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Abstract: Multiple sclerosis (MS) is a neurodegenerative disease with a complex pathogenesis.
Re-lapsing-remitting multiple sclerosis (RRMS) is the most common subset of MS, accounting for
approximately 85% of cases. Recent studies have shown that ferroptosis may contribute to the
progression of RRMS, but the underlying mechanism remains to be elucidated. Herein, this study
intended to explore the molecular network of ferroptosis associated with RRMS and establish a
predictive model for efficacy diagnosis. Firstly, RRMS-related module genes were identified using
weighted gene co-expression network analysis (WGCNA). Secondly, the optimal machine learning
model was selected from four options: the generalized linear model (GLM), random forest model (RF),
support vector machine model (SVM), and extreme gradient boosting model (XGB). Subsequently,
the predictive efficacy of the diagnostic model was evaluated using receiver operator characteristic
(ROC) analysis. Finally, a SVM diagnostic model based on five genes (JUN, TXNIP, NCOA4, EIF2AK4,
PIK3CA) was established, and it demonstrated good predictive performance in the validation dataset.
In summary, our study provides a systematic exploration of the complex relationship between
ferroptosis and RRMS, which may contribute to a better understanding of the role of ferroptosis in
the pathogenesis of RRMS and provide promising diagnostic strategies for RRMS patients.

Keywords: multiple sclerosis; ferroptosis; relapsing-remitting multiple sclerosis (RRMS); immune
infiltration; diagnostic model

1. Introduction

Multiple sclerosis (MS) is an autoimmune disease characterized by the destruction of
the blood–brain barrier (BBB), demyelination, axonal injury, progressive neurodegeneration,
and neuronal death caused by autoimmune attacks in the white matter (WM) of the central
nervous system (CNS) [1–4]. Currently, there are over 2.8 million people living with MS
worldwide, with 73% of cases occurring in women (https://www.msif.org/ (accessed on 25
January 2023)). Meanwhile, up to 85% of MS patients progressively develop the relapsing-
remitting (RR) form of the disease [5]. Despite extensive research, the pathogenesis of MS
remains incompletely understand.

Ferroptosis is a unique form of programmed cell death, which was first coined in 2012
and is regulated by iron metabolism, redox homeostasis, lipids metabolism, among others.
Ultimately, the accumulation of reactive oxygen species (ROS) and lipid peroxidation
products leads to cell death [6,7]. Multiple factors, including genetic, epigenetic, and
environmental factors, contribute to the development of MS [1,8]. Research has shown
that iron levels exhibit global alterations, particularly in deep gray matter nuclei and white
matter lesions in the brains of MS patients [9]. The iron homeostasis in the brain of MS
patients is severely disrupted, resulting from iron overload in lesional myeloid cells and
deep nuclei, as well as decreased iron concentration in normal white matter and chronic
cortical lesions [10]. A recent single-cell sequencing analysis of brain cells isolated from
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MS patients showed that the expression levels of some important anti-ferroptosis genes in
neurons and oligodendrocytes were lower than those in normal individuals [11]. GPX4, a
gene that plays a significant role in anti-ferroptosis, was found to be down-regulated in
some cell types of MS patients [11]. This was also confirmed in a previous study by Hu
et al., which showed that GPX4 expression was generally reduced in the gray matter of MS
and the spinal cord of experimental autoimmune encephalomyelitis (EAE) [12], the most
commonly used experimental model for MS [13]. Furthermore, studies have shown that
cuprizone, a copper-chelating agent, can cause demyelination by inducing the rapid loss of
oligodendrocytes mediated by ferroptosis [14]. Despite a significant amount of literature
suggesting the involvement of ferroptosis in the pathogenesis of MS, its specific role in the
etiology of the disease remains unclear [15,16].

As an autoimmune disease, MS is characterized by immune system changes resulting
from the loss of immune tolerance to autoantigens, which induces detectable autoreactions
in the peripheral blood [17]. During acute demyelination, blood-derived lymphocytes and
monocyte-derived macrophages respond to florid infiltration of CNS parenchyma, which
is accompanied by significant BBB dysfunction and a strong glial response, eventually
leading to demyelination and axonal destruction [18–20]. It has been suggested that genes
expressed in peripheral blood can be utilized to study MS [17,21–23]. More importantly,
there are indications that ferroptosis may play a role in BBB dysfunction, although the exact
mechanism remains unclear [24]. Therefore, it is essential and necessary to explore the
relationship between ferroptosis-related genes (FRGs) in peripheral blood and pathological
changes in brain tissue. To our knowledge, no studies have reported the relationship
between FRGs and RRMS in the peripheral blood. Thus, this study aims to investigate
the correlation between FRGs and RRMS at the genetic level, providing a reference for the
diagnosis of RRMS with ferroptosis as a target.

2. Results
2.1. Detection of Differentially Expressed Ferroptosis-Related Genes in RRMS

In this study, we systematically investigated the association between FRGs and RRMS
(Figure 1). Firstly, we discovered 1646 differentially expressed genes (DEGs) between the
RRMS samples and healthy control samples from the consolidated dataset (Supplementary
File S1). Then, we intersected the resulting data with 259 FRGs. Finally, a total of 25 differ-
entially expressed ferroptosis-related genes (DE-FRGs) were identified, of which 6 genes
were up-regulated and 19 were down-regulated (Figure 2A,B; Supplementary File S2).

2.2. Analysis of Dysregulated Genes Associated with Ferroptosis in RRMS

The significant Gene Ontology (GO) terms of the 25 DE-FRGs, including biological
process (BP), cellular component (CC), and molecular function (MF), are illustrated in
Figure 2C. The GO-BP analysis showed that genes were mainly concentrated in macroau-
tophagy, chemical stress, external stimulus, and autophagy of mitochondrion. The GO-CC
pathways were principally associated with the autophagosome, secondary lysosome, and
autolysosome. The GO-MF analysis revealed enrichment in 2 iron, 2 sulfur cluster binding
and peroxidase activity. Additionally, Kyoto Encyclopedia of Genes and Genomes (KEGG)
analysis showed that these DE-FRGs were enriched in autophagy, neurodegenerative
pathways of multiple sclerosis, Kaposi sarcoma-associated herpesvirus (KSHV) infection,
mitophagy, and ferroptosis (Figure 2D). The complete results of GO and KEGG enrichment
analyses are shown in Supplementary File S3.
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Figure 1. The workflow chart of the whole analysis process in this study. WGCNA, weighted gene
co-expression network analysis; RRMS, relapsing-remiting multiple sclerosis; GO, Gene Ontology;
KEGG, Kyoto Encyclopedia of Genes and Genomes; SVM, support vector machine model; RF,
random forest model; XGB, extreme gradient boosting model; GLM, generalized linear model; FRGs,
ferroptosis-related genes.
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2.3. Construction of Co-Expression Network and Module Trait Screening 

Figure 2. Identification and analysis of dysregulated differentially expressed ferroptosis-related genes
(DE-FRGs) in RRMS. (A) Venn diagram of DE-FRGs. DEGs, differentially expressed genes. (B) The
expression patterns of 25 DE-FRGs shown by heatmap. *** p < 0.001. (C) The bubble plot of GO terms
enrichment results. (D) The bubble plot of KEGG pathway analysis results.

2.3. Construction of Co-Expression Network and Module Trait Screening

Moreover, we utilized the weighted gene co-expression network analysis (WGCNA)
to incorporate 586 RRMS samples and 283 normal control samples, with a total of 2952 gene
expression profiles included in the analysis. The scale-free network was constructed when
the value of the soft threshold was set to 2 (R2 = 0.9) (Figure 3A). The adjacency matrix
and topological overlap matrix (TOM) were subsequently constructed, and three distinct
expression modules with their own unique colors were identified using the dynamic cutting
algorithm (Figure 3B–D). A statistically significant difference was revealed in which the blue
and turquoise modules were negatively correlated with RRMS, with correlation coefficients
of −0.25 and −0.98, respectively (Figure 3E; Supplementary Files S4 and S5).
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Figure 3. Identification of module genes by WGCNA analysis between RRMS and healthy control
groups. (A) Network topology analysis for various soft threshold powers. The left figure exhibits
the optimal soft threshold selected by the scale-free index analysis. The right figure shows the mean
connectivity analysis for various soft threshold powers. (B) Clustering tree diagram of co-expression
modules based on topological overlap, with different colors representing different co-expression
modules determined by the dynamic tree cut. The modules represent highly interrelated gene clusters.
(C) Representative clusters of module eigengenes and the microarray sample traits, summarizing all
the modules found in the clustering analysis. (D) Co-expression network visualized by heatmaps.
There are three modules in total, with the light-colored part representing lower co-expression inter-
connectedness and the dark-colored part representing higher co-expression interconnectedness. The
gene tree diagram and module allocation are shown on the left and top of the figure, respectively.
(E) Characteristic association of modules. The heatmap shows the correlation between module
eigengenes and clinic phenotypes, in which each row corresponds to a module and each column
corresponds to a clinic feature. Red indicates high adjacency, which signifies a positive correlation
with the phenotype, while blue indicates low adjacency, which signifies a negative correlation with
the phenotype.
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2.4. RRMS-Related Module Genes Overlapped with Ferroptosis-Related Genes

After extracting 2952 RRMS-related module genes from WGCNA, we compared them
with 259 FRGs obtained from FerrDb, resulting in the identification of 50 overlapping
genes, which are referred to as overlapping RRMS-related module genes (Figure 4A,B;
Supplementary File S6).
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Figure 4. Identification and analysis of overlapping RRMS-related module genes. (A) The Venn
diagram shows the numbers of overlapping genes. (B) The expression patterns of overlapping RRMS-
related module genes are shown in the heatmap. * p < 0.05, ** p < 0.01, *** p < 0.001. (C) The gene
relationship network diagram of 50 overlapping RRMS-related module genes is shown, with red and
green colors indicating positive and negative correlations, respectively. (D) The correlation analysis
of overlapping RRMS-related module genes. The area of the pie chart represents the correlation
coefficient.

2.5. Correlation and Functional Enrichment Analyses of Overlapped Genes

We conducted a correlation analysis on the 50 genes obtained from the intersection
of RRMS-related module genes and FRGs from FerrDb to investigate the potential role of
ferroptosis regulators in the progression of RRMS. The gene relationship network diagram
reveals a strong correlation between these regulatory factors (Figure 4C). Notably, some
ferroptosis regulators, such as TXNIP and NCF2, showed a strong synergistic effect, while
others, such as NCOA4 and PRDX1, exhibited significant antagonistic effects. Furthermore,
TXNIP and NCOA4 were found to be strongly associated with other regulators (Figure 4D).
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We also performed a functional enrichment analysis on these overlapped genes. The
results show that BP was primarily associated with cellular response to chemical stress,
extracellular stimuli, autophagy, and neuron death. GO-CC was mainly related to the vac-
uolar membrane, autophagosome, and secondary lysosome. Additionally, GO-MF revealed
enrichment in ubiquitin protein ligase binding and oxidoreductase activity (Figure 5A).
KEGG pathway analysis further demonstrated that these genes were significantly involved
in KSHV infection, autophagy, human T-cell leukemia virus 1 infection, hepatitis B infection,
and ferroptosis (Figure 5B). Further details of the GO and KEGG analyses can be found in
Supplementary File S7.
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Figure 5. The bar graph and network of enrichment terms across 50 overlapped RRMS−related
module genes in RRMS. (A) Bar graph of 20 enriched biological pathways, colored by p−values.
(B) Network of enriched terms for specified genes analyzed by Metascape, colored by cluster ID.

2.6. Construction and Validation of Significative Diagnostic Model Using Machine
Learning Methods

We applied four well-established machine learning models, namely the random forest
model (RF), support vector machine model (SVM), generalized linear model (GLM), and ex-
treme gradient boosting (XGB), to further identify FRGs with high diagnostic potential. The
top 10 important feature genes of each model were ranked based on the root mean square
error (RMSE) (Figure 6A), and the SVM model exhibited the lowest residual (Figure 6B).
The area under the ROC curve (AUC) was 1 for all four models (Figure 6C). Therefore, we
selected the SVM model as the diagnostic model and identified the top five feature genes
(TXNIP, JUN, NCOA4, EIF2AK4, and PIK3CA) with the smallest residual as predictor genes
for further analysis.



Int. J. Mol. Sci. 2023, 24, 6399 8 of 16

Int. J. Mol. Sci. 2023, 24, x FOR PEER REVIEW 8 of 17 
 

 

and extreme gradient boosting (XGB), to further identify FRGs with high diagnostic po-

tential. The top 10 important feature genes of each model were ranked based on the root 

mean square error (RMSE) (Figure 6A), and the SVM model exhibited the lowest residual 

(Figure 6B). The area under the ROC curve (AUC) was 1 for all four models (Figure 6C). 

Therefore, we selected the SVM model as the diagnostic model and identified the top five 

feature genes (TXNIP, JUN, NCOA4, EIF2AK4, and PIK3CA) with the smallest residual as 

predictor genes for further analysis. 

 

Figure 6. Construction and validation of machine learning models. (A) The feature importance cre-

ated by four machine learning models. (B) Reverse cumulative distribution of residuals in four ma-

chine learning models. (C) Receiver operator characteristic (ROC) analysis of four machine learning 

models. ROC analysis of the 5-gene-based diagnostic model in GSE41849 batch GSE113004 (D), and 

GSE103005 (E) datasets. 

Afterwards, we proceeded to validate the five-gene-based SVM diagnostic model on 

two peripheral blood datasets, one of which was a merged dataset, and a brain tissue 

Figure 6. Construction and validation of machine learning models. (A) The feature importance
created by four machine learning models. (B) Reverse cumulative distribution of residuals in four
machine learning models. (C) Receiver operator characteristic (ROC) analysis of four machine
learning models. ROC analysis of the 5-gene-based diagnostic model in GSE41849 batch GSE113004
(D), and GSE103005 (E) datasets.

Afterwards, we proceeded to validate the five-gene-based SVM diagnostic model
on two peripheral blood datasets, one of which was a merged dataset, and a brain tissue
dataset. The ROC curves demonstrated excellent performance of the five-gene-based
diagnostic model, with an AUC value of 0.982 in the GSE41849 and GSE113004 datasets,
and 0.972 in the GSE103005 dataset (Figure 6D,E). We also conducted additional validation
of the five-gene-based SVM diagnostic model on a brain tissue dataset. The receiver
operating curve analysis of the GSE32915 dataset showed an AUC value of 0.833 with a
95% confidence interval of 0.5–1. Although the limited sample size of the dataset resulted
in a general prediction performance, this still provided evidence that our five-gene-based
prediction model was feasible (Supplementary File S8). However, to confirm its validity,
further verification with a larger independent cohort is necessary.
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2.7. Immune Cell Infiltration Analysis of Overlapped Genes

Furthermore, we comprehensively analyzed the characteristics of immune cell infil-
tration in peripheral blood between the RRMS and healthy control groups. Based on the
CIBERSORT algorithm, the results showed significant differences in the proportion of 22 im-
mune cell types between RRMS and normal control groups (Figure 7A). The proportion of
CD8 T cells, activated CD4 memory T cells, resting NK cells, and M2 macrophages was
higher in RRMS group (Figure 7B). As is shown in Figure 7C, there was a positive correla-
tion between infiltrating CD8 T cells and resting NK cells, as well as activated memory CD4
T cells. In contrast, infiltrating CD8 T cells showed a negative correlation with regulatory T
cells, memory B cells, and activated NK cells.
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Figure 7. Immune cell infiltration analysis. (A) Relative proportions of 22 immune cells between
RRMS and healthy control groups. (B) Violin plot showing differences in 22 types of immune
cells’ infiltration between RRMS and healthy control groups. (C) Correlation heatmap of immune
cell infiltration between RRMS and healthy control groups. The number in the box represents the
correlation coefficient, red represents a positive correlation and blue represents a negative correlation.
(D) Correlation analysis between 22 types of immune cells and 5 hub FRGs identified by the SVM
model. Red represents a positive correlation, and blue represents a negative correlation. * p < 0.05,
** p < 0.01, *** p < 0.001.
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The correlation analysis showed that the five hub FRGs were closely related to resting
NK cells, neutrophils, activated memory CD4 T cells, and naive CD4 T cells (Figure 7D).
Therefore, it was hypothesized that FRGs might be involved in the pathological process of
RRMS through immunoregulation.

2.8. PPI Network Construction

The protein–protein interaction relationships of these five hub FRGs (TXNIP, JUN,
NCOA4, EIF2AK4, and PIK3CA) were analyzed based on the STRING database and
Cytoscape software. For the enrichment information provided by the STRING database, we
filtered out the entries significantly associated with RRMS and listed the potential disease
events that may be induced (Figure 8).
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Figure 8. Protein–protein interaction network of 5 hub RRMS-related module genes. The parallel-
ogram indicates the hub FRGs identified by the machine learning algorithm. The circles represent
potential targets which interact with hub FRGs in the regulatory network. Biological processes
associated with RRMS are represented by rectangles. The nodes in the right-hand circle represent
possible induced disease events. Gene–gene interactions are indicated by edges.

3. Discussion

Iron dysregulation is a significant factor in the development of MS, and ferroptosis-
related signaling pathways have emerged as potential diagnostic biomarkers and thera-
peutic targets for various neurodegenerative diseases [25]. However, the exact role and
specific molecular mechanism of ferroptosis in MS remain unclear and require further
exploration. In this study, we conducted a bioinformatic analysis of FRG expression in
RRMS patients, encompassing a large-scale measurement of gene expression in 586 periph-
eral blood samples. We identified five hub FRGs and comprehensively investigated the
relationship between FRGs and RRMS, leading to the establishment of a reliable diagnostic
model for RRMS.

According to the analysis of the STRING database, these five hub genes were found to
be associated with metabolism, inflammation, immune response, oxidative stress, myelina-
tion, and axonogenesis, which might be involved in the development of RRMS through
these processes. Several studies have linked iron homeostasis and oxidative damage in MS.
The disorder of iron homeostasis in MS occurs at multiple metabolic levels, and ferritins
may exacerbate oxidative stress in MS patients, promoting the disease’s progression [26–28].
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In MS, inflammation is believed to be the primary cause of neurodegeneration, accom-
panied by demyelination and axonal damage [21,29]. MS is commonly regarded as a
T-cell-mediated autoimmune disease [30]. Studies have shown that circulating immune
factors present in the serum of patients with RRMS can cause metabolic stress on BBB
endothelial cells, leading to the breakdown of BBB integrity and the development of pro-
inflammatory cells [31]. Once the BBB is destroyed, a large influx of T and B cells invade the
WM, leading to the formation of active demyelinating plaques [32]. Simultaneously, ROS
produced in local brain regions can alter the permeability of the BBB, allowing inflamma-
tory cells to enter the CNS, where they interact with macrophages and microglia, and then
release pro-inflammatory cytokines [27,33]. As a result, we conducted a thorough analysis
of immune cells infiltration in RRMS and identified abnormal distribution of immune
cells in peripheral blood. The proportion of CD8 T cells infiltrating the RRMS group was
significantly higher than that in the control group, while the proportion of CD4 T cells’
infiltration was slightly lower, consistent with previous studies in brain tissue [32,34]. The
immune process occurs in the peripheral blood, and with the destruction of BBB, immune
cells are recruited into the CNS, accelerating the production of local lesions and inducing
corresponding phenotypic symptoms, such as progressive disability. The five hub FRGs
we identified may interfere with the occurrence of RRMS by affecting one or more of these
processes. The analysis of immune activation in peripheral blood provides valuable infor-
mation for RRMS research and increases our confidence in finding markers from peripheral
blood.

Among the five hub FRGs that we identified, thioredoxin-interacting protein (TXNIP)
is a crucial pathological regulator of many diseases. As a pivotal regulator of the redox
system [35,36], it binds and inactivates TRX [37,38], inhibiting its redox regulation and
inducing cellular oxidative stress, inflammation, and cell death. It also interacts with
inflammatory body components such as NLRP3 to enhance inflammatory response [39].
Recent studies have shown that inhibiting the expression of TXNIP/NLRP3 can reduce the
neuroinflammation response of EAE [40]. Consistent with some research results, TXNIP
may be a potential biomarker of MS [41]. JUN, also known as c-JUN, plays a crucial role
in controlling neuronal death and degeneration, as well as inflammatory plasticity and
repair [42]. In some experimental models, the decrease in or activation of c-JUN expression
has been shown to reduce the degree of neurodegeneration [43–45]. NCOA4 (nuclear recep-
tor coactivator 4), a selective cargo receptor that mediates ferritinophagy and maintains
iron homeostasis in cells and systems, is associated with neurodegenerative diseases [46,47].
EIF2AK4/GCN2, which primarily participates in the cellular amino acid starvation response,
induces and regulates the occurrence of immune response and promotes the development
of EAE in the remission stage [48,49]. Researchers have observed that PIK3CA, an inhibitor
of PI3Kα, can prevent ferroptotic cell death in neurons [50]. The expression changes of
these FRGs were consistent with our findings, with EIF2AK4 and JUN being up-regulated,
while NCOA4, PIK3CA and TXNIP were down-regulated. Although the specific regulatory
mechanisms in RRMS still require further exploration and research, our findings indicate
that these FRGs may have influenced RRMS progression in some manner.

In our study, we observed a notable phenomenon that viral infections were actively
enriched in functional analysis, including KSHV, human T-cell leukemia virus 1, and
Epstein–Barr virus (EBV). Previous research has suggested that KSHV and EBV can infect
neurons and potentially lead to cognitive and neuromuscular dysfunction by disrupting
electrochemical signals between neurons [51]. It is worth noting that MS and KS has long
been considered the origin of viruses, as some studies have suggested [51,52]. Clinically
reported cases of RRMS patients with KS have raised concerns about the potential risk of
KS due to the use of fingolimod, an immunomodulatory drug for RRMS [53–55]. Viruses
can induce oxidative stress through various encoded products, such as Rac-1 and EBV-
coded products [56–58]. Polyunsaturated fatty acids (PUFAs), which are lipids with the
highest degree of peroxidation in the process of ferroptosis, play an important role in the
progression of ferroptosis. Meanwhile, EBV-induced enzymes have been found to promote
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the formation of membrane PUFAs [59], indicating that viral infection may contribute to
the development of RRMS through ferroptosis, which is worthy of exploration. However,
further investigation is needed, as there is a lack of research on the effect of potential viral
infections on the sensitivity of host cells to ferroptosis.

The diagnosis of MS is challenging due to the heterogeneity of its different clinical
subtypes [60]. However, the diagnostic accuracy of MS has been greatly improved by com-
bining clinical symptoms with MRI and serological examination [61]. Moreover, molecular
biomarkers can complement MRI and clinical outcomes well. Although several studies
have identified biomarkers from cerebrospinal fluid, they can be expensive and invasive.
Peripheral blood, on the other hand, can be obtained from patients in a safe and minimally
invasive manner, and can reflect the biological status of the body to some extent. There-
fore, identifying peripheral-blood-based biomarkers has important clinical value and can
simplify the diagnosis of MS.

4. Materials and Methods
4.1. Dataset Extraction and Pre-Processing

Eight microarray datasets related to RRMS (GSE17048, GSE61240, GSE63060, GSE63061,
GSE41849, GSE113004, GSE103005, and GSE32915) were downloaded from the Gene Ex-
pression Omnibus (GEO) database. Thereinto, GSE17048, GSE61240, GSE63060, GSE63061,
GSE41849, GSE113004, and GSE103005 were gene expression profiles derived from periph-
eral blood samples, while GSE32915 was obtained from white matter tissue. A combined
total of 586 RRMS samples were obtained from GSE17048 and GSE61240, while 283 control
samples were extracted from GSE17048, GSE63060, and GSE63061 for comparison. The
datasets mentioned previously were utilized as the discovery set. Subsequently, samples
from GSE103005, GSE41849, GSE113004, and GSE32915 were enrolled for validation anal-
ysis. The GSE103005 dataset consisted of 2 RRMS and 12 control samples. There were
45 control samples in GSE41849 and 58 RRMS samples in GSE113004. Tissue samples from
GSE32915 included 4 control and 12 RRMS samples.

The raw data were processed using the R project (version 4.2.1). First, the probes were
annotated, and empty probes were removed. For genes with multiple probes, the average
expression value was calculated to represent the gene expression level. Additionally, the
“sva” R package was utilized to perform batch normalization on the combined datasets
in order to remove the batch effect. The FerrDb database provided the FRGs for further
analysis, comprising 108 drivers, 69 suppressors, and 111 markers, of which 27 were
multi-annotated genes (Supplementary File S9).

4.2. Differential Expression Analysis

First, the gene expression matrix was analyzed using the “limma” package in R to
explore and identify DEGs with adjusted p-value < 0.05 and |log2fold change (FC)| > 1.
These DEGs were then intersected with FRGs to identify DE-FRGs. The resulting gene
expression patterns were visualized using a cluster heatmap generated with the “pheatmap”
package in R. The details of the overlapped genes were depicted using a Venn diagram.

4.3. Functional Enrichment Analysis

A comprehensive pathway enrichment analysis was performed on GO and KEGG
separately for DE-FRGs and RRMS-related module genes. The GO analysis was performed
across three domains, including BP, CC, and MF. The GO and KEGG files were down-
loaded from the MSigDB website database. Enrichment analysis was conducted using R
packages including “colorspace”, “stringi”, “circlize”, “RcolorBrewer”, “org.Hs.eg.db”,
“DOSE”, “clusterProfiler”, “enrichplot”, “ComplexHeatmap”, and “dplyr”. The RRMS-
related module genes were also functionally annotated and visualized using Metascape
(http://metascape.org/gp/index.html#/main/step1 (accessed on 12 January 2023)).

http://metascape.org/gp/index.html#/main/step1
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4.4. Analysis of Weighted Gene Co-Expression Network

A meta-analysis of the expression matrix was conducted using the “WGCNA” package
to construct a gene co-expression network. Initially, 2952 genes with the highest variance,
representing the top 25% of the 11,808 genes, were selected for analysis while eliminating
any abnormal outliers. The optimal soft threshold was selected to ensure that the network
was consistent with the characteristics of the scale-free distribution. This was achieved
by constructing the weighted adjacency matrix and topological overlap matrix (TOM).
The specific parameters were set to minModuleSize = 100 and power = 2. Then, the
RRMS-related module traits were identified using the hierarchical clustering tree algorithm.
The module partition and eigengenes were then outputted, with gene significance (GS)
representing the association between gene expression and specific module traits, and
module membership (MM) indicating the correlation between modules and disease status.

4.5. RRMS-Related Module Genes Overlapped with Ferroptosis-Related Genes

The RRMS-related module genes identified through WGCNA analysis were intersected
with FRGs, and the number of overlapping genes was visualized using the “VennDiagram”
package in R. Additionally, the correlation between different FRGs was analyzed using the
“corrplot” package in R.

4.6. Construction and Validation of Diagnostic Model Based on Four Machine Learning Methods

This study utilized four machine learning models, namely GLM, RF, SVM, and XGB,
established through the use of “caret”, “randomForest”, “kernlab”, and “xgboost” packages
in R. A total of 586 RRMS samples were randomly divided into a training group (410 cases)
and a test group (176 cases) using a ratio of 7:3. The “DALEX” package in R was used to
explain the residual distribution and feature importance of the machine learning models.
To evaluate the reliability of the disease diagnosis model, an ROC curve was established
using the “pROC” R package. Based on these results, the optimal machine learning model
was selected and the top five hub FRGs of the diagnostic model were identified. Finally,
the diagnostic value of the 5-gene-based diagnostic model was verified through ROC curve
analysis in a validation cohort.

4.7. Immune Cell Infilteration and Correlation Analysis

The R software packages “CIBERSORT”, “preprocessCore”, and “e1071” were used to
estimate the relative expression percentages of 22 immune-infiltrated cell types for each
individual in the discovery dataset. The results were visualized using a barplot. A violin
diagram was generated using the R package “vioplot” to exhibit the infiltrating difference
between RRMS and healthy control samples. The “corrplot” package was then used to
create a correlation heatmap to visualize the association between all immune cell subtypes.
According to Spearman’s correlation coefficient, p < 0.05 was considered statistically signifi-
cant. Finally, the correlation between hub FRGs and immune cell properties was displayed
using the R packages “reshape2”, “tidyverse”, and “ggplot2”.

4.8. Construction and Analysis of PPI Network

The online tool STRING (https://cn.string-db.org/ (accessed on 12 January 2023))
was used to search for protein interactions between the RRMS-related module genes and
their potential target proteins. The confidence interaction score between gene pairs was
set to be greater than 0.4, while other settings were left at default values. Based on the
information obtained from the STRING database, a possible regulatory network of five hub
FRGs in RRMS was established and visualized as a PPI network using Cytoscape software
(version 3.9.0).

5. Conclusions

Through a series of bioinformatics analyses, we have established a five-gene-based
diagnostic model that can effectively distinguish between RRMS and normal populations,

https://cn.string-db.org/
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but the model still has certain limitations. In order to improve its reliability, we need
to validate it in a larger and more independent cohort. Additionally, the expanding
FRGs team provides more opportunities to improve the model. Furthermore, RRMS is a
complex disease with strong heterogeneity, but unfortunately, our study lacks important
clinical features related to patients. Overall, our study enhances our understanding of the
molecular mechanisms underlying ferroptosis in the pathogenesis of RRMS and provides
new potential diagnostic biomarkers.
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