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Abstract: One the main research goals of bioinorganic chemists is the synthesis of novel coordination
compounds possessing biological potency. Within this context, three novel iron(III) complexes with
the non-steroidal anti-inflammatory drugs diflunisal and diclofenac in the presence or absence of
the nitrogen donors 1,10-phenanthroline or pyridine were isolated and characterized by diverse
techniques. The complexes were evaluated for their ability to scavenge in vitro free radicals such as
hydroxyl, 1,1-diphenyl-2-picrylhydrazyl and 2,2′-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid)
radicals, revealing their selective potency towards hydroxyl radicals. The in vitro inhibitory activity
of the complexes towards the enzymes acetylcholinesterase and butyrylcholinesterase was evaluated,
and their potential to achieve neuroprotection appeared promising. The interaction of the complexes
with calf-thymus DNA was examined in vitro, revealing their ability to intercalate in-between DNA
nucleobases. The affinity of the complexes for serum albumins was evaluated in vitro and revealed
their tight and reversible binding.

Keywords: iron(III) complexes; non-steroidal anti-inflammatory drugs; antioxidant activity; anticholinergic
activity; interaction with albumins; interaction with DNA

1. Introduction

The biological importance of iron has been known since ancient times. Iron is the most
abundant transition metal ion in the human body and is found in small amounts [1]. It
is mainly found in the active center of proteins and enzymes, such as the hemoproteins
hemoglobin, myoglobin and cytochromes, or the iron–sulfur proteins and ferritin [2]. Iron
is found in two oxidation states (+2 and +3), and its ability to interconvert between these
two states makes it crucial for important biochemical reactions but also dangerous, due
to its involvement in undesired reactions [3]. The main biological functions of iron are
the transportation of oxygen and electrons, influencing cellular metabolism, respiration
and DNA synthesis [4–6], photosynthesis [7], and other basic cellular processes in the
body, all contributing to good health and proper functioning [3,5]. Despite its beneficial
effect, an excess of iron may generate free radicals, resulting in tissue damage [8], and
its accumulation may be a reason for tumors and other cancers [9–11]. In addition, a
malfunction of iron homeostasis may result in iron deficiency or iron overload, which
may be related to heart failure [12], brain aging, and neurodegenerative diseases such as
Alzheimer’s disease (AD), Parkinson’s disease, multiple sclerosis [13,14], and respiratory
diseases [15]. As a biological elemental, iron has drawn the attention of bioinorganic
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chemists regarding the potential activity of its compounds. Iron oxide nanoparticles have
been reported for their antimicrobial and cytotoxic activity [6,16], while iron complexes
have shown anticancer [17], antimicrobial [18–20], and antioxidant [18,21,22] activities.

Alzheimer’s disease is one of the most prevalent neurodegenerative diseases and
the major cause of dementia in the elderly. It causes memory loss, behavioral changes,
and progressive decline in mental and functional abilities [23]. According to more recent
estimates, approximately 50 million people were living with AD worldwide in 2020, and
this number is projected to reach 152 million by 2050 [24]. To explain this multifactorial
disease, several hypotheses have been proposed and pursued. The design of cholinesterase
inhibitors based on the central cholinergic hypothesis is the most popular clinical strategy
for the treatment of AD so far [25]. In the central nervous system, acetylcholine (ACh)
has multiple roles. ACh is the main neurotransmitter of the nervous system and the
one that maintains communication between neurons. It is known to play an important
role in memory and learning and is in abnormally short supply in ailing brains [26,27].
ACh deficits lead to neuronal and synaptic dysfunction, resulting in dementia [26,27].
Acetylcholine is rapidly destroyed by the enzyme acetylcholinesterase (AChE) and thus
is effective only briefly. Inhibitors of the enzyme (drugs known as anticholinesterases)
prolong the lifetime of ACh. Such agents include physostigmine, neostigmine, and tacrine,
which are used in the treatment of Alzheimer’s disease, amongst other diseases [28].

AD is a complex neurological disorder that is characterized by progressive cognitive
decline and the loss of brain cells. While the exact causes of AD are not fully understood,
one theory that has gained significant attention in recent years is the role of oxidative stress,
which includes elevated levels of reactive oxygen species (ROS) [29]. ROS are molecules that
can cause damage to cells, including brain cells, and are thought to contribute to the process
of neurodegeneration by promoting inflammation and damaging cellular structures in the
brain. Several studies have shown that levels of ROS are elevated in the brains of people
with AD, and that these levels correlate with the severity of cognitive impairment [30,31].
Additionally, animal studies have suggested that treatment with antioxidants, which can
neutralize ROS, may help to prevent or slow the progression of AD [32]. Overall, as
oxidative stress appears to play an important role in the etiology of AD, targeting ROS with
antioxidants or other free radical scavengers may have a critical role in the treatment of
AD, leading to effective drugs being developed. While the evidence for this theory is still
emerging, it offers a promising avenue for further research and the development of novel
therapies for AD. Moreover, a number of inflammatory markers have been identified in
AD brain tissue [33]. Research indicates that inflammation plays a significant role in the
development of senile plaques (SPs), a marker of AD [34]. Non-steroidal anti-inflammatory
drugs (NSAIDs), for example, are expected to slow the progression of the disease by
interfering with SP formation or suppressing the inflammation associated with SPs [35]. In
fact, various epidemiologic studies have been conducted to support the notion that NSAIDs
may be beneficial for the management of Alzheimer’s disease.

Sodium diclofenac (Nadicl) (Figure 1A) is an analgesic, antipyretic, and anti-inflammatory
agent [36] proposed for the treatment of rheumatoid arthritis and osteoarthritis [37,38]. How-
ever, recent studies have shown that the use of sodium diclofenac may increase the cardiovas-
cular problems when compared to paracetamol and other traditional NSAIDs [39]. As a typical
NSAID, sodium diclofenac has been proven to be a better medication than paracetamol for the
treatment of COVID-19, regarding its analgesic and antipyretic efficacy and the enhancement of
the immune response of patients [40,41]. Considering the coordination compounds containing
diclofenac ligands, a series of copper(II) [38,42–45], cobalt(II) [45], manganese(II/III) [46–48],
cadmium(II) [49], tin(IV) [50], nickel(II) [48,51], Zn(II) [52,53], and Ag(I) [54] have been found
in the literature, with their biological profile investigated in most cases [38,42–46,48,51,52].
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Figure 1. Syntax formula of (A) sodium diclofenac (Nadicl), (B) diflunisal (H2difl), (C) 1,10-
phenanthroline (phen), and (D) pyridine (py).

Diflunisal (H2difl, Figure 1B) is a potent difluoro analog of aspirin and, as a typical
NSAID, shows analgesic and anti-inflammatory activity [55]. Because of its relatively
long half-life period of activity (~12 h), diflunisal is often used to alleviate acute pain
resulting from oral surgery, such with as the removal of wisdom teeth [56]. Diflunisal is
also recommended for the chronic treatment of symptoms of arthritis [57]. Recent studies
have reported that diflunisal can be safely administered to selected patients suffering from
transthyretin amyloidosis cardiomyopathy, since it regulates some parameters of cardiac
structure and function [58,59], and, because of its low price, may be used as an alternative to
the more expensive drug tafamidis [60]. Furthermore, a series of first-row transition metal
complexes of diflunisal (i.e., Cu(II) [61], Co(II) [62], Ni(II) [63], and Zn(II) [64]) have also
been reported for their antioxidant potency and their interaction with biomacromolecules,
as well as two tin(IV) complexes showing antimicrobial activity [65,66], a series of Bi(III)
complexes active towards Leishmania major [67,68], and a Ga(III) complex studied for its
in vitro cytotoxic activity [69].

In the context of the importance and extended use of NSAIDs in medicine and the
enhanced activity reported for their metal complexes, as well as the biological relevance
of iron and as a continuation of our research concerning transition metal complexes of the
NSAIDs diflunisal and diclofenac [42,43,46,51,52,61–64,70–74], we have synthesized and
characterized three novel Fe(III) complexes with the NSAIDs diflunisal and diclofenac in the
presence or absence of the nitrogen donors 1,10-phenanthroline (phen) and pyridine (py) as co-
ligands (Figure 1C,D). The resultant complexes [Fe2(difl)2(MeO)2(phen)2]·H2O (complex 1),
[Fe3O(dicl)6(py)3]Cl·py (complex 2), and [Fe3O(dicl)6(MeOH)3][FeCl4]·Hdicl·1.5MeOH·H2O
(complex 3) were characterized by physicochemical and spectroscopic (infrared, electronic,
Mössbauer, and EPR) techniques, and their structures were determined by single-crystal
X-ray crystallography.

In addition to the synthesis and the structural characterization of complexes 1–3, the
main goal of the current research is focused on the assessment of the potential biological
activity of the complexes, including their antioxidant capacity and their inhibitory effective-
ness towards cholinesterase enzymes. The application of NSAIDs and their compounds as
analgesic, anti-inflammatory, and anticholinergic medications is often related to free radicals
scavenging [22,74–77]. Therefore, the antioxidant capacity of the complexes was evaluated
in vitro by determining their ability to scavenge 1,1-diphenyl-picrylhydrazyl (DPPH), 2,2′-
azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS), and hydroxyl radicals. Bearing
in mind that AChE and butyrylcholinesterase (BuChE) play a key role in the regulation of
acetylcholine levels in the brain, and their inhibition can lead to increased acetylcholine
levels that can have potential therapeutic benefits in certain neurodegenerative diseases,
such as AD, the anticholinergic ability of the compounds was studied by evaluating their
activity to inhibit in vitro the two metabolic enzymes of acetylcholine, AChE and BuChE,
as a means to check whether they may serve as potential neuroprotectors.

Further biological studies of complexes 1–3 were focused on their interaction with
calf-thymus (CT) DNA and their affinity for bovine serum albumin (BSA) and human
serum albumin (HSA). DNA is often a potential biological target [78]. The interaction
of the complexes with CT DNA was investigated by UV-vis spectroscopy and viscosity
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measurements and via competitive studies with ethidium bromide (EB) using fluorescence
emission spectroscopy. Albumins are blood serum proteins involved in the transportation
of drugs and small molecules through the blood stream [79–81]. The affinity of the com-
pounds for BSA and HSA was monitored by fluorescence emission spectroscopy. A strong
binding of the complexes to these biomacromolecules may offer enhanced or differentiated
biological properties.

2. Results and Discussion
2.1. Synthesis of the Complexes

The synthesis of complex 1 in a high yield was achieved via the aerobic reaction of
the dianion of diflunisal (difl−2), which was formed via the deprotonation of H2difl by
KOH in a 1:2 H2difl:KOH ratio, with a solution of FeCl3·6H2O (in a 1:1 Fe3+:difl−2 ratio)
in the presence of the N,N’-donor phen as a co-ligand. Complexes 2–3 were prepared via
the aerobic reaction of FeCl3·6H2O with sodium diclofenac in methanol in a 1:2 Fe3+:dicl−1

ratio in the absence (for 2) or presence of pyridine (for 3). The characterization of the three
resultant complexes was performed by IR, UV-vis, Mössbauer, and EPR spectroscopies, as
well as single-crystal X-ray crystallography.

The complexes are air-stable, soluble mainly in DMSO and DMF and insoluble in most
organic solvents and H2O. The molar conductivity value for complex 1 (ΛM = 5 S·cm2·mol−1

for 1-mM DMSO solution) may indicate its non-electrolytic nature. On the other hand, in the
case of complexes 2 and 3, the ΛM values (65–70 S·cm2·mol−1 in a 1-mM DMSO solution) are
indicative of 1:1 electrolytes and may subsequently suggest their integrity in the solution [82].

2.2. Structure of the Complexes

The crystal structures of complexes 1–3 were determined by single-crystal X-ray
crystallography. Complex 1 is a neutral dinuclear complex, while complexes 2 and 3
contain a cationic trinuclear basic carboxylate complex (show structural similarities and
differences) which are neutralized by a chlorido anion and a [tetrachloroiron(III)] anionic
complex, respectively. Crystallographic data for complexes 1–3 are presented in Table S1.

2.2.1. Crystal Structure of Complex 1

Complex 1 crystallizes in the triclinic system and P–1 space group. The molecular
structure of the complex is shown in Figure 2. Selected bond distances and angles are cited
in Tables 1 and S2. A water solvate molecule is also present.

It is a neutral dinuclear Fe(III) complex where the Fe(III) ions are bridged by the
oxygen atoms of two methoxy groups. The structure is centrosymmetric (the center of the
symmetry is located in the middle of the distance between the two Fe(III) ions), so the
description is discussed in terms of one iron(III) ion. Each Fe(III) ion is six-coordinated with
a FeN2O4 coordination sphere and a distorted octahedral geometry. Two of the oxygen
atoms come from the methoxy bridges, while the other two oxygen atoms come from the
doubly deprotonated diflunisal (difl2−). The diflunisal ligands are bidentately bound to the
Fe(III) ions via a carboxylato oxygen and the phenol oxygen atoms forming a six-membered
chelate ring. The coordination sphere of each Fe(III) ion is completed by two nitrogen
atoms from the phen ligand. Among the Fe–O bond lengths in the coordination sphere, the
Fe–Odiflunisal bond lengths are the shortest in the coordination sphere (1.920 (2)–1.928 (2) Å)
compared to Fe–Omethoxo (1.9726 (19)−1.9984 (19) Å), while the Fe–Nphen are the longest
(2.191 (3)–2.120 (2) Å). The separation distance between the two Fe(III) ions is 3.119 Å and is
in the range (3.058–3.24 Å) expected for dinuclear iron(III) complexes bearing two methoxo
bridges [83–88].
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Figure 2. Molecular structure of complex 1. Aromatic and methyl hydrogen atoms and water solvate
molecules are omitted for clarity. Symmetry: (′) −x + 1, −y + 1, −z + 1. (Atom color code: C in grey;
O in red; N in blue; Fe in orange; F in light blue-green).

Table 1. Selected structural features (bond lengths (Å) and angles (◦)) for complex 1.

Bond Length (Å) Bond Length (Å)

Fe1–O4 i 1.9984 (19) Fe1–N1 2.200 (2)
Fe1–O1 1.920 (2) Fe1–N2 2.191 (3)
Fe1–O4 1.9726 (19) Fe1–O3 1.928 (2)

Fe1 . . . Fe1 i 3.119

Bonds Angle (◦) Bonds Angle (◦)

O4i–Fe1–O1 172.52 (8) N1–Fe1–O4 164.56 (9)
N2–Fe1–O3 163.00 (8) Fe1 i–O4–Fe1 103.54 (9)
O4i–Fe1–O4 76.46 (9)

Symmetry code: (i) −x + 1, −y + 1, −z + 1.

To the best of our knowledge, this is the second example where diflunisal is doubly
deprotonated after being coordinated in the bidentate chelating mode, as also found in
a mononuclear Ga(III) complex [69]. Diflunisal is a typical salicylate derivative and may
behave similarly to salicylato ligands. In addition to the typical salicylato monoanion, the
double deprotonation of salicylic acid may result in either the bidentate chelating coordi-
nation of salicylato ligands leading to the formation of mononuclear complexes [89–92] or
the tridentate bridging mode leading to polynuclear complexes [93–97].

2.2.2. Crystal Structure of Complex 2

Complex 2 crystallizes in the triclinic system and P–1 space group. This compound
is a typical cationic trinuclear Fe(III) complex with a triangular Fe3 arrangement, and it
belongs to the class of “basic carboxylates” [22]. The molecular structure of the complex
is shown in Figure 3, and selected bond distances and angles are cited in Tables 2 and S3.
One badly disordered over three positions, the solvate pyridine molecule, as well as one
disordered over four positions, the chlorido anion, exist for each complex monocation.
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Table 2. Selected structural features (bond lengths (Å) and bond angles (◦)) for complex 2.

Bond Length (Å) Bond Length (Å)

Fe1–Ocarboxylato 2.018 (3)–2.029 (2) Fe3–Ocarboxylato 2.021 (3)–2.041 (3)
Fe1–O13 1.910 (2) Fe3–O13 1.890 (2)
Fe1–N1 2.157 (3) Fe3–N3 2.179 (3)

Fe2–Ocarboxylato 1.995 (3)–2.039 (3) Fe1 . . . Fe2 3.311
Fe2–O13 1.922 (2) Fe1 . . . Fe3 3.296
Fe2–N2 2.149 (3) Fe2 . . . Fe3 3.302

Bonds Angle (◦) Bonds Angle (◦)

O3–Fe1–O7 171.83 (11) O4–Fe3–O5 170.17 (10)
O1–Fe1–O9 168.85 (11) O10–Fe3–O12 170.68 (11)

O13–Fe1–N1 176.26 (12) O13–Fe3–N3 176.44 (12)
O2–Fe2–O6 170.94 (11) Fe2–O13–Fe1 119.54 (12)
O8–Fe2–O11 172.72 (11) Fe1–O13–Fe3 120.29 (13)
O13–Fe2–N2 177.70 (12) Fe2–O13–Fe3 120.05 (13)

It is a trinuclear oxo-centered iron(III) cationic complex with the formula [FeIII
3(µ3-

O)(µ-dicl-O,O′)6(py)3]+ and its charge is neutralized by a chlorido anion. Each iron(III) ion
is six-coordinated with a FeNO5 coordination sphere with a distorted octahedral geometry.
The six diclofenac ligands are bidentately coordinated to the Fe(III) ions, thus forming
six µ1,3-bridges, two bridges for each pair of Fe(III) ions. The coordination sphere of
each Fe is completed by the central oxo-bridging oxygen and a nitrogen atom from the
pyridine ligands.

The three iron ions are arranged in an (almost) isosceles triangle with Fe. . . Fe inter-
atomic distances ranging from 3.296–3.311 Å (Table 2). The three Fe(III) ions are triply
bridged by an oxo atom (O13) located in the center of this triangle with the Fe–O dis-
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tances being in the range of 1.890 (2)–1.922 (2) Å (Table 2), being the shortest bond dis-
tance in the coordination sphere (Fe–Ocarboxylato = 1.995 (3)–2.041 (3) Å, Fe–N = 2.149
(3)–2.179 (3) Å). The three Fe–O–Fe angles around the central O atom (O13) range between
119.54 (12)◦–120.29 (13)◦, and their sum of 360◦ may indicate the co-planarity of the four
atoms that form the core [Fe3(µ3–O)] (Figure 3).

The intraligand H-bonds developed between imino H and carboxylato O atoms of the
diclofenac ligands contribute to additional stability to the structure (Table S4).

2.2.3. Crystal Structure of Complex 3

Complex 3 crystallizes in the triclinic system and P–1 space group. This compound
consists of the cationic trinuclear complex [Fe3O(µ2-dicl-O,O′)6(MeOH)3]+ and the anionic
complex [FeCl4]−. A solvate diclofenac acid is also present. Furthermore, three partially
disordered solvate methanol molecules, as well as two partially disordered water solvate
molecules, exist in the unit cell. The molecular structure of the complex is shown in Figure 4.
Selected bond distances and angles are cited in Tables 3 and S5.
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Figure 4. (A) The molecular structure of complex [Fe3O(µ2-dicl-O,O′)6(MeOH)3][FeCl4]. Aromatic
and methyl hydrogen atoms as well as diclofenac acid and methanol and water solvate molecules are
omitted for clarity. (B) The core structure of the cationic complex [Fe3O(µ2-dicl-O,O′)6(MeOH)3]+.
(Atom color code: C in grey; H in white; O in red; N in blue; Fe in orange; Cl in light green).

The cationic complex 3 is a trinuclear oxo-centered transition metal carboxyl complex
with the formula [FeIII

3(µ3-O)(µ-dicl-O,O′)6(MeOH)3]+, with a triangular Fe3 arrangement,
and belongs to the “basic carboxylates”, like complex 2. In the cationic complex, each six-
coordinated iron(III) ion has a FeO6 coordination environment with a distorted octahedral
geometry. Each of the six diclofenac ligands is bidentately coordinated to two Fe(III) ions,
thus forming six µ1,3 bridges. The coordination sphere of each Fe(III) is completed by a
methanol ligand and the central oxo atom.

The Fe . . . Fe interatomic distances are almost equal, being in the range of 3.266–3.310 Å
(Table 3) with the three iron(III) ions arranged on the vertices of an almost isosceles triangle.
The three Fe(III) ions are triply bridged by an oxo atom (O1) located in the center of the
triangle, with Fe–O1 distances ranging between 1.863 (2) and 1.926 (2) Å (Table 3). The
three Fe–O–Fe angles around the central O atom (O1) range between 119.04 (11)◦ and
121.40 (12)◦, and their sum (=360◦) indicates the co-planarity of the four atoms that make
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up the core [Fe3(µ3-O)] (Figure 4B). Among the bond distances around the Fe(III) ions, Ooxo
is closest to the iron(III) ions (Fe–O1 = 1.863 (2)–1.905 (2) Å), and the methanol oxygen
atoms are at the longest distances (Fe–Omethanol = 2.057 (2)–2.078 (2) Å), which are slightly
longer than the Fe–Ocarboxylato distances (2.002 (2)–2.064 (2) Å) (Tables 3 and S5). In the
anionic complex [FeCl4]−, the four-coordinated iron(III) ion Fe(4) is in an almost ideal
tetrahedral geometry (Fe–Cl = 2.1483 (12)–2.1857 (12) Å, Cl–Fe4–Cl = 106.25 (5)–113.78 (5)◦),
having a similar arrangement to a few reported examples containing a tetrachloroferrate
counter anion [98–103].

Table 3. Selected structural features (bond lengths (Å) and bond angles (◦)) for complex 3.

Bond Length (Å) Bond Length (Å)

Fe1–O1 1.863 (2) Fe3–O1 1.905 (2)
Fe1–Ocarboxylato 2.002 (2)–2.051 (2) Fe3–Ocarboxylato 2.024 (2)–2.042 (2)

Fe1–O8 2.057 (2) Fe3–O10 2.064 (2)
Fe2–O1 1.926 (2) Fe1 . . . Fe2 3.266

Fe2–Ocarboxylato 2.026 (2)–2.060 (2) Fe1 . . . Fe3 3.287
Fe2–O9 2.078 (2) Fe2 . . . Fe3 3.310
Fe4–Cl 2.1483 (12)–2.1857 (12)

Bonds Angle (◦) Bonds Angle (◦)

O1–Fe1–O8 177.10 (9) O1–Fe3–O10 176.72 (10)
O2–Fe1–O13 173.90 (9) O14–Fe3–O15 172.32 (9)
O4–Fe1–O11 167.34 (9) O5–Fe3–O6 171.38 (9)
O1–Fe2–O9 179.15 (9) Fe2–O1–Fe3 119.54 (11)

O12–Fe2–O16 171.74 (10) Fe3–O1–Fe1 121.40 (12)
O3–Fe2–O7 173.37 (10) Fe2–O1–Fe1 119.04 (11)
Cl–Fe4–Cl 106.25 (5)–113.78 (5)

Intramolecular H-bonds are developed between the hydroxyl H of methanol ligands
and carboxylate oxygen atoms of diclofenac ligands. The solvate water, methanol and
Hdicl molecules are all interacting and stabilized in the structure by the development of
intermolecular H-bonds (Table S4).

2.3. Spectroscopic Study of the Complexes

The spectroscopic characterization of the complexes focused on the attribution of the
data derived by infrared, electronic (UV-vis), Mössbauer, and EPR spectroscopies.

The existence of the ligands and the binding mode of the NSAIDs in complexes 1–3
were studied using IR spectroscopy. In the IR spectra of the complexes (Figure S1), the band
located at 1590–1596 cm−1 could be attributed to the antisymmetric, νasym(COO)-stretching
vibration of the carboxylato groups of the NSAIDs, and the band at 1422–1429 cm−1 could
be assigned to the symmetric, νsym(COO)-stretching vibration of the NSAIDs’ carboxy-
lato groups. Their presence may indicate the deprotonation of the carboxylic group. In
addition, the parameter ∆ν(COO) (=νasym(COO) − νsym(COO)) has values in the range
161–174 cm−1, which are lower than those presented for the corresponding salts, and may
suggest a bidentate fashion [104,105], which is in good agreement with the crystal structures
discussed. Additionally, the characteristic bands of the out-of-plane ρ(C–H) vibrations of
the corresponding nitrogen donor co-ligand appear at 723 cm−1 for ρ(C–H)phen in complex
1 and at 694 cm−1 for ρ(C–H)py in 2. The presence of these bands confirms the coordination
of the nitrogen donors in these complexes [104].

The UV-vis spectra of the complexes were recorded both in the solution (i.e., in DMSO,
as well as in the presence of the buffer solution used in the DNA/albumin interaction
studies) and in a solid state (as nujol mull) in order to explore all possible changes upon
dilution. The similarity of the spectra suggests that complexes 1–3 keep the same struc-
ture in the solution [22,46,51,52,63,73,75–77]. One band located at λmax = 490–515 nm
(ε = 400–580 M−1 cm−1) is observed in the visible region of the spectrum, which may be
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attributed to a d–d transition or a 6A1g → 5T1g or 6A1g → T2g(G) transition [106], which
are characteristic for distorted octahedral Fe3+ complexes [107,108]. For the oxo-bridged
Fe(III) complexes 2 and 3, the band located at 357–366 nm (ε = 6100–7200 M−1cm−1) may be
attributed to a charge-transfer transition from the oxo-group to the Fe(III) ion. In addition,
in the UV region of the spectrum, the intense bands appearing in the range λ = 285–297 nm
(ε = 9660–14,000 M−1cm−1) may be attributed to intra-ligand transitions [109].

The Mössbauer spectra from powder samples of complexes 1 and 2 recorded at 80 K
are shown in Figure 5. The spectra comprise an asymmetric quadrupole doublet with
parameters quoted in Table 4. The values of the isomer shift, δ, and the quadruple splitting
parameter, ∆EQ, are consistent with Fe(III) (S = 5/2) ions with the ligand composition (O, N)
of the iron sites in 1 and 2 [110]. The asymmetry of the doublets is attributed to relaxation
effects [110].
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Figure 5. Mössbauer spectra from powder samples of 1 and 2 at 80 K. The black solid lines are
theoretical simulations obtained with the parameters listed in Table 4.

Table 4. Mössbauer parameters at 80 K for the complexes 1–3.

Complex δ (mm/s) a ∆EQ (mm/s) b ΓL (mm/s) c,d ΓR (mm/s) c,d

1 0.48 0.72 0.32 0.33
2 0.51 0.85 0.34 0.38

a ±0.01 mm/s; b ±0.02 mm/s; c full width at half maximum; d ±0.02 mm/s.

The X-band EPR spectrum of a solid powder sample of 2 recorded at 4.2 K is shown in
Figure 6. The spectrum comprises a strong signal at g ~2.0, exhibiting a weak anisotropy.
Such signals are often observed in antiferromagnetically coupled triferric clusters and are
consistent with an S = 1/2 ground state [111,112].
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2.4. Anticholinergic Activity of the Complexes

Metal ions, such as Cu, Fe, and Zn, in the brain are critical regarding the proper
functioning of enzymes involved in neurotransmission and aging [113]. The compromise of
metal ion homeostasis has been linked to various neurodegenerative diseases [113–116]. For
instance, a high concentration of the biometal ions Cu, Fe, and Zn, as well as elevated oxida-
tive stress levels, have been found in the brain of AD patients [113]. Promising compounds,
such as metal-based drugs, have been proposed to act on different molecular targets and to
contribute to the treatment of neurodegenerative diseases [116]. This fact, along with our
previously reported results on metal complexes with anticholinergic activity [75,76], has
led to the study of the anticholinergic activity of the synthesized ferric complexes.

Alzheimer’s disease is characterized by the growing damage of neural tissues in the
brain. The neurotransmitter acetylcholine is responsible for maintaining communication
between neurons in the brain [117]. Deficiency of this neurotransmitter is caused by the
impaired activity of the enzyme AChE. The AChE inhibitors can enhance central cholinergic
neurotransmission by preventing the degradation of acetylcholine [117,118].

As of now, the FDA (Food and Drug Administration, Silver Spring, MD, USA)-
approved drugs for AD treatment include acetylcholinesterase inhibitors, or N-methyl-D-
aspartate (NMDA)-receptor antagonists [113]. While these drugs only offer mild symp-
tomatic relief in the memory of patients and improve neurotransmitter action over a period,
they still are the most promising treatment for AD [117,118].

The two tested cholinesterases (AChE and BuChE) coexist, compensating for each
other, in order to maintain the normal cholinergic pathways. AChE is the dominant
cholinesterase in the human brain (healthy or early AD). In advanced AD, AChE levels are
gradually reduced by 90% due to severe cholinergic neuronal damage. At the same time,
BuChE compensates for the lack of AChE. Its levels and function increase to 105–165%
of normal levels, making it the major metabolic enzyme of acetylcholine. It is important
therefore to assess the inhibition of each cholinesterase for the different stages of AD [75,76].

In order to investigate the potency of the compounds, the rate of inhibition (I%) of
each enzyme by the compounds (Table 5) was calculated at the standard concentration
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c = 10−3 M according to Equation (1) (Section 3.4.1). The selectivity index (SI) (defined as
IBuChE/IAChE) was also calculated (Table 5). Neostigmine methyl sulfate (Neo) was used as
reference compound [75,76].

Table 5. Inhibition rate (%) of cholinesterases AChE and BuChE at 10−3 M of the compounds and
selectivity index (SI = IBuChE/IAChE). Neostigmine methyl sulfate is the reference compound.

Compound AChE (I%) BuChE (I%) SI

Complex 1 1.77 ± 0.82 79.25 ± 2.00 44.77
Complex 2 3.56 ± 0.11 74.36 ± 1.40 20.89
Complex 3 3.55 ± 1.26 76.65 ± 1.95 21.59

Nadicl 10.31 ± 1.75 14.10 ± 0.12 1.37
H2difl 17.25 ± 1.46 22.87 ± 1.71 1.32
Neo a 96.98 ± 0.02 98.38 ± 1.55 1.01

a Neo = Neostigmine methyl sulfate and is used as reference compound.

Regarding BuChE inhibition, the activity of the tested compounds is significantly
higher than that of the free NSAIDs sodium diclofenac and diflunisal, emphasizing the
value of the coordination of the drugs to the iron ion. All complexes 1–3 showed significant
activity against the enzyme, with complex 1 exhibiting the highest potency with 79.25%
activity at a concentration of 10−3 M. On the contrary, for the inhibition of AChE, the com-
plexes showed substantially lower activity than the corresponding NSAID, with diflunisal
having the highest potency among the tested compounds with only 17.25% activity at a
concentration of 10−3 M.

As it can be also demonstrated by the SI values, complexes 1–3 favor the inhibition of
BuChE, and hence may be proved more effective in the treatment of late-stage AD [118].

2.5. Antioxidant Activity of the Complexes

Oxidative stress is defined as the imbalance between the production of reactive oxygen
species (ROS) and the ability of a biological system to inactivate toxic molecules and repair
the damage they cause. The generation of oxidative stress is due to either the increased
production of oxygen free radicals or the deficiency of the various antioxidant cellular
mechanisms [119]. Any substance capable of protecting or delaying the oxidation of other
molecules is called an antioxidant. They are compounds that bind with the free radicals by
giving up their own electrons and subsequently inactivate their ability to cause damage
to biological molecules [120]. The role of antioxidants is to prevent damage to cellular
components by neutralizing or scavenging free radicals, which may be the cause of various
heart diseases, cancer, inflammation, aging, autoimmune diseases, Alzheimer, Parkinson,
and more [121]. The potential treatment of these diseases is based on the elimination of
free radicals and oxidative stress from an antioxidant agent [29].

Most of the reported NSAIDs may act as inhibitors of free radical production or free
radical scavengers [120]. Such compounds showing antioxidant activity may play a crucial
role in the treatment of inflammation and potentially lead to effective drugs [29,74,75].
The potential antioxidants of free NSAIDs sodium diclofenac, diflunisal, and their com-
plexes 1–3, were evaluated by investigating their ability to scavenge DPPH, hydroxyl,
and ABTS radicals [122,123], and they were compared with the antioxidant agents nordi-
hydroguaiaretic acid (NDGA), butylated hydroxytoluene (BHT), and 6-hydroxy-2,5,7,8-
tetramethylchromane-2-carboxylic acid (trolox), which are among the most known reference
compounds (Table 6) [29,74].
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Table 6. % DPPH scavenging ability (DPPH%), % ABTS radical scavenging activity (ABTS%),
competition % with DMSO for hydroxyl radical (OH%) for diflunisal, sodium diclofenac, and their
complexes 1–3.

Compound DPPH%, 20 min/60 min OH% ABTS%

H2difl 10.42 ± 0.56/14.31 ± 0.45 86.06 ± 0.38 76.58 ± 0.74
Complex 1 12.57 ± 0.29/15.86 ± 0.62 91.08 ± 1.81 85.38 ± 0.92

Nadicl 18.26 ± 0.60/17.43 ± 0.23 75.46 ± 0.44 76.35 ± 0.75
Complex 2 23.12 ± 0.37/22.97 ± 0.17 87.89 ± 0.84 85.39 ± 0.52
Complex 3 18.94 ± 0.73/18.98 ± 0.74 94.31 ± 0.78 87.72 ± 0.36

BHT 31.30 ± 0.10/60.00 ± 0.38 not tested not tested
NDGA 81.02 ± 0.18/82.60 ± 0.17 not tested not tested
Trolox not tested 82.80 ± 0.13 91.8 ± 0.17

Each experiment was performed at least in triplicate SD < ±10%.

The DPPH-scavenging is usually related with potential protection against rheumatoid
arthritis and inflammation and may be often involved in antiageing and anti-inflammatory
treatment [124]. The DPPH radical-scavenging capacity was studied after treatment for
two different time intervals (20 min and 60 min). The DPPH-scavenging activity of com-
plexes 1–3 is time-independent, as no significant differences were observed after 20-min
and 60-min treatments (Table 6). However, the complexes present a rather low ability
towards DPPH radicals when compared to the reference compounds BHT and NDGA
(Table 6), with complex 2 possessing slightly higher ability than the other complexes
(DPPH% = 22.97–23.12%).

The scavenging of hydroxyl radicals is evidence of the scavenging of ROS, and subse-
quently, the hydroxyl-scavengers may act protectively [124]. The activity of the complexes
to scavenge hydroxyl radicals is significantly high (Table 6), with even higher activity
than the reference compound trolox, with complex 3 being the most active OH-scavenger
(OH% = 94.31 ± 0.78%).

The scavenging of the cationic ABTS radicals is a marker of the total antioxidant
activity [125]. Complexes 1–3 present similar ABTS-scavenging ability, which is significantly
high and close to that of the reference compound trolox (Table 6).

In conclusion, the complexes are better radical scavengers than the corresponding
free NSAIDs, suggesting that the binding of the NSAID to Fe(III) results in pronounced
antioxidant ability. Such results are in accordance with several reports where the metal
complexes of bioactive ligands were better radical scavengers than the corresponding
free NSAIDs. In comparison with the reported Fe(III)-fenamato complexes, complex 1 is
the most active DPPH-scavenger, while complex 3 has the best ABTS-scavenging activity
among the Fe(III)-NSAID complexes [22]. The radical scavenging activity of the complexes
seems to be selective (complexes 1–3 scavenge ABTS and hydroxyl radicals much better than
DPPH) and is in the range reported for other metal-NSAID complexes [46,62–64,71,73,126].

2.6. Interaction of the Complexes with Albumins

Serum albumin (SA) is the most abundant protein in blood serum and among the
most important in the circulatory system [79]. It is synthesized in the liver and released as
a non-glycosylated protein into the circulation. It is related with the transportation of non-
esterified fatty acids, various metabolites, drugs, organic substances, and metal complexes
through the bloodstream toward their biological targets (cells and tissues) [80,81]. The
binding to such proteins may lead to a loss or an increase in the biological properties of the
original drug or provide new paths for activity [127]. The best method to study the binding
of drugs to albumins is by fluorescence emission spectroscopy [128]. Various studies have
reported that the pharmacological and pharmacokinetic properties of drugs may depend on
their interaction with this key carrier plasma protein [129]. The solutions of both albumins,
HSA and BSA, when excited at 295 nm, exhibit an intense fluorescence emission band at
~351 nm and ~343 nm, respectively, which may be attributed to the tryptophan residues,



Int. J. Mol. Sci. 2023, 24, 6391 13 of 28

namely a tryptophan-214 in HSA, and two tryptophan residues at positions 134 and 212 for
its homologue BSA [130].

The addition of complexes 1–3 in the SA solution leads to an intense decrease in fluores-
cence intensity of up to 97.6% of for both albumins (Figure 7 and Table 7). Such quenching
may indicate the binding of each complex to the albumin and may be assigned to changes
in the tryptophan environment of SA due to possible changes in the protein’s secondary
structure [130]. The inner-filter effect was checked with Equation (2) (Section 3.4.3) [131]
and it was found to be negligible.

Int. J. Mol. Sci. 2023, 24, x FOR PEER REVIEW 13 of 28 
 

 

the original drug or provide new paths for activity [127]. The best method to study the 

binding of drugs to albumins is by fluorescence emission spectroscopy [128]. Various 

studies have reported that the pharmacological and pharmacokinetic properties of drugs 

may depend on their interaction with this key carrier plasma protein [129]. The solutions 

of both albumins, HSA and BSA, when excited at 295 nm, exhibit an intense fluorescence 

emission band at ~351 nm and ~343 nm, respectively, which may be attributed to the tryp-

tophan residues, namely a tryptophan-214 in HSA, and two tryptophan residues at posi-

tions 134 and 212 for its homologue BSA [130]. 

The addition of complexes 1–3 in the SA solution leads to an intense decrease in flu-

orescence intensity of up to 97.6% of for both albumins (Figure 7 and Table 7). Such 

quenching may indicate the binding of each complex to the albumin and may be assigned 

to changes in the tryptophan environment of SA due to possible changes in the protein’s 

secondary structure [130]. The inner-filter effect was checked with Equation (2) (Section 

3.4.3) [131] and it was found to be negligible. 

  
(A) (B) 

Figure 7. (A) Plot of % relative BSA fluorescence emission intensity (I/Io, %) at λem,max = 343 nm ver-

sus r (= [complex]/[BSA]) for complexes 1–3 (up to 24.4% of the initial BSA fluorescence for 1, 7.5% 

for 2, and 2.4% for 3). (B) Plot of % relative HSA fluorescence emission intensity (I/Io %) at λem,max = 

351 nm versus r (= [complex]/[HSA]) for complexes 1–3 (up to 18.3% of the initial HSA fluorescence 

for 1, 0.6% for 2, and 3.5% for 3). 

Table 7. The albumin-quenching constants (Kq) and albumin-binding constants (K) for complexes 

1–3. 

Compound ΔI/Io (%) Kq (M−1s−1) Κ (M−1) 

BSA    

Complex 1 75.6 2.28 (±0.10) × 1013 3.09 (±0.96) × 105 

Complex 2 92.5 8.70 (±0.43) × 1013 6.09 (±0.31) × 105 

Complex 3 97.6 8.45 (±0.31) × 1013 5.44 (±0.05) × 105 

HSA    

Complex 1 81.7 2.29 (±0.75) × 1013 2.86 (±0.11) × 105 

Complex 2 99.4 6.09 (±0.30) × 1013 3.87 (±0.42) × 105 

Complex 3 96.5 5.22 (±0.35) × 1013 2.42 (±0.17) × 105 

The Stern–Volmer constants (KSV) and the SA-quenching constants (Kq) (Table 7) for 

the interaction of the complexes with SAs were determined using the Stern–Volmer equa-

tion (Equations (3) and (4), Section 3.4.3) and the corresponding plots (Figures S2 and S3). 

0 1 2 3 4 5 6 7
0

20

40

60

80

100

B
S

A
 f

lu
o

re
sc

en
ce

 (
I/

Io
,%

)

r = [complex]/[BSA]

  1

  2

  3 

0 1 2 3 4 5 6 7
0

20

40

60

80

100

H
S

A
 f

lu
o
re

sc
en

ce
 (

I/
Io

,%
)

r = [complex]/[HSA]

  1

  2

  3

Figure 7. (A) Plot of % relative BSA fluorescence emission intensity (I/Io, %) at λem,max = 343 nm
versus r (= [complex]/[BSA]) for complexes 1–3 (up to 24.4% of the initial BSA fluorescence for 1,
7.5% for 2, and 2.4% for 3). (B) Plot of % relative HSA fluorescence emission intensity (I/Io %) at
λem,max = 351 nm versus r (=[complex]/[HSA]) for complexes 1–3 (up to 18.3% of the initial HSA
fluorescence for 1, 0.6% for 2, and 3.5% for 3).

Table 7. The albumin-quenching constants (Kq) and albumin-binding constants (K) for complexes 1–3.

Compound ∆I/Io (%) Kq (M−1s−1) K (M−1)

BSA

Complex 1 75.6 2.28 (±0.10) × 1013 3.09 (±0.96) × 105

Complex 2 92.5 8.70 (±0.43) × 1013 6.09 (±0.31) × 105

Complex 3 97.6 8.45 (±0.31) × 1013 5.44 (±0.05) × 105

HSA

Complex 1 81.7 2.29 (±0.75) × 1013 2.86 (±0.11) × 105

Complex 2 99.4 6.09 (±0.30) × 1013 3.87 (±0.42) × 105

Complex 3 96.5 5.22 (±0.35) × 1013 2.42 (±0.17) × 105

The Stern–Volmer constants (KSV) and the SA-quenching constants (Kq) (Table 7) for
the interaction of the complexes with SAs were determined using the Stern–Volmer equation
(Equations (3) and (4), Section 3.4.3) and the corresponding plots (Figures S2 and S3). The
values of Kq (Table 7) were relatively high, with complex 2 showing the highest values for
both SAs (Kq(BSA) = 8.70 (±0.43) × 1013 M−1s−1 and Kq(HSA) = 6.09 (±0.30) × 1013 M−1s−1).
The values of the quenching constants are much higher than 1010 M−1s−1, revealing the
existence of a static quenching mechanism and indicating subsequently the interaction of
the complexes with the albumins [127].
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The SA-binding constant (K) of a compound must be high enough to infer tight
binding for potential transportation and possible release. The values of K (Table 7) for the
compounds were determined using the Scatchard equation (Equation (5), Section 3.4.3)
and the corresponding plots (Figures S4 and S5). The K values were relatively high (of the
magnitude 105 M−1) and within the range reported for other Fe(III)- and metal-NSAID
complexes [22]. These values satisfy the conditions of strong binding, safe transport, and
the potential release at the target, as the values are quite lower than the binding constant of
avidin with various compounds (of the 1015 M−1 order), which is among the strongest non-
covalent interactions and may suggest a reversible binding to the albumin and subsequently
the probability of release in the target cell [132].

2.7. Interaction of the Complexes with CT DNA

DNA is among the biomolecular targets for a series of drugs, as it is often involved in
diverse mechanisms of action for such drugs [78], such as the inhibition of the nucleotide
synthesis, inhibition of topoisomerase, and blockage of DNA replication [133]. Labile
ligands in metal-based drugs (e.g., cisplatin) may offer vacant coordination sites for cova-
lent binding to DNA bases [134], while non-labile and/or chelating ligands may provide
stability to complexes and lead them to noncovalent interaction with DNA, i.e., via interca-
lation, groove-binding, and/or electrostatic interaction [134,135], as well as via chemical
nuclease behavior [135]. The interaction of complexes 1–3 with CT DNA was studied by
UV-vis spectroscopy, and viscosity measurements and via EB-competitive studies using
fluorescence emission spectroscopy.

UV-vis spectroscopy is usually employed to obtain initial information regarding the
interaction and the affinity between DNA and complexes, as revealed via the determination
of the DNA-binding constant (Kb). In the UV spectra of complexes 1–3, the addition of
incremental amounts of CT DNA induced slight changes to the intraligand bands of the
spectra (Figure S6), i.e., slight hypochromism or hyperchromism of the bands located in the
range 285–297 nm, which were accompanied by slight bathochromic shifts of the bands
(Table 8). These features reveal the interaction of the complexes with CT DNA, which may
lead to stabilization of the resulting complex-DNA adduct [136–138], although a conclusion
of the interaction mode may not arise, making further experiments thus necessary, such
as DNA viscosity measurements. The Kb values of complexes 1–3 are summarized in
Table 8, as calculated using the Wolfe–Shimer equation (Equation (6), Section 3.4.4) [139]
and the corresponding plots [DNA]/(εA–εF) versus [DNA] (Figure S7), and are lower than
the classical intercalator EB (Kb = 1.23 (±0.07) × 105 M−1) [140]. The Kb values of the
complexes are similar to those reported for other metal-NSAID complexes, with complex 3
showing the highest DNA affinity among the complexes under study.

Table 8. UV-vis spectral features of the interaction of complexes 1–3 with CT DNA. UV-band (λmax,
in nm), percentage of the observed hyper-/hypo-chromism (∆A/A0, in %), blue/red shift of the λmax

(∆λ, in nm), and DNA-binding constants (Kb).

Complex λmax (nm) (∆A/A0 (%) a, ∆λ (nm) b) Kb (M−1)

Complex 1 297 (−7, +1) 2.32 (±0.07) × 103

Complex 2 285 (+13, +4) 1.77 (±0.67) × 104

Complex 3 285 (+36, +3) 3.36 (±0.30) × 104

a “+” denotes hyperchromism, “−” denotes hypochromism. b “+” denotes red shift, “−” denotes blue shift.

The DNA viscosity measurement, as a hydrodynamic measurement, is a method to
further investigate and clarify the interaction mode of compounds with CT DNA. In the
intercalation model, the relative DNA viscosity will show an increase, while in the case of
nonclassical intercalation (groove-binding or electrostatic interaction), the relative DNA
viscosity will either decrease slightly or remain practically unchanged [141]. The viscosity
of a CT DNA solution (0.1 mM) was monitored upon the addition of increasing amounts
of complexes 1–3 and presented an increase upon the gradual addition of the complexes
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(Figure 8). This increase in DNA viscosity may serve as evidence of an intercalative interac-
tion between DNA and each complex that results in longer separation distances between
DNA bases upon the insertion of the complexes in-between the DNA bases [142,143].
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Figure 8. Relative viscosity of CT DNA (η/ηo)1/3 in buffer solution (150-mM NaCl and
15-mM trisodium citrate at pH 7.0) in the presence of complexes 1–3 at increasing amounts
(r = [complex]/[DNA]).

Ethidium bromide is a known fluorescent compound which intercalates into DNA
bases. The competition of a compound with EB is a usual means to confirm the DNA-
binding mode. The solutions of NSAIDs and their complexes do not fluoresce either alone
or in the presence of the CT DNA or EB solution at room temperature when excited at
540 nm. Therefore, the changes occurring in the fluorescence emission spectra of an EB–
DNA solution upon addition of the compounds may be used to study the EB-displacing
ability of the compounds from the EB–DNA adduct [130]. The EB–DNA adduct was
prepared after a 1-h pretreatment of a solution containing EB ([EB] = 20 µM) and CT DNA
([DNA] = 26 µM). The fluorescence emission spectra of this solution were recorded in
the presence of increasing amounts of complexes 1–3 (shown for complex 3 in Figure 9A).
The addition of the complexes resulted in a quenching of the EB–DNA emission band at
592 nm (up to ~74% of the initial EB–DNA fluorescence (Figure 9B and Table 9). Such
quenching probably originated from the displacement of EB by the compounds, revealing
their competition with complexes for the DNA intercalation sites [144].

The Stern–Volmer and quenching constants were determined with the corresponding
plots (Figure S8) and Equations (3) and (4) (Section 3.4.3) [130]. These constants are in the
range reported for other metal-NSAID complexes [46,51,62–64,71,73,126], with complex 3
presenting the highest constants among the complexes studied herein. The values of Kq
(Table 9) are much higher than the value of 1010 M−1s−1, suggesting a static quenching
mechanism because of the formation of a new adduct, obviously between the DNA and the
complex [145].
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Figure 9. (A) Fluorescence emission spectra (λex = 540 nm) of EB–DNA ([EB] = 20 µM,
[DNA] = 26 µM) in buffer solution (150-mM NaCl and 15-mM trisodium citrate at pH7.0) in the
absence and presence of increasing amounts of complex 3 (different colors). The arrow shows the
changes in intensity upon increasing amounts of 3. (B) Plot of relative EB–DNA fluorescence intensity
(I/Io, %) at λem = 592 nm versus r (r = [complex]/[DNA]) in the presence of complexes 1–3 (up to
33.2% of the initial EB–DNA fluorescence for 1, 41.8% for 2, and 25.7% for 3).

Table 9. Fluorescence features of the EB-displacement studies: percentage of EB–DNA fluorescence
quenching (∆I/Io, %), Stern–Volmer constants (KSV, in M−1), and quenching constants of the EB–
DNA fluorescence (Kq, in M−1s−1) for complexes 1–3.

Complex ∆I/Io (%) KSV (M−1) Kq (M−1s−1)

Complex 1 66.8 6.37 (±0.40) × 105 2.77 (±0.10) × 1013

Complex 2 59.2 6.15 (±0.29) × 105 2.68 (±0.56) × 1013

Complex 3 74.3 1.53 (±0.51) × 106 6.66 (±0.23) × 1013

3. Materials and Methods
3.1. Materials–Instrumentation–Physical Measurements

The chemicals reagents, FeCl3·6H2O, py, phen, CT DNA, BSA, HSA, EB, DPPH, ABTS,
EDTA, BHT, NDGA, and trolox were purchased from Sigma-Aldrich Co. (St. Louis, MO,
USA). NaCl, KOH and trisodium citrate were purchased from Merck (Rahway, NJ, USA).
Sodium diclofenac was purchased from Tokyo Chemical Industry and diflunisal from Fluka
(Buchs, Switzerland). The reagents for the evaluation of the cholinergic activity: 5,5-dithio-
bis-(2-nitrobenzoic acid) (DTNB), electric eel acetylcholinesterase (eeAChE), acetylthio-
choline iodide (ATCI), equine serum butyrylcholinesterase (eqBuChE), S-butyrylthiocholine
iodide (BTCI), and neostigmine methyl sulfate (Neo) were purchased from J&K Scientific
Co. (Beijing, China). Ascorbic acid, Na2HPO4, and NaH2PO4 were purchased from Chem-
lab Co. (Zedelgem, Belgium). All the chemical reagents and all solvents were of reagent
grade and were used as purchased from commercial sources.

The stock solution of CT DNA was prepared via dilution of CT DNA to a buffer
solution (containing 150-mM NaCl and 15-mM trisodium citrate at pH 7.0) followed by
exhaustive stirring and it was kept at 4 ◦C for no longer than two weeks. This stock solution
gave a ratio of UV absorbance at 260 and 280 nm (A260/A280) in the range of 1.85–1.90,
an indication that DNA was sufficiently free of protein contamination [146]. The DNA
concentration was determined by the UV absorbance at 260 nm after 1:20 dilution using
ε = 6600 M−1cm−1 [147].
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Infrared (IR) spectra were recorded in the range (400–4000 cm−1) on a Nicolet FT-
IR 6700 spectrometer (Thermo Fisher Scientific, Waltham, MA, USA) with samples pre-
pared as KBr pellets (abbreviations used: vs. = very strong; s = strong; m = medium;
∆ν(COO) = νasym(COO) − νsym(COO)). UV-visible (UV-vis) spectra were recorded as nu-
jol mulls and in solution (in the concentration range of 10−5 to 10−3 M) on a Hitachi
U-2001 dual-beam spectrophotometer (Hitachi High-Tech Corporation, Ibaraki, Japan). C,
H, and N elemental analyses were performed on a PerkinElmer 240B elemental analyzer
(PerkinElmer, Waltham, MA, USA). The molar conductivity measurements were carried
out in a 1-mM DMSO solution of the complexes with a Crison Basic 30 conductometer
(Crison Instruments, Barcelona, Spain). The fluorescence emission spectra were recorded
in solution on a Hitachi F-7000 fluorescence spectrophotometer (Hitachi High-Tech Cor-
poration, Ibaraki, Japan). The viscosity experiments were conducted using an ALPHA L
Fungilab rotational viscometer (Fungilab S.A., Barcelona, Spain) equipped with an 18-mL
LCP spindle.

The Mössbauer spectra from powdered samples were recorded with a constant ac-
celeration conventional spectrometer with 57Co (Rh matrix) γ-ray source using a Janis
cryostat. Isomer shifts were reported relative to α-Fe at room temperature. The spectra
were analyzed using the program WMOSS (Web Research, Edina, MN, USA). X-band
EPR measurements from powdered sample of 2 were carried out on an upgraded Bruker
ER-200D spectrometer (Bruker, Athens, Greece) equipped with an Oxford ESR 9000 cryo-
stat, an Anritsu MF76A frequency counter, and a Bruker 035 NMR Gaussmeter with the
perpendicular mode standard cavity 4102ST.

3.2. Synthesis of the Complexes
3.2.1. Synthesis of [Fe2(difl)2(MeO)2(phen)2]·H2O, 1

A methanolic solution (10 mL) containing H2difl (0.2 mmol, 50 mg) and KOH (0.4 mmol,
22 mg) was stirred for 1 h. The resultant solution was added simultaneously with a methano-
lic solution (5 mL) of phen (0.2 mmol, 36 mg) to a methanolic solution (10 mL) of FeCl3·6H2O
(0.2 mmol, 54 mg). After 2 days, red-brown crystals of [Fe2(difl)2(MeO)2(phen)2]·H2O suit-
able for X-ray structure determination was deposited (yield: 55 mg, 52%). Anal. Calcd. for
[Fe2(difl)2(MeO)2(phen)2]·H2O (C52H36F4Fe2N4O9) (MW = 1048.56): C, 59.56; H, 3.46; N,
5.34%; found: C, 59.75; H, 3.55; N, 5.48%. IR spectrum (KBr disk), νmax/cm−1: νasym(COO):
1590 (s); νsym(COO): 1429 (s); ∆ν(COO) = 161; ρ(C–H)phen: 724 (m). UV-vis spectra: as nujol
mull, λ/nm: 519; in DMSO, λ/nm (ε/M−1cm−1): 297 (shoulder (sh)) (14,000), 515 (500).
Soluble in DMF and DMSO (ΛM = 5 S·cm2·mol−1, in 1 mM DMSO solution).

3.2.2. Synthesis of [Fe3O(dicl)6(py)3]Cl·py, 2

Complex 2 was prepared by the addition of a methanolic solution (10 mL) of Nadicl
(0.4 mmol, 92 mg) to a methanolic solution (10 mL) of FeCl3·6H2O (0.2 mmol, 54 mg),
followed by the addition of 3 mL of py. The resultant solution was stirred for 30 min and
was left to evaporate slowly. Brown crystals of [Fe3O(dicl)6(py)3]Cl·py suitable for X-ray
structure determination were deposited after 40 days (yield: 60 mg, 40%). Anal. and Calcd.
for [Fe3O(dicl)6(py)3]Cl·py, 2, (C104H80Cl13Fe3N10O13) (MW = 2287.00): C, 54.16; H, 3.50; N,
6.07%; found: C, 53.98; H, 3.59; N, 5.99%. IR spectrum (KBr disk), νmax/cm−1: νasym(COO):
1596 (vs); νsym(COO): 1422 (s); ∆ν(COO) = 174; ρ(C–H)py: 694 (m). UV-vis spectra: as nujol
mull, λ/nm: 363, 495 (sh); in DMSO, λ/nm (ε/M−1cm−1): 285 (12,500), 366 (7200), 490 (sh)
(580). Soluble in DMSO (ΛM = 65 S·cm2·mol−1, in 1-mM DMSO solution).

3.2.3. Synthesis of [Fe3O(dicl)6(MeOH)3][FeCl4]·Hdicl·1.5MeOH·H2O, 3

The complex was prepared in a similar way to 2 in the absence of pyridine. Light-
brown crystals of [Fe3O(dicl)6(MeOH)3][FeCl4]·Hdicl·1.5MeOH·H2O (yield: 45 mg, 35%)
suitable for X-ray structure determination were deposited after 10 days. Anal. And
Calcd. for [Fe3O(dicl)6(MeOH)3][FeCl4]·Hdicl·1.5MeOH·H2O (C102.5H91Cl18Fe4N7O20.5)
(MW = 2610.43): C, 47.16; H, 3.51; N, 3.76%; found: C, 47.33; H, 3.43; N, 3.63%. IR spectrum
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(KBr disk), νmax/cm−1: νasym(COO): 1592 (vs); νsym(COO): 1422 (s); ∆ν(COO) = 170. UV-
vis spectra: as nujol mull, λ/nm: 353, 511; in DMSO, λ/nm (ε/M−1cm−1): 288 (9660), 357
(6100), 515 (400). Soluble in DMSO (ΛM = 70 S·cm2·mol−1, in 1-mM DMSO solution).

3.3. Single-Crystal X-ray Crystallography

Single crystals of complexes 1–3 suitable for crystal structure analysis were mounted
at room temperature on a Bruker Kappa APEX2 diffractometer equipped with a Triumph
monochromator using Mo Kα (λ = 0.71073 Å, source operating at 50 kV and 30 mA)
radiation. Unit cell dimensions were determined and refined by using the angular settings
of at least 200 high-intensity reflections (>10σ(I)) in the range of 11 < 2θ < 36◦. Intensity
data were recorded using ϕ and ω scans. All crystals presented no decay during the
data collection. The frames collected for each crystal were integrated with the Bruker
SAINT Software package [148] using a narrow-frame algorithm. Data were corrected for
absorption using the numerical method (SADABS) based on crystal dimensions [149]. All
structures were solved using SUPERFLIP [150] incorporated in Crystals. Data refinement
(full-matrix least-squares methods on F2) and all subsequent calculations were carried out
using the Crystals version 14.61 build 6236 program package [151]. All non-hydrogen, non-
disordered atoms were refined anisotropically. For the disordered atoms, their occupation
factors under fixed isotropic thermal parameters were first detected. Afterwards, all were
refined with fixed occupation factors, isotropically in the case of compound 2 (pyridine
solvate molecules and chlorido counter anions) and both anisotropically and isotropically
in the case of compound 3 (anisotropically in the case of the non-coordinated diclofenac
acid molecules and isotropically in the case of methanol and water solvate molecules).

Hydrogen atoms riding on non-disordered parent atoms were located from difference
Fourier maps and refined at idealized positions riding on the parent atoms with isotropic
displacement parameters Uiso(H) = 1.2Ueq(C) or 1.5Ueq(methyl, –NH and –OH hydrogens)
and at distances C–H 0.95 Å, N–H 0.83 Å, and O–H 0.82 Å. All methyl, amine, and OH
hydrogen atoms were allowed to rotate but not to tip. Hydrogen atoms riding on disordered
oxygen atoms of methanol and water solvent molecules were positioned geometrically
to fulfill hydrogen bonding demands. The rest of the methyl and aromatic hydrogen
atoms were positioned geometrically to their parent atoms. The crystallographic data for
complexes 1–3 are presented in Table S1. Further details on the crystallographic studies as
well as atomic displacement parameters are given as Supplementary Materials in the form
of CIF files.

3.4. Evaluation of the Biological Profile

In order to study in vitro the biological activity of complexes 1–3 (i.e., anticholinergic
activity, free radical scavenging, and interaction with CT DNA and serum albumins), they
were dissolved in DMSO (1-mM) due to their low aqueous solubility. The mixing of each
solution with the aqueous buffer solution of DNA or albumins used in the studies never
exceeded 5% DMSO (v/v) in the final solution.

3.4.1. Anticholinergic Activity

In the study of cholinesterase inhibitors, the inhibitory effect of the compounds (the
NSAIDs and their complexes 1–3) against AChE and BuChE was examined using a modified
methodology based on Ellman’s method [152,153].

The ability of the compounds to inhibit AChE and BuChE was evaluated using UV-vis
spectroscopy. All the assays were carried out in a 0.1M NaH2PO4/Na2HPO4 buffer at a
pH = 7.4. Enzyme solutions were prepared with 2.0 U/mL for AChE and 3.0 U/mL for
BuChE. A reaction mixture containing 20 µL of phosphate buffer, 100 µL of DTNB (1-mM),
and 40 µL of the enzyme (AChE and BuChE) was incubated with 20 µL of the compounds
at various concentrations at 37 ◦C for 15 min. The reaction was started by the addition of
the substrate (20-µL) of ATCI or BTCI solution (1-mM), respectively, and incubation for
additional 3 min.
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The enzyme activity was determined by measuring the increase in absorbance at
2-min intervals at 412 nm at 37 ◦C (ε = 14,150 M−1cm−1). The anticholinergic activity of the
compounds was expressed as the percent inhibition of AChE and BuChE at the standard
concentration c = 10−3 M.

The rate of inhibition of each enzyme by the compounds was calculated according to
the following expression:

I% =

(
1− VB

VA

)
× 100 (1)

where VB and VA indicate the absorbance measured for ChEs in the presence and absence
of inhibitors, respectively. The results are expressed as the average of three repetitions of
the tests performed and the standard deviation was less than 3% of the mean [154]. The
selectivity index (SI), defined as IC50 BuChE/IC50 AChE, was also calculated. Neostigmine
methyl sulfate was used as the appropriate standard.

3.4.2. Antioxidant Activity

The antioxidant activity of complexes 1–3 was evaluated via their ability to scavenge
the free radicals DPPH, hydroxyl, and ABTS. Each experiment was performed in triplicate
and the standard deviation of absorbance was less than 10% of the mean.

Determination of the reducing activity of the stable radical DPPH: To an ethano-
lic solution of DPPH (0.1 mM) was added an equal volume of an ethanolic solution of
complexes 1–3, which had a concentration of 0.1 mM. Ethanol was also used as a control
solution. The absorbance at 517 nm was recorded at room temperature, two times, after
20 and 60 min, in order to examine the time-dependence of the DPPH-scavenging activ-
ity [124]. The DPPH-scavenging activity of the compounds was expressed as the percentage
reduction of the absorbance values of the initial DPPH solution (RA%). The compounds
NDGA and BHT were used as reference compounds.

Competition of the tested compounds with DMSO for hydroxyl radicals: The hy-
droxyl radicals generated by the Fe3+/ascorbic acid system were detected according to Nash
by the determination of formaldehyde produced from the oxidation of DMSO [155]. The
reaction mixture contained EDTA (0.1 mM), Fe3+ (167 µM), DMSO (33 mM) in phosphate
buffer (50 mM, pH 7.4), complexes 1–3 (concentration 0.1 mM), and ascorbic acid (10 mM).
After a 30-min incubation at 37 ◦C, the reaction was stopped with CCl3COOH (17% w/v)
and the absorbance at λ = 412 nm was measured. Trolox was used as a reference compound.
The competition of the compounds with DMSO for •OH, generated by the Fe3+/ascorbic
acid system, expressed as the percentage of inhibition of formaldehyde production, was
used for the evaluation of their hydroxyl radical-scavenging activity (OH%).

Assay of radical cation scavenging activity (ABTS+•): An ABTS cationic radical
(ABTS+•) was produced by reacting an aqueous stock solution (2 mM) of ABTS with
0.17-mM potassium persulfate and allowing the mixture to stand in the dark at room
temperature for 12–16 h before use. Because ABTS and potassium persulfate react stoichio-
metrically at a ratio of 1:0.5, this results in the incomplete oxidation of the ABTS. Although
the oxidation of ABTS commenced immediately, the absorbance became maximal and
stable after 6 h. The radical was stable in this form for more than two days when stored
in the dark at room temperature. The ABTS radical solution was diluted with ethanol
to an absorbance of 0.70 at 734 nm. After the addition of 10 µL of complexes 1–3 or the
standards (0.1 mM) in DMSO, the absorbance was recorded exactly 1 min after initial mix-
ing [124]. The radical scavenging activity of the complexes was expressed as the percentage
inhibition of the absorbance of the initial ABTS solution (ABTS%). Trolox was used as a
reference compound.

3.4.3. Interaction with Serum Albumins

The albumin-binding study for complexes 1–3 was performed via fluorescence emis-
sion quenching experiments using BSA (3 µM) or HSA (3 µM), respectively, in a buffer
solution (containing 15-mM trisodium citrate and 1500 mM NaCl at pH 7.0). The quenching
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of the emission intensity of tryptophan residues of BSA at 343 nm or HSA at 351 nm was
monitored using complexes 1–3 as quenchers with increasing concentrations [130]. The
fluorescence emission spectra were recorded in the range of 300–500 nm, with an excitation
wavelength of 295 nm. The quantitative studies of the serum albumin fluorescence spectra
were performed after correction by subtracting the spectra of the compounds.

The extent of the inner-filter effect can be roughly estimated with the following formula:

Icorr = Imeas × 10
ε(λexc)cd

2 × 10
ε(λem)cd

2 (2)

where Icorr = corrected intensity, Imeas = the measured intensity, c = the concentration of the
quencher, d = the cuvette (1 cm), ε(λexc), and ε(λem) = the ε of the quencher at the excitation
and the emission wavelength, respectively, as calculated from the UV-vis spectra of the
complexes [131].

The Stern–Volmer and Scatchard graphs are used in order to study the interaction of a
quencher with serum albumins [130]. The Stern–Volmer quenching equation is used [130]:

Io
I
= 1 + Kq × τ0 × [Q] = 1 + KSV × [Q] (3)

where Io = the initial tryptophan fluorescence intensity of SA, I = the tryptophan fluores-
cence intensity of SA after the addition of the quencher, Kq = the quenching constants of
SA, KSV = the Stern–Volmer constant, τo = the average lifetime of SA without the quencher,
and [Q] = the concentration of the quencher. The value of KSV (M−1) can be obtained by
the slope of the diagram Io/I versus [Q]. Taking τo = 10−8 s as the fluorescence lifetime of
tryptophan in SA, the value of Kq (M−1s−1) is calculated from the equation:

KSV = Kq × τo (4)

and from the Scatchard equation [130]:

∆I/Io

[Q]
= n×K−K× ∆I

Io
(5)

where n is the number of binding sites per albumin and K is the SA-binding constant, K (in
M−1) is calculated from the slope in plots (∆I/Io)/[Q] versus (∆I/Io), and n is given by the
ratio of y-intercept to the slope [130].

3.4.4. Interaction with CT DNA

The interaction of the complexes with CT DNA was investigated by UV-vis spec-
troscopy and viscosity measurements and via the evaluation of their EB-displacing ability
studied by fluorescence emission spectroscopy.

Binding study with CT DNA by UV-vis spectroscopy: The interaction of complexes
1–3 with CT–DNA was studied by UV-vis spectroscopy in order to investigate the possible
binding modes to CT DNA and to calculate the DNA-binding constants (Kb). Control
experiments with DMSO were performed, and no changes in the spectra of CT DNA were
observed. The value of Kb can be obtained by monitoring the changes in the absorbance
at the corresponding λmax in the UV-vis spectra of each complex (10–30 µM), recorded
with increasing concentrations of CT DNA (diverse r values) and given by the ratio of
the slope to the y intercepts in the plots [DNA]/(εA–εf) versus [DNA], according to the
Wolfe–Shimer equation [139]:

[DNA]

(εA − εf)
=

[DNA]

(εb − εf)
+

1
Kb × (εb − εf)

(6)
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where [DNA] is the concentration of DNA in base pairs, εA = Aobsd/[compound], εf = the
extinction coefficient for the free compound, and εb = the extinction coefficient for the
compound in the fully bound form.

CT DNA-binding studies using viscosity measurements: The viscosity of DNA
([DNA] = 0.1 mM) in the buffer solution (150 mM NaCl and 15 mM trisodium citrate
at pH 7.0) was measured in the presence of increasing amounts of complexes 1–3 (up to the
value r = 0.36). All measurements were performed at room temperature. The obtained data
are presented as (η/η0)1/3 versus r, where η is the viscosity of DNA in the presence of the
compound, and η0 is the viscosity of DNA alone in buffer solution.

EB-displacement studies: The competition of complexes 1–3 with EB was investi-
gated by fluorescence emission spectroscopy in order to examine whether the complexes
can displace EB from its DNA–EB conjugate. The DNA–EB conjugate was prepared by
adding 20-µM EB and 26-µM CT DNA in the buffer solution (150-mM NaCl and 15-mM
trisodium citrate at pH 7.0). The possible intercalating effect of the complexes was studied
by the addition of a certain amount of a solution of the compound into a solution of the
DNA–EB conjugate. The influence of each compound to the DNA–EB complex solution
was obtained by recording the changes in the fluorescence emission spectra with the ex-
citation wavelength (λex) at 540 nm [130]. Complexes 1–3 do not show any appreciable
fluorescence emission bands at room temperature in the solution or in the presence of CT
DNA or EB under the same experimental conditions (λex = 540 nm); therefore, the observed
quenching of the EB–DNA solution may be attributed to the displacement of EB from its
EB–DNA conjugate.

The Stern–Volmer constant KSV is used to evaluate the quenching efficiency for each
compound according to the Stern–Volmer equation (Equation (3)) [130], where Io and I
are the emission intensities in the absence and the presence of the quencher, respectively,
and [Q] is the concentration of the quencher (i.e., complexes 1–3). The value of KSV is
obtained from the Stern–Volmer plots by using the slope of the diagram Io/I versus [Q].
Taking τo = 23 ns as the fluorescence lifetime of the EB–DNA system [144], the EB–DNA
quenching constants (Kq, in M−1s−1) of the compounds can be determined according to
Equation (4).

4. Conclusions

Three novel Fe(III) complexes with the NSAIDs diflunisal and diclofenac have been iso-
lated and their structural and spectroscopic features have been discussed. In the dinuclear
centrosymmetric complex [Fe2(difl)2(MeO)2(phen)2]·H2O (complex 1), the iron(III) ions
are bridged by two methoxo groups. Both complexes [Fe3O(dicl)6(py)3]Cl·py (complex 2)
and [Fe3O(dicl)6(MeOH)3][FeCl4]·Hdicl·1.5MeOH·H2O (complex 3) contain a trinuclear
cationic oxo-centered carboxylate-bridged complex of the “basic” carboxylates family which
is neutralized by a chlorido or tetrachloroferrate counter anion, respectively. Due to the
low aqueous solubility of complexes 1–3, the studies in relation to the solution used were
mainly performed using DMSO solutions of the complexes.

The complexes exhibited in vitro showed significant affinity for the albumins BSA and
HSA, and they may bind tightly and reversibly to both SAs. The most possible binding
mode of the complexes to CT DNA is via intercalation in-between DNA bases, and their
binding is tight.

The investigation of the in vitro scavenging activity of complexes 1–3 towards DPPH,
ABTS, and hydroxyl radicals revealed that the complexes are more active than the corre-
sponding free NSAIDs and present selective activity towards hydroxyl and ABTS radicals
versus DPPH radicals.

The anticholinergic activity of the complexes revealed that the Fe(III)-NSAID com-
plexes 1–3 show better activity than the free NSAIDs sodium diclofenac and diflunisal
against BuChE. As also established by the selectivity index, complexes 1–3 appear more
potent for the late stages of AD. It should be noted that the results of this study have
offered encouraging information about the potency of novel Fe(III)-NSAID complexes as
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anti-dementia agents. Thanks to this, future efforts could aim at figuring out potential
applications of the studied complexes or evaluating the anticholinergic activity of other
metal-NSAID complexes.

In conclusion, the results of the present study revealed a promising synergism of the
NSAIDs diflunisal and sodium diclofenac with the bioelement iron and may initiate more
elaborate biological studies and potential biological applications. A combination of the
beneficiary effectiveness of the coordination compounds towards cholinesterase enzymes
and their noteworthy radical-scavenging capacity may trigger the investigation of reported
antioxidants as potential candidate anti-dementia agents.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/ijms24076391/s1.
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Abbreviations

ABTS = 2,2′-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid); Ach = acetylcholine; AChE = acetyl-
cholinesterase; AD = Alzheimer’s disease; ATCI = acetylthiocholine iodide; BHT = butylated hydroxytoluene;
BSA = bovine serum albumin; BTCI = S-butyrylthiocholine iodide; BuChE = butyrylcholinesterase; CT = calf-
thymus; difl2− = doubly deprotonated diflunisal; DPPH = 1,1-diphenyl-picrylhydrazyl; DTNB = 5,5-dithio-
bis-(2-nitrobenzoic acid); EB = ethidium bromide, 3,8-diamino-5-ethyl-6-phenyl-phenanthridinium bromide;
eeAChE = electric eel acetylcholinesterase; eqBuChE = equine serum butyrylcholinesterase; FDA = Food
and Drug Administration, USA; Hdicl = diclofenac acid; H2difl = diflunisal; HSA = human serum al-
bumin; K = SA-binding constant; Kb = DNA-binding constant; Kq = quenching constant; KSV = Stern-
Volmer constant; Nadicl = Sodium diclofenac; NDGA = nordihydroguaiaretic acid; Neo = Neostigmine
methyl sulfate; NMDA = N-methyl-D-aspartate; NSAID = non-steroidal anti-inflammatory drug; phen
= 1,10-phenanthroline; py = pyridine; r = [compound]/[DNA] or [SA] ratio; ROS = reactive oxygen
species; SA = serum albumin; SI = selectivity index; SP = senile plaques; trolox = 6-hydroxy-2,5,7,8-
tetramethylchromane-2-carboxylic acid; ∆ν(COO) = νasym(COO)− νsym(COO).
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