],
neurodegenerative diseases [33], or carcinogenesis [34]. Different external factors, such as
UV radiation [35], an unbalanced diet [36], drugs [37,38], pesticides [39], or air pollution [40],
can contribute to the excess generation of free radicals, overwhelming the enzymatic
antioxidant defense mechanism of cells.

The oxidative stress might become dangerous at the cellular level when not suffi-
ciently managed. Its negative effects emerge from the damage of biomolecules caused by
excess reactive oxygen species (ROS). These affect the integrity and potential of cellular
membranes, including endomembranes, by lipid peroxidation [41,42]. Moreover, ROS can
impair nucleotides, leading to mutations [43] or DNA lesions [44].

The uptake of TiO2 NPs into the body tissues can occur through inhalation, ingestion,
or dermal contact. Recently, the stakeholders of the European Commission agreed, based
on the opinion of the European Food Safety Authority, to restrict the use of TiO2 as a food
additive [45], hence preventing gastrointestinal exposure. While cutaneous application
of TiO2 NPs-based sunscreens is generally considered safe [46,47], inhalation remains the
main route of exposure to nanoscale particles, as they easily diffuse into the atmosphere.
The International Agency for Research on Cancer raised concerns regarding the safety of
nanoscale TiO2 more than 10 years ago, hence its classification in a group of substances that
possibly trigger cancer through inhalation [48]. In addition, different regulations concerning
cosmetic products that might lead to the inhalation of TiO2 NPs were introduced as time
passed [49,50]. Different countries also established maximum occupational exposure levels
to TiO2 NPs [51,52].

Genotoxicity is usually accepted as an indicator of NP-induced carcinogenesis. Differ-
ent studies showed that TiO2 NPs are mainly distributed through vesicular structures and
are up-taken without harming the cellular organelles [53–55]. In contrast, some authors
claimed that NPs could interact with different organelles, including the nucleus [56–58].
However, experimental results suggest that the direct interaction of DNA molecules with
TiO2 NPs is improbable. Only small TiO2 NPs (dimensions) could be observed in the
nucleus occasionally [59,60], and therefore their amount was probably insignificant com-
pared to the proportion of particles that were accumulated in the cytoplasm. Accordingly,
diffusion of ROS into the nucleus is possibly the main mechanism causing TiO2-induced
genotoxicity in the form of oxidized bases, micronuclei, and double-stranded breaks [61,62].

Considering the abovementioned regulations and the scientific data that support the
negative effects of TiO2 NPs on health, researchers were forced to design strategies to
attenuate the toxicity thereof. Different molecules coupled to the surface of particles during
or after their synthesis might be effective in reducing ROS production. Antioxidants appear
to be a straightforward solution [63], but also doping with metallic ions might be effective.
Ghiazza et al. [64] found that doping TiO2 NPs with iron could alleviate their ability to
induce oxidative stress in human keratinocytes. Co-doping with iron ions could provide a
supplementary advantage to TiO2 NPs, as it narrows their energy band gap [65]. Therefore,
less energy is required to trigger photocatalysis, a physical property exploited in some
applications [66]. Normally, the photocatalytic effect of TiO2 NPs manifests stronger in UV
light. On the contrary, scientific evidence indicated that iron doping could render nanoscale
TiO2 become photoexcited by exposure to low visible radiation [67]. It is worth mentioning
that ion doping does not always act as an inhibitor of ROS [68,69], and therefore its effect
might be dependent on NPs’ characteristics, including the ion nature and concentration.

Analyzing the above information, it can be noted that the effect of iron doping on the
toxicity of TiO2 NPs might be beneficial for the future of nanotechnology and needs to
be further explored. Therefore, our study aimed to compare the cytotoxic and genotoxic
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response of MRC-5 human pulmonary fibroblasts exposed to TiO2 P25 NPs and Fe(1%)-N
doped TiO2 P25 ones, respectively. Also, lysosomal modifications and DNA integrity were
investigated in relation to the oxidative lesions induced by the tested NPs.

2. Results
2.1. Physicochemical Characteristics of TiO2 NPs

The two types of TiO2 NPs that were used in the present work were (i) commercially
available P25 NPs and (ii) the same NPs co-doped with Fe and N atoms by direct impreg-
nation in an aqueous solution of 1% FeCl3 and in the presence of urea (P25-Fe(1%)-N) (see
Section 4.1.). The concentration of FeCl3 that we chose was mainly based on a previous
paper from our group where P25 NPs impregnated by dispersion in 1% FeCl3 had an en-
hanced photocatalytic effect in both long-wave UV (368 nm) and visible light (610 nm) [70].
Moreover, Kalantari et al. showed that co-doping with Fe and N considerably increased
the TiO2 NPs’ photocatalytic activity compared to mono-doped TiO2 NPs [71].

There is evidence that a higher amount of Fe atoms on TiO2 NPs’ surface would
improve the photocatalytic effect of NPs [72–74]. However, it was already shown that the
phototoxicity of TiO2 NPs could be proportionally increased by 1% to 10% Fe-doping due
to the generation of oxidizing agents via the Fenton reaction [74]. Therefore, we considered
a low amount of dopant would be more appropriate for investigating the potentially toxic
effects of pulmonary exposure to Fe-N doped TiO2 NPs.

The chemical content of P25 NPs and P25-Fe(1%)-N NPs was revealed by X-ray
photoelectron spectroscopy (XPS) measurements (Figure 1a) and the corresponding binding
energies (Table 1). The results proved the presence of Ti and O atoms in both types of
NPs (Figure 1b,c). Also, Fe and N atoms were identified in the P25-Fe(1%)-N sample
(Figure 1d,e). Moreover, P25 NPs were made of stoichiometrically structured TiO2, as
revealed by the ratio of 2.02 between the main signals of Ti 2p3/2 (458.65 eV) and O
1s (529.98 eV). The O 1s peaks near 532 eV might be assigned to hydroxyl groups or
adsorbed water molecules on the surface, and the 530–531 eV peaks to Ti-O chemical
bonds, respectively. The signal at 710.40 eV is characteristic of Fe 2p3/2, revealing that
P25-Fe(1%)-N NPs contained Fe3+. The peak at 399.62 eV might be assigned to oxidized
nitrogen, i.e., O-Ti-N bindings. Also, the N 1s peak at 401.19 eV usually reflects interstitial
nitrogen. The ratios between intensities of the XPS peaks (Fe/TiO and N/TiO) showed that
P25 NPs prepared in FeCl3 had 2.1% Fe atoms and 0.5% N atoms on their surface.

Table 1. The binding energy values extracted from the deconvolutions of the XPS spectra of P25 NPs
and Fe(1%)-N doped P25 NPs.

Sample
Ti 2p3/2 O 1s Fe 2p3/2 N 1s

Binding Energy (eV)

TiO2 P25 458.65
459.63

529.98
531.03 - -
532.16

TiO2
P25-Fe(1%)-N

458.08 529.42
399.62
401.19

459.30 530.75 710.40
460.27 531.81

As revealed in the images obtained by transmission electron microscopy (TEM), both
‘types of NPs generally had near polyhedral shapes with round corners (Figure 2a,b); some
spheres could also be observed. The dimension of most P25 NPs was between ∼10–50 nm
and had a mean particle size of 29 nm (Figure 2a). The size range of P25-Fe(1%)-N NPs
was larger, with most being ∼15–60 nm. However, the mean particle size of P25-Fe(1%)-N
NPs was similar to that of P25 NPs, i.e., ∼28 nm (Figure 2b). More analyses regarding the
characterization of TiO2 NPs were provided in our previously published papers [70,75].
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Figure 1. X-ray photoelectron spectroscopy (XPS) spectra of P25 NPs and Fe(1%)-N doped P25 NPs: 
(a) XPS survey spectrum and high-resolution XPS scan spectra over (b) Ti 2p, (c) O 1s, (d) Fe 2p and 
(e) N 1s peaks. 

Figure 1. X-ray photoelectron spectroscopy (XPS) spectra of P25 NPs and Fe(1%)-N doped P25 NPs:
(a) XPS survey spectrum and high-resolution XPS scan spectra over (b) Ti 2p, (c) O 1s, (d) Fe 2p and
(e) N 1s peaks.
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Figure 2. Observation of TiO2 NPs size and morphology. Representative transmission electron
microscopy images (above) and particle size distribution histograms (below) of (a) P25 NPs and
(b) Fe(1%)-N doped P25 NPs. Scale bar: 50 nm.

2.2. Oxidative DNA Damage Induced by TiO2 NPs in MRC-5 Cells

The concentrations of NPs, i.e., 10 µg/mL and 50 µg/mL, respectively, used by us
were chosen based on our previous work [76] in which we proved that P25 NPs could cause
a significant increase of oxidative stress in MRC-5 cells in a time- and dose-dependent
manner while P25-Fe(1%)-N NPs had no influence on ROS level compared to the control
group of cells.

ROS can damage the cell considerably by impairing the constitutive molecules of
cellular structures. One of the damages induced by a high level of ROS is the oxidation of
guanosine, a modification that might affect the integrity of DNA molecules. We investigated
the impact of TiO2 NPs on the DNA molecules of MRC-5 cells by measuring the level of
8-hydroxydeoxyguanosine (8-OHdG), a commonly used marker for DNA oxidative lesions.
Our results showed that exposure to P25-Fe(1%)-N NPs could increase the level of 8-OHdG
in a time-dependent manner (Figure 3) in MRC-5 cells. The levels of 8-OHdG induced
by both doses of P25-Fe(1%)-N NPs and the dose of 10 µg/mL non-doped P25 NPs were
generally similar and have not exceeded 130% compared to control after 72 h of exposure.
However, the higher dose of P25 NPs caused an increase of the level of 8-OHdG up to
235% compared to the control after MRC-5 cells were exposed for 24 h. Also, 8-OHdG
concentration was lowered in the cells as time passed, reaching 166% compared to the
control at 72 h. Interestingly, the reduction of 8-OHdG recorded at 72 h at 50 µg/mL P25
NPs contrasts with the high level of ROS measured previously by us in MRC-5 cells [76].
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Figure 3. TiO2 NPs induced oxidative DNA damage in human lung fibroblasts. 8-OHdG levels
in MRC-5 cells treated with different concentrations (10 and 50 µg/mL) of P25 NPs and Fe(1%)-N
doped P25 NPs at 24 and 72 h of exposure. Each bar represents the means expressed as % relative to
untreated cells ± standard deviation. Statistical significance: ** p < 0.01 and *** p < 0.001 (comparison
of each treatment with the control).

2.3. Influence of TiO2 NPs on the Morphology of MRC-5 Cells

Actin cytoskeleton plays a key role in the mechanical support of cells, also defining
their morphology. Fluorescent microscopy images displayed in Figure 4 showed that
TiO2 NPs had no negative impact on the MRC-5 cells’ actin cytoskeleton organization. The
microscopic images suggested that MRC-5 cells maintained their fibroblast-like morphology
regardless of the conditions applied in our study (type of TiO2 NPs, concentration of NPs,
exposure time). Normally, these lung fibroblasts are elongated spindle-shaped bipolar cells.
No disrupted filaments or cytoskeleton rearrangements were observed, while bundles of
F-actin appeared very dense, indicating a high cellular density.

2.4. Influence of TiO2 NPs on Lysosomes’ Formation and Lysosomal Membrane Integrity in
MRC-5 Cells

There are no statistically significant differences regarding the accumulation of lyso-
somes inside MRC-5 cells exposed to P25 and P25-Fe(1%)-N NPs (Figure 5a,b). However,
we noted that the lysosome quantity increased by ∼14–18% compared to the control when
the doses of 50 µg/mL at 72 h were applied. The distribution of cathepsin B suggested that
the membrane of lysosomes was affected by the 72 h exposure to TiO2 NPs. Cathepsin B is
a key proteolytic enzyme localized in lysosomes under physiological conditions. Therefore,
when labeled with Alexa Fluor 594, cathepsin B is present in fluorescent red vesicles in
healthy cells, as can be observed in our control cells (Figure 5c).
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Figure 4. TiO2 NPs effect on the morphology of human lung fibroblasts. Fluorescence microscopy
images of actin cytoskeleton structure in MRC-5 cells treated with P25 NPs and Fe(1%)-N doped
P25 NPs (10 and 50 µg/mL) at 24 and 72 h of exposure. Bundles of F-actin (green) were labeled
with phalloidin-fluorescein isothiocyanate (FITC). Nuclei (blue) were stained with DAPI. Scale bar:
100 µm.
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Figure 5. TiO2 NPs effect on lysosomes from human lung fibroblasts: (a) Representative images
of lysosomes (green) labeled with LysoTracker Green and (b) quantification of green fluorescence
intensity in MRC-5 cells treated with different concentrations (10 and 50 µg/mL) of P25 NPs and
Fe(1%)-N doped P25 NPs at 24 and 72 h of exposure. Each bar represents the means expressed as %
relative to untreated cells ± standard deviation. Nuclei (blue) were stained with Hoechst 33342. Scale
bar: 50 µm; (c) Representative images of cathepsin B (red) labeled with Alexa Fluor 594 in MRC-5
cells treated with P25 NPs and Fe(1%)-N doped P25 NPs (10 and 50 µg/mL) at 72 h of exposure.
White arrows indicate the vesicular disposition of cathepsin B in control cells. Nuclei (blue) were
stained with DAPI. Scale bar: 20 µm.

When MRC-5 cells were treated with P25 and P25-Fe(1%)-N NPs, the red signal
appeared in a diffused pattern, indicating that the lysosomal membrane was permeabilized
and cathepsin B was released into the cytosol. Even though permeabilization occurred in
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all treated pulmonary fibroblasts, images showed that the red signal is more clustered in
cells exposed at P25-Fe(1%)-N NPs, suggesting their effect on lysosome integrity is less
pronounced than the one of P25 NPs.

2.5. Effect of TiO2 NPs on the Integrity of DNA from MRC-5 Cells

Considering the generation of ROS and oxidative lesions induced by TiO2 NPs in
MRC-5 cells, we further decided to investigate whether they critically affect the integrity of
DNA molecules. Fragmentation of DNA was investigated by Comet assay that indicated
no significant changes between the different conditions tested, although raised levels of
DNA oxidation might be considered a marker of double-strand breaks. It can be visually
observed that no small fragments of DNA detached and migrated faster, as in the case of the
positive control (Figure 6a). The damage of DNA molecules was expressed in percentages
of DNA in the comet tail. Based on the quantified fluorescence (Figure 6b), the tail DNA%
in samples varied in the 2.4–4.6% range, while in the negative control cells, it has not
exceeded 4%. These results could strengthen the evidence that a molecular mechanism
ameliorates the TiO2 NPs-dependent oxidative damage of DNA within MRC-5 fibroblasts.
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Figure 6. TiO2 NPs effect on DNA integrity of MRC-5 cells: (a) Representative images obtained by
Comet assay (scale bar: 50 µm) and (b) quantification of the green fluorescence expressed as tail DNA
percent ± standard deviation.

2.6. Cell Death Signaling in MRC-5 Cells Exposed to TiO2 NPs

To investigate whether the oxidative lesions produced by TiO2 NPs generated damages
that trigger cell death signaling, protein expression of cathepsin B, p53, caspase-8, -9, and
-3 were quantified using Western Blot analyses. Cathepsin B presented relatively constant
levels in MRC-5 cells exposed to P25 and P25-Fe(1%)-N NPs regardless of the exposure
time or dose applied (Figure 7a,b).
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On the contrary, TiO2 NPs significantly changed the expression of p53 protein in
MRC-5 cells in a time- and dose-dependent manner. After 24 h of exposure to 10 µg/mL of
P25 and P25-Fe(1%)-N NPs, the level of p53 decreased by 3%, respectively, 12% relative to
the control. The expression of p53 started to drop considerably when the highest dose of
TiO2 NPs was applied. At 24 h of exposure, P25 NPs led to the diminution of p53 expression
by 64%. By comparison, the effect of iron-doped TiO2 NPs was slightly milder, leading to a
decreased expression by nearly 38% relative to the control. However, the results indicated
that the inhibitory effect of TiO2 NPs on p53 expression was more evident as time went on.
Thus, p53 expression in NP-treated MRC-5 cells exhibited a massive reduction regardless
of the dose or exposure time. As can be seen in Figure 7c,d, the level of expression of p53
dropped below 10% relative to the control and was totally suppressed by the treatment
with 10 µg/mL and 50 µg/mL of P25 NPs, respectively.

Both p53 and cathepsin B are involved in the initiation of programmed cell death
pathways [77,78]. However, in contrast with our results, p53 normally undergoes over-
expression during apoptosis [79]. In the present study, we proved that neither initiator
caspases-8 and -9 nor the effector caspase-3 were activated by the TiO2 NPs applied to pul-
monary fibroblasts. Based on the molecular mass, protein bands displayed on the obtained
blot profiles corresponded to the uncleaved, i.e., non-activated procaspases (Figure 7e). The
measured level of the apoptosis-inducing markers, i.e., cathepsin B, p53, caspase-8, -9, and
-3, correlated well with the high DNA integrity revealed by the Comet assay.

2.7. The Reparatory Role of 8-oxoguanine DNA Glycosylase in MRC-5 Cells Exposed to TiO2 NPs

As the results suggested so far, a molecular reparatory mechanism might be the
reason for the low genotoxic effect of TiO2 NPs on MRC-5 cells. Therefore, we decided
to investigate a key enzyme involved in the base excision repair, which can recognize
oxidized guanine within the DNA, namely OGG1/2. The protein expression of OGG1/2
was assessed by Western Blot analysis, with the representative blot profiles displayed in
Figure 8a. Interestingly, our results showed that the level of OGG1/2 slightly decreased
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when MRC-5 cells were exposed for 24 h at both doses of P25 or P25-Fe(1%)-N NPs. The
expression exhibited an insignificant diminution of at most 6% relative to the control. The
effect of TiO2 NPs on the level of OGG1/2 became evident at 72 h of exposure when the
reparatory protein exhibited a substantial overexpression (Figure 8b). In general, P25 and
P25-Fe(1%)-N NPs caused the doubling of OGG1/2 expression level, confirming that the
innate base excision repair mechanism coped with the oxidative damage induced by TiO2
NPs and thus maintained the integrity of DNA molecules. The level of OGG1/2 was
slightly higher in the pulmonary fibroblasts treated with P25-Fe(1%)-N NPs in comparison
with the one measured in cells exposed to undoped TiO2 NPs. Differences in OGG1/2
expression were comprised between 83.5 and 125% relative to the control.
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Figure 8. Possible initiation of the base excision repair mechanism through OGG1/2 activation by
TiO2 NPs: (a) Western Blot profile and (b) quantification of the expression of OGG1/2 in MRC-5 in
response to the treatment with different concentrations (10 and 50 µg/mL) of P25 NPs and Fe(1%)-N
doped P25 NPs at 24 and 72 h of exposure. Each bar represents the means expressed as % relative to
untreated cells ± standard deviation. Statistical significance: * p < 0.05, ** p < 0.01, and *** p < 0.001
(comparison of each treatment with the control).

3. Discussion

Considering iron doping might intensify the use of TiO2 NPs in consumer goods, we
chose to investigate the possible associated toxicological risks due to the tuning of their
photocatalytic properties toward visible illuminance. Therefore, we compared the toxicity
of P25 TiO2 NPs doped with iron and nitrogen with the same undoped NPs. The doses
used by us were based on our previously published work [76] as well as on representative
papers [80–83].
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Moreover, inhalation is a major route by which TiO2 NPs enter the human body;
therefore, we have chosen MRC-5 cells, which are human pulmonary fibroblasts, as the
experimental model.

Previous studies stated that TiO2 NPs could also interact with the microtubules and
other components of the cellular cytoskeleton [84,85]. We decided to investigate the influ-
ence of P25 and P25-Fe(1%)-N NPs on the actin cytoskeleton as they could provide valuable
information regarding the morphology of treated cells. Even though some reports show that
TiO2 NPs can disrupt actin filaments [86,87], we did not observe any significant changes
in the organization of the cytoskeleton between exposed samples and control cells. In
addition, considering the role of the actin cytoskeleton in internalization mechanisms [88],
endocytosis of the P25 and P25-Fe(1%)-N NPs with sizes about 50 nm might be produced
to a lesser extent in the MRC-5 cells. This fact is supported by the dimension of the large
aggregates of TiO2 NPs formed [75], which would not be able to enter the cells through
caveolae (with a diameter between 50nm and 80 nm) or clathrin-mediated endocytosis
(with a diameter of ≈120 nm) [89]. However, Thurn et al. [90] stated that the uptake of
aggregates could be possible through macropinosomes with a dimension of 500–2000 nm.

In our previous work [76], we already showed the significant difference between
the ability of P25 and P25-Fe(1%)-N NPs to produce ROS. While P25 NPs could induce
high levels of ROS in a time and dose-dependent manner, doping with iron ions totally
suppressed the generation of oxidative stress [76]. Similarly, iron doping inhibited the
production of TiO2-induced ROS in HaCaT keratinocytes [64]. In contrast, doping TiO2
NPs with copper led to higher ROS production in A549 cells [69], and doping them with
zinc enhanced the oxidative stress induced in MCF-7 cells [68].

Moreover, our previous paper [76] investigated the effect of TiO2 NPs on the enzymatic
antioxidant mechanism of MRC-5 cells. When the ROS level exceeded the neutralizing
ability of antioxidant enzymes, some of the free radicals began to impair intracellular
biomolecules. A part of the oxygen-derived free radicals produced lipid peroxidation that
attacks organelles’ membranes, while others damage DNA after entering the nucleus as
well as proteins [91].

Some of the most commonly studied biomarkers indicating oxidative damage on
DNA molecules, are 8-hydroxylated guanine species, mainly 8-oxoguanine (8-oxoG) and
its isomer, 8-OHdG. In our study, P25 NPs increased the level of 8-OHdG in MRC-5
cells in a time-dependent manner, the results being in accordance with the level of ROS
produced. Interestingly, we observed an attenuated but significant increase of 8-OHdG
level in pulmonary fibroblasts treated with P25-Fe(1%)-N NPs. This might be explained
by the fact that iron-doped TiO2 NPs could generate some reactive species in the first
hours of exposure that had probably produced their effects before initiating the antioxidant
mechanisms [76]. We considered this might represent preliminary evidence that human
pulmonary fibroblasts are able to counteract excessive oxidation caused by TiO2 NPs.

Some studies showed that the increased level of guanine oxidation products within
cells might be linked in certain circumstances with DNA fragmentation [92,93]. On the
contrary, our results indicated that the integrity of DNA molecules from MRC-5 cells was
not affected by the increased level of 8-OHdG caused by exposure to TiO2 NPs. Similarly,
Hackenberg et al. [94] showed that TiO2 NPs did not induce DNA fragmentation in lym-
phocytes obtained from the peripheral blood of human donors. Bhattacharya et al. [95]
obtained the same result when they applied TiO2 NPs on both BEAS-2B (normal human
bronchial epithelial cells) and IMR-90 (normal human pulmonary fibroblasts) cell cultures,
showing that IMR-90 cells exhibited high levels of 8-OHdG after 24 h of exposure to TiO2
NPs. Contrariwise, the potential of TiO2 NPs to induce DNA double-stranded breaks was
demonstrated in HUVEC cells. The genotoxic effect of TiO2 NPs was more pronounced as
their particle size diminished, producing more DNA damage [96].

Besides damages caused by TiO2 NPs-induced oxidative stress on DNA molecules,
we investigated the influence of this on the membrane of lysosomes from MRC-5 cells. So
far, different studies have demonstrated that NPs could induce the permeabilization of
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lysosomal membranes. For example, Li et al. [97] found that the membrane of lysosomes
from MRC-5 cells could be affected by Au NPs. In addition, membrane permeabilization
was induced in THP-1 cells by ZnO NPs [98], in HepG2 NPs by Ag NPs [99], or in 3T3
cells by Si NPs [100]. The previously mentioned studies that investigated Au and Si NPs
associated the damages caused on lysosomal membranes with an increase in the generation
of ROS.

One of the roles of lysosomes is to enzymatically digest spent cellular organelles.
As high levels of ROS in MRC-5 cells treated with TiO2 NPs might damage different
intracellular structures, an increase in the number of lysosomes was expected. Our results
suggested that the number of lysosomes was not significantly influenced by P25 and P25-
Fe(1%)-N NPs exposure. However, the lysosomal membrane was significantly impaired
at 72 h of exposure. The damaged membrane of lysosomes probably allowed the release
of lysosomal content, especially cathepsins, enzymes that can be involved in activating
caspase-dependent cell death pathways [101]. Neither the expression of the p53 protein nor
those of caspase-3, -8, and -9 indicated that apoptosis was activated in MRC-5 cells by TiO2
NPs, although we observed that cathepsin B diffuses from lysosomes into the cytosol. The
insignificant differences between the expression of cathepsin B validated that the diffuse red
signal obtained through immunofluorescence resulted only from the lysosomal membrane
permeabilization. As cathepsin B is a lysosome-resident protein, the result confirmed that
TiO2 NPs did not significantly influence lysosomal formation in MRC-5 cells.

Besides the innate antioxidant defense system that acts directly on generated ROS,
eukaryotic cells can cope with oxidative damage of DNA due to different reparatory
mechanisms, including the base excision repair (BER) mechanism. OGG1/2 has a crucial
role in the removal of oxidized guanine species, being the enzyme responsible for their
recognition, hence the initiation of the BER process [102]. We found that MRC-5 cells
overexpressed OGG1/2 when exposed to both P25 and P25-Fe(1%)-N TiO2 NPs for 72 h,
suggesting the BER mechanism was induced. The constant level of OGG1/2 noticed after
24 h of exposure might be explained by a delay between transcription and translation
processes. The first result that suggested a reparatory mechanism had been activated was
the decrease of 8-OHdG level in the case of 50 µg/mL P25 NPs exposure at 72 h and further
the unaffected DNA integrity revealed by Comet assay.

Du et al. [103] revealed that OGG1 is overexpressed in a dose-dependent manner in
human hepatocytes L02 by a combined treatment of TiO2 NPs and lead, whereas Zijno
et al. [104] showed that OGG1 level increased in human colon Caco-2 cells following treat-
ment with TiO2 NPs. Also, Xia et al. [105] found that human kidney HEK293T cells express
OGG1 in response to the oxidative damage caused by TiO2 NPs that act synergistically
with CdCl2.

In contrast with our results, control of BER activity is managed by p53 through its
ability to regulate the cell cycle [106]. We found that the expression of p53 was totally
inhibited. Therefore, the point mutations caused by 8-OHdG in the sequence of DNA [43]
might have been transmitted during cell division prior to the activation of the reparatory
mechanism. However, the BER pathway can function in a p53-independent manner, as
other proteins might arrest the cell cycle [107].

4. Materials and Methods
4.1. Physicochemical Characterization of TiO2 NPs

Two types of TiO2 NPs were used in this study: (i) Degussa P25 (Aeroxide® P25)
purchased from Sigma Aldrich (St. Louis, MO, USA) and (ii) Degussa P25 co-doped with
Fe and N atoms that were obtained experimentally by direct impregnation in 1% FeCl3
6H2O and urea. The method of impregnation of TiO2 NPs with Fe and N, as well as
the characteristics of the two types of TiO2 NPs, were described in detail in the previous
publications of our research group [70,75]. Briefly, powders of P25 and P25-Fe(1%)-N
NPs consisted of approx. 83% anatase (with a crystallite size of around 30 nm) and
approximately 17% rutile (with a crystallite size of around 50 nm) [70]. Moreover, our
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group showed that these types of TiO2 NPs formed large aggregates when they were
suspended in MEM supplemented with 10% FBS. Zeta potential values around –10 mV
also confirmed the low stability of TiO2 NPs [75].

XPS measurements provided in this work were obtained in an analysis chamber using
a monochromatized Al Kα1 X-ray source (1486.74 eV). The electrons were analyzed with a
150 mm hemispherical electron energy analyzer (Phoibos, Specs Gmbh, Berlin, Germany).
TEM images and measurements were performed on a JEOL 200 CX transmission electron
microscope (accelerating voltage: 200 kV).

4.2. Cell Culture and Treatment with TiO2 NPs

MRC-5 human lung fibroblasts purchased from American Type Culture Collection
(ATCC, catalog no. CCL-171) were cultured in vitro in Eagles minimum essential medium
(MEM; Gibco/Invitrogen, Carlsbad, CA, USA) at 37 ◦C and in a humified atmosphere
with 5% CO2. MEM containing 2 mM L-glutamine, 0.1 mM sodium pyruvate, and 4.5 g/L
glucose was supplemented with 10% fetal bovine serum (FBS; Gibco/Invitrogen, Carlsbad,
CA, USA). Replacement of the growth medium with a fresh one was done every two days.
Sub-cultivations were performed when cells reached ~80% confluence. For sub-cultivation,
MRC-5 cells were detached using a solution of 0.25% (w/v) Trypsin with 0.53 mM EDTA
(Sigma Aldrich, St. Louis, MO, USA) and split into other culture flasks.

In this experiment, MRC-5 human lung fibroblasts were exposed to 10 and 50 µg/mL
TiO2 NPs for 24 and 72 h. Stock suspensions of 2 mg/mL TiO2 NPs (P25 and P25-Fe(1%)-N)
were prepared by adding 10 mg of each NP’s type in 5 mL of phosphate-buffered saline
(PBS), pH ≈ 7.4. For improving particles’ dispersion, suspensions were sonicated for 5 min
at room temperature using the ultrasonic processor UP50H (Hielscher Ultrasonics GmbH,
Teltow, Germany). Then, stock suspensions were exposed for 30 min to UV light to be sterile
when used. MRC-5 cells were detached as described above and seeded into 75 cm2 culture
flasks. P25 and P25-Fe(1%)-N NPs were added directly into the culture medium at the
abovementioned final concentrations. Cells used as the control for each assay underwent
the same procedures but were grown in an NP-free culture medium.

4.3. Measurement of 8-Hydroxy-2′-Deoxyguanosine Level

The level of 8-OHdG was measured using a commercially available enzyme-linked
immunosorbent assay (ELISA) kit purchased from Abcam (ab201734; Cambridge, UK).
Previously, DNA from MRC-5 cells exposed to TiO2 NPs was isolated and quantified.
Afterward, the DNA was digested with P1 nuclease and treated with alkaline phosphatase;
thus, nucleotides were transformed into nucleosides. Further, DNA samples were processed
using the 8-OHdG ELISA kit according to the manufacturer’s instructions, and finally,
their absorbance was measured at 450 nm using a microplate reader (TECAN GENios,
Grödig, Austria).

4.4. Fluorescence Microscopy Analysis

Fluorescent staining was used to analyze the actin cytoskeleton morphology and
dynamic, lysosomes’ number and density, as well as cathepsin B localization. To observe
actin filaments, MRC-5 cells cultured in flasks and exposed to TiO2 NPs were fixed with 4%
paraformaldehyde for 20 min at room temperature. Then, cell membranes were permeabi-
lized with a mixture of 0.1% Triton X-100 and 2% bovine serum albumin (BSA) for 30 min.
F-actin was labeled by incubating the cells for 1 h with 20 µg/mL phalloidin-fluorescein
isothiocyanate (FITC; Sigma Aldrich, St. Louis, MO, USA). The staining of cell nuclei
has been done by 4′,6-diamidino-2-fenilindol (DAPI; Molecular Probes, Life Technologies,
Carlsbad, CA, USA). Images of the actin cytoskeleton were acquired using the inverted
fluorescence microscope Olympus IX71 (Tokyo, Japan).

The fluorescent staining of lysosomes was performed by incubating MRC-5 cells
with 100 nM LysoTracker Green DND-26 (Molecular Probes, Invitrogen) for 30 min at
37 ◦C in a humidified atmosphere containing 5% CO2. Hoechst 33342 (Molecular Probes,
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Invitrogen) was used to counterstain cell nuclei. Images of stained lysosomes were taken
with Olympus IX71 inverted fluorescence microscope (Tokyo, Japan). Green fluorescence
intensity in different fields of view per each sample was quantified using the ImageJ
1.53u software available online at https://imagej.nih.gov/ij/ (National Institute of Health,
Bethesda, MD, USA) and displayed as a mean relative to the control.

Immunofluorescent localization of cathepsin B was performed by seeding MRC-5 cells
on coverslips at a density of 2 × 104 cells/cm2. After fibroblasts were allowed to adhere
overnight, they were exposed to TiO2 NPs, as described in Section 4.2. Further, MRC-5
cells underwent fixation and permeabilization as described above in the case of F-actin.
Cathepsin B was labeled by incubating cell plates (overnight, 4 ◦C) with Alexa Fluor 594-
coupled anti-cathepsin B antibody (Santa Cruz Biotechnology Inc., Dallas, TX, USA). The
staining of cell nuclei has been done by DAPI. Labeled cathepsin B was visualized at 60x
objective of the fluorescence microscope Nikon Eclipse E200 (Tokyo, Japan).

4.5. Comet Assay

Comet assay was performed using a single-cell electrophoresis kit (Cell Biolabs, INC,
San Diego, CA, USA). After exposure to the two types of TiO2 NPs, MRC-5 cells were
collected, resuspended in PBS, and diluted until the density of 1 × 105 cells/mL was
reached. A volume of 10 µL of each cellular suspension was mixed with 100 µL low melting
agarose maintained at 37 ◦C. Further, a volume of 75 µL from this mixture was stretched
uniformly in thin films on a Comet glass slide. The agarose was allowed to jellify by
incubating the slides on a horizontal surface in the dark at 4 ◦C for 15 min. Then, cells
embedded in agarose were lysed (using the lysis solution within the kit at 4 ◦C, 60 min) and
further treated with an alkaline solution (4 ◦C, 30 min). Afterward, the slides were washed
with deionized water and subjected for 20 min to low voltage horizontal electrophoresis
migration (20V). Subsequently, the slides were washed with 70% ethanol. Finally, DNA
molecules from the agarose-embedded cells were stained with the Vista Green fluorescent
dye. The negative control was represented by MRC-5 cells cultivated in an NP-free growth
medium. The positive control underwent the same procedure, but NP-free cultured cells
embedded in agarose were exposed at 70 µM H2O2 (5 min, 4 ◦C). Images of the comets were
acquired using the fluorescence microscope Olympus IX 71 (Tokyo, Japan). Fluorescence
from representative images was quantified using the OpenComet plugin within the ImageJ
1.53u software (National Institute of Health, Bethesda, MD, USA) and displayed as a
percentage of tail DNA expressed relative to the negative control.

4.6. Western Blot Analysis

Western Blot technique was used to determine the expression level of p53, cathepsin B,
caspase-3, -8, -9, and OGG1/2 proteins. In advance, total protein extracts of samples were
prepared, and their concentration was measured by the Bradford method. Harvested MRC-
5 fibroblasts suspended in PBS were subjected to 3 cycles of 30 s ice-assisted sonication
using the ultrasonic processor UP50H (Hielscher, Teltow, Germany) to disrupt the cell
membranes. Obtained lysates were centrifuged at 3000× g, at 4 ◦C for 10 min, and then
each supernatant containing the total protein extract was individually collected and stored
at −80 ◦C until further use.

Cell lysates containing an equal amount of total protein were subjected to sodium
dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) (90V, 120 min) and then
transferred to a polyvinylidene fluoride membrane (PVDF; Millipore, Billerica, MA, USA)
at 350 mA for 95 min within a wet transfer unit (Bio-Rad Laboratories, Hercules, CA, USA).
For the detection of proteins, PVDF membranes were processed using the WesternBreeze
Chromogenic Kit (Invitrogen, Grand Island, NY, USA). A blocking buffer was applied
for 30 min, and then the membranes were incubated overnight with the following pri-
mary monoclonal antibodies purchased from Santa Cruz Biotechnology Inc. (Dallas, TX,
USA): anti-p53, anti-cathepsin B (sc-365558), anti-β-actin (sc-517582), anti-caspase-8 (sc-
5263), anti-caspase-9 (sc-56076), anti-caspase-3 (sc-7148), anti-oxoguanine glycosylase 1/2
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(OGG1/2; sc-376935). Excess of the primary antibody was released, and membranes were
incubated with an alkaline phosphatase-coupled anti-mouse secondary antibody. After-
ward, protein bands were revealed using 5-bromo-4-chloro-3-indolyl phosphate/nitroblue
tetrazolium (BCIP/NBT). Blot images were acquired with the ChemiDoc XRS+ system
(Bio-Rad Laboratories, Hercules, CA, USA) and processed using Image Lab (version 6.1.,
Bio-Rad Laboratories, Hercules, CA, USA) software. Protein levels were quantified with
GelQuant.NET software (version 1.8.2., available online at BiochemLabSolutions.com),
the amount of β-actin from each sample being used to normalize protein expression. The
results were expressed as percentages relative to the control cells’ protein expression.

4.7. Protein Concentration

Protein concentration was measured using the Bradford method [108]. Briefly, the
optical density of the reaction product between Bradford Reagent (Sigma Aldrich, St.
Louis, MO, USA) and total protein extracts was measured at 595 nm using a FlexStation
3 Spectrophotometer. Protein concentrations of all samples were calculated based on a BSA
standard curve between 0 and 1.25 mg/mL (0–18.8167 µM).

4.8. Statistical Analysis

The means of three independent experiments were expressed as percentages relative
to the control ± standard deviation. Statistical differences between each treatment and the
control were evaluated using the Student’s two-tailed t-test. The statistical significance was
displayed based on the p values as follows: * for p < 0.05; ** for p < 0.01; *** for p < 0.001.
All the data were analyzed and visualized using GraphPad Prism software (version 8;
GraphPad Software Inc., San Diego, CA, USA).

5. Conclusions

Our results could suggest that the oxidative lesions caused by TiO2 NPs in human
pulmonary fibroblasts could be partially neutralized by co-doping them with low amounts
of nitrogen and iron ions. Moreover, the toxic effects of P25-Fe(1%)-N NPs can be considered
attenuated compared to the undoped P25, albeit they were not totally suppressed. The
main impairments probably produced by ROS in pulmonary fibroblasts were related to
the oxidation of DNA components and lysosomal membrane permeabilization that led
to the leakage of lysosomes’ content into the cytoplasm. Additionally, overexpression of
OGG1/2 in correlation with the integrity of DNA molecules indicated that probably the
BER mechanism successfully managed the intranuclear damages induced by TiO2 NPs.
Therefore, we hypothesized that MRC-5 cells might be more resilient than other cell types
to the effects induced by TiO2 NPs. This conclusion could also be supported by the fact that
pulmonary cells are usually more exposed to exogenous ROS-producing compounds that
enter the lungs by inhalation, and their reparatory mechanisms are probably more active.
However, other implications might be involved. The inhibited expression of p53 suggested
that the cell cycle of pulmonary fibroblasts was not arrested during reparatory processes, as
normally happens, indicating that the DNA errors, which probably occurred, might persist
during cell division. In conclusion, our study showed that intracellular mechanisms of
pulmonary fibroblasts could be stressed by TiO2 NPs even though cell viability was not
affected. Moreover, iron doping of TiO2 NPs might be considered a suitable strategy to
attenuate the effects of TiO2 NPs on MRC-5 cells. We consider that this research contributes
to the knowledge regarding the interaction of doped P25 NPs with molecular mechanisms
of in vitro cultured cells and might be a support for the design of safer and more efficient
TiO2 NPs.
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37. Beberok, A.; Wrześniok, D.; Szlachta, M.; Rok, J.; Rzepka, Z.; Respondek, M.; Buszman, E. Lomefloxacin Induces Oxidative Stress
and Apoptosis in COLO829 Melanoma Cells. Int. J. Mol. Sci. 2017, 18, 2194. [CrossRef]

38. Wang, X.; Wu, Q.; Liu, A.; Anadon, A.; Rodriguez, J.L.; Martinez-Larranaga, M.R.; Yuan, Z.; Martinez, M.A. Paracetamol:
Overdose-induced oxidative stress toxicity, metabolism, and protective effects of various compounds in vivo and in vitro. Drug
Metab. Rev. 2017, 49, 395–437. [CrossRef]
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