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Abstract: In the past decade, immense progress has been made in advancing personalized medicine to
effectively address patient-specific disease complexities in order to develop individualized treatment
strategies. In particular, the emergence of 3D bioprinting for in vitro models of tissue and organ
engineering presents novel opportunities to improve personalized medicine. However, the existing
bioprinted constructs are not yet able to fulfill the ultimate goal: an anatomically realistic organ with
mature biological functions. Current bioprinting approaches have technical challenges in terms of
precise cell deposition, effective differentiation, proper vascularization, and innervation. This review
introduces the principles and realizations of bioprinting with a strong focus on the predominant
techniques, including extrusion printing and digital light processing (DLP). We further discussed
the applications of bioprinted constructs, including the engraftment of stem cells as personalized
implants for regenerative medicine and in vitro high-throughput drug development models for
drug discovery. While no one-size-fits-all approach to bioprinting has emerged, the rapid progress
and promising results of preliminary studies have demonstrated that bioprinting could serve as an
empowering technology to resolve critical challenges in personalized medicine.

Keywords: bioprinting; biomaterial; drug discovery; personalized medicine; precision medicine;
regenerative medicine; stem cell

1. Introduction

Therapeutic strategies have traditionally been developed for a broad population of
patients that have been primarily categorized using pathological observations and clinical
features [1]. However, various therapeutic strategies, including medications, are currently
being designed to recognize variable efficacy and adverse effects in patients depending
on differing lifestyles, genomic signatures, and additional comorbidities [1,2]. The genetic
variability of patients also leads to the risk of organ rejection in regenerative medicine
and organ transplantation (notably, HLA and minor histocompatibility antigen mismatch
between donor and recipient), which has slowed the translation from an in vitro disease
model to further testing in the clinical patient-care setting [3]. Given that disease states are
impacted by a complex combination of factors, there is a significant need to individualize
patient treatments. Personalized medicine is a rapidly advancing field of health care that
uses an individual’s unique genetic profile to direct prevention, diagnosis, and treatment [2].
It aims to tailor and individualize therapeutic treatment plans according to the patients’
physiology, genetic profile, and drug response [2]. As a result, patients may receive a
treatment with optimal efficacy and dosage, which overall enhances patient safety and
clinical outcomes by avoiding misdiagnosis and adverse drug effects. Industries are also
likely to benefit from reduced healthcare costs and favorable patient outcomes [4].
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Personalized medicine has undergone multiple breakthroughs in the last several
decades. These major discoveries are summarized in Figure 1. For example, the discovery
of stem cells, especially human-induced pluripotent stem cells (hiPSC) by the Yamanaka
factors [5] revolutionized the field of disease treatments, as they provided a method to gen-
erate induced pluripotent stem cells (iPSCs) without the use of embryos, which eliminated
ethical concerns [6]. Currently, there are numerous iPSC-derived cell products and grafts in
the pipeline of clinical translation. In addition to biological discovery, engineering tech-
nologies have also played an important role in the breakthrough of personalized medicine.
The world’s first 3D-printeYes, d drug, Spritam, was approved by the U.S. Food and Drug
Administration (FDA) for the treatment of partial-onset seizures for epilepsy [7].
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proceeding at a slower pace [8]. Many selected therapeutic agents that were successful in 
models could not be readily adapted for the clinical context and have failed because of 
drug intolerance, highlighting the need for accurate and representative pre-clinical mod-
els [9]. As patient samples are often related to ethical, legal, and social issues regarding 
accessibility, there has been a focus on developing patient-derived models, such as im-
mortalized cell lines, patient-derived xenografts (PDXs), and organoids. As compared to 
traditional monolayer cultures, PDXs and organoids are better at mimicking in vivo mi-
cro-environments and, thus, have improved the generalizability of experimental out-
comes to clinical contexts [9,10]. However, they have been limited due to their time-inten-
sive requirements and significant costs [10]. Moreover, there has been a lack of consistency 
in the components required and processes involved in organoid protocols among differ-
ent researchers, which has resulted in unexpected variabilities when comparing their re-
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mental models is important to facilitate personalized therapy and maximize treatment 
efficacy. 
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tional, structural, and mechanical components and properties is the core of 3D bioprint-
ing, and this is performed through the precise, layer-by-layer positioning of biological 
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While major advancements and technologies in precision medicine have been ac-
complished within the last few decades that have identified more sensitive and specific
biomarkers and have better mediated drug dosages and selection research, challenges
restricting the potential of personalized medicine remain [2]. The difficulties mainly lie
in the validation of experimental results, accessibility of patient data, and transferability
to the clinical setting. While numerous of genetic markers have been discovered, it was
reported in the 2008 PCAST that the clinical validation of these candidate markers has been
proceeding at a slower pace [8]. Many selected therapeutic agents that were successful in
models could not be readily adapted for the clinical context and have failed because of drug
intolerance, highlighting the need for accurate and representative pre-clinical models [9].
As patient samples are often related to ethical, legal, and social issues regarding accessibility,
there has been a focus on developing patient-derived models, such as immortalized cell
lines, patient-derived xenografts (PDXs), and organoids. As compared to traditional mono-
layer cultures, PDXs and organoids are better at mimicking in vivo micro-environments
and, thus, have improved the generalizability of experimental outcomes to clinical con-
texts [9,10]. However, they have been limited due to their time-intensive requirements and
significant costs [10]. Moreover, there has been a lack of consistency in the components
required and processes involved in organoid protocols among different researchers, which
has resulted in unexpected variabilities when comparing their results [9]. Therefore, devel-
oping high-throughput, consistent, and representative experimental models is important to
facilitate personalized therapy and maximize treatment efficacy.

Recently, 3D bioprinting has emerged as a potential method for resolving the afore-
mentioned challenges. The fabrication of 3D biological structures with multiple functional,
structural, and mechanical components and properties is the core of 3D bioprinting, and
this is performed through the precise, layer-by-layer positioning of biological materials, bio-
chemicals, and living cells [11]. As a result, 3D cultures created by bioprinting technologies
have been used to facilitate drug development and toxicity, as well as the study of tissue
and disease formation and progression [12]. In particular, its application for in vitro tissue
and organ modeling that is capable of mimicking human physiology presents novel oppor-
tunities, such as personalized implants and drug development, to improve personalized
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medicine. While 3D bioprinting is an exciting potential tool for advancing personalized
medicine, the existing bioprinted constructs are not yet able to fulfill the ultimate goal:
an anatomically realistic organ with mature biological functions. Current bioprinting
approaches still have technical challenges in terms of precise cell deposition, effective
differentiation, proper vascularization, and innervation.

This review provides an overview of the current developments in bioprinting tech-
niques and applications and assesses the potential of 3D bioprinting to advance personal-
ized medicine. Established bioprinting techniques, with an emphasis on extrusion printing
and digital light processing (DLP), and available bioprinting materials, such as induced
pluripotent stem cells, were considered. Major applications for bioprinted constructs, in-
cluding the engraftment of stem cells as personalized implants for regenerative medicine,
and in vitro high-throughput drug development models for drug discovery were evalu-
ated. Finally, we summarized the current state-of-the-art in bioprinting, as well as the key
challenges, and concluded with a brief perspective of bioprinting in personalized medicine.

2. Bioprinting: Methods and Materials

Bioprinting consists of two important aspects: the printing methods and the corre-
sponding materials. This section reviews the concepts and advancements within these
aspects to achieve optimized performance. There are four main bioprinting technologies:
inkjet, laser-assisted, extrusion, and stereolithography (Figure 2). While each bioprint-
ing technology has both strengths and limitations, each may be utilized according to the
intended application to further develop the field of personalized medicine. A detailed
comparison of different bioprinting methods is provided in Table 1 and in reference [13].
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2.1. Bioprinting Technology
2.1.1. Inkjet Printing

Inkjet printing is the first bioprinting technology with a cartridge that stores bio-ink.
This method is generally known for its affordability and easy accessibility, as commer-
cial printers can be easily modified to accommodate the technology [13–16]. It has also
demonstrated high cell viability; approximately 80–90% of cells remain functional [16].
This process utilizes a thermal or piezoelectric actuator to generate droplets of the
bio-ink consistently.

The thermal actuator utilizes heat-induced bubble nucleation that causes pressure to
build-up for the expulsion of the droplet. Thermal-based inkjet bioprinters typically reach
temperatures of 100–300 ◦C. As a result of this high heat, this method of inkjet printing
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can cause cellular stress in the bio-ink [17]. However, it may be possible to mitigate the
cellular stress factor by localizing the high temperatures on the cell for a minimal amount of
time [18,19]. Alternatively, piezoelectric inkjet bioprinters, which produce acoustic waves
at low viscosities and concentrations, have been used [20].

2.1.2. Extrusion Printing

Extrusion-based bioprinting is a modification of inkjet printing that exerts a constant
force on the bio-ink during output [21]. This results in a cylindrical printed stream that
attaches to the intended surface as a continuous line [22,23]. This is a significantly differ-
ent approach to the singular, high-cell-density, bio-ink droplets found in standard inkjet
bioprinting [24]. The limitations of this technique include a reduced cell viability due to
the exposure of bio-inks to further mechanical stress and having a limited resolution over
100 µm [25].

2.1.3. Laser-Assisted Printing

Laser-assisted printing is a form of bioprinting that propels bio-ink onto the printing
surface using a high-pressure bubble [20,21]. The formation of this bubble begins with
a “donor layer”, also known as a ribbon. It contains an energy-absorbing layer, which is
subjected to a high-energy laser pulse that vaporizes the layer at the focal spot [24]. The
donor layer, which is composed of a thin layer of glass, metal, and bio-ink, is ultimately
vaporized into a high-pressure bubble that enables the bio-ink to be propelled onto the
printing surface [26]. Koch and their colleagues demonstrated that the jet velocity has been
shown to be higher for smaller focal spots and dependent on the laser intensity. More
specifically, at a laser intensity of 1.4 J/cm2, the jet velocity on a spot size of 4000 µm2

was higher, as compared to the velocity at 3000 µm2 [27]. This bioprinting method has
numerous advantages. It promotes excellent cell viability at a high resolution, between
10–50 µm [11], while also avoiding contact between the dispenser nozzle and the bio-ink.
However, this printing method is expensive, and the long-term effects of the laser have yet
to be fully explored [24].

2.1.4. Stereolithography

Stereolithography utilizes visible or ultraviolet (UV) light via DLP to solidify bio-ink
in a layer-by-layer process [24–27]. This process is known for eliminating shear pressure
during nozzle-based printing due to its rapid, highly precise resolution, with a resolution
range of 5–300 µm [26]. The exposure of light ultimately results in the solidification of the
layers via photopolymerization [28]. For example, Gauvin et al. fabricated 3D structures
utilizing a gelatin-based prepolymer solution under UV light [29]. However, the UV light
exposure placed the bio-ink cells at risk of cytotoxic damage from photo-initiators, which
could negatively impact cell viability [26,30]. Researchers have attempted to solve this
problem by adding two monomers of alkene or thiol groups that could react spontaneously
under UV irradiation at 266 nm. After 3 days, researchers observed that the cell viability
was much higher, than the control variable, at approximately 95% [31].

Advancements in personalized medicine have been limited primarily by the expense
of using 3D bioprinters. Furthermore, better technology and more precise bioprinting is
likely to result in even higher costs. This ultimately makes more costly options, such as
laser-assisted printers, inaccessible to medical laboratories and institutes, which in turn
limits the advanced research on laser-assisted printing in personalized medicine.
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Table 1. Comparison of four major types of bioprinting techniques.

Bioprinting Method Key Aspects Advantages Disadvantages References

Inkjet

First bioprinting
technology that has a
bio-ink cartridge.
Minimum droplet volume
of 20 nL

• Low cost
• Easy accessibility
• High cell

viability (>85%)

• Thermal actuator is
potentially prone to
high-temperature stress

[13–16]

Extrusion

A modification of
inkjet-based bioprinting
that prints a cylindrical
stream onto a printing
surface in a
continuous line

• Highly controlled
printing structure

• Limited resolution
(100–500 µm)

• Reduced cell viability
[22,23,32]

Laser-assisted Propels bio-ink onto the
printing surface

• High cell
viability (>95%)

• Fast printing speed
• High resolution

(10–50 µm)

• High cost
• Long-term effects of

laser unclear
[11,20,21,33]

Stereolithography Uses UV light to solidify
bio-ink layer-by-layer

• Fast printing speed
• High resolution
• Excellent cell

adhesion

• High cost
• UV light exposure could

reduce cell viability via
cytotoxic damage

[24,25,27,34]

Note: More information is provided in Table 1 of reference [13].

2.2. Cell Source and Bio-Inks

In addition to printing technologies, the formulation of bio-inks, usually in the com-
bination of supportive biomaterials and specific cell types, is critical for the success of
bioprinting. The biomaterials used in bioprinting can be roughly divided into two sub-
types: (1) natural biomaterials, such as alginate [14,35–37], agarose [35,38], collagen [39,40],
and nanocellulose [41]; and (2) synthetic biomaterials, such as polyethylene glycol diacry-
late (PEDGA) [42], and Pluoronic® [43,44]. Each material has unique mechanical (e.g.,
printability) and biological properties (e.g., the ability to support long-term cell adhesion
and growth). A detailed comparison of the different bioprinting methods is provided in
Table 2 and in reference [13].

Table 2. Summary of available natural and synthetic bio-inks.

Bio-ink
Material Description Advantages Disadvantages References

Alginate
Natural negatively
charged polysaccharides
from brown algae

• Non-immunogenic
when implanted in vivo

• High biocompatibility
• Capable of transporting

oxygen, nutrients, etc.

• Lack of cell adhesion
• Poor printability
• Unpredictable

biodegradability

[14,35–37]

Agarose Polysaccharide obtained
from seaweed High cell viability Poor support and limited

cell growth [35,38]

Collagen Structural protein in the
extracellular matrix

Easily obtainable from skin
and connective tissues
of organisms
Relatively strong
3D structures

• Poor mechanical
properties, unless
cross-linked

• Low mechanical
strength

• Unpredictable viscosity
and elastic modulus

[39,40]
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Table 2. Cont.

Bio-ink
Material Description Advantages Disadvantages References

Nanocellulose

Cellulose that can be
derived from biomass,
bacteria, and
marine sources

• Non-cytotoxicity
• High-aspect-ratio
• Strong mechanical

properties

May not be an accurate
model for human cells as we
do not produce cellulase to
be biodegraded

[41]

PEGDA
Synthetic polymer used
for hydrogel fabrication
and UV curing

• Highly biocompatible
• Non-toxic and

non-immunogenic
• Capable of

photopolymerization
• High mechanical

strength

Material can be brittle
and rigid [42]

Pluronic® Synthetic
polymer-poloxamer

• Excellent printability
• Temperature-responsive

gelation

Biocompatibility is not
sufficient for long-term
cell survival

[43,44]

Note: More information is provided in Table 2 in reference [13].

The cell source for bioprinting is an important factor. To fabricate complex tissues
and organs that mimic their natural counterparts, the cells for bioprinting need to not only
reproduce the desired biological function but also to expand as required, as overexpansion
could result in hyperplasia or cell death [45]. The difficulty of culturing many primary cells
and their limited lifespans has made reproducing them via bioprinting infeasible [45], and
the intrinsic abnormalities and mutations found in immortalized cell lines of tissues has
limited their application as well [46]. Therefore, there has been increased interest using
stem cells in 3D bioprinting.

Stem cells have excellent therapeutic potential because of their unique self-renewal and
pluripotency. Due to the ethical concerns regarding embryonic stem cells, researchers have
identified methods to induce pluripotency by reprogramming human somatic cells [5,47].
Bioprinting with these hiPSCs has unique advantages for regenerative and personalized
medicine applications, such as patient-specific disease modeling, personalized implants,
and drug development. This section introduces the current progress in bioprinting using
stem cells and the application for personalized implants.

Human pluripotent stem cells are sensitive to environmental parameters [48], and thus,
maintaining cell viability, pluripotency, and differentiation during and after the printing
process is of high interest (Figure 3). Many researchers have studied different types of
bioprinting and their effects on bio-inks to identify optimal printing methods. For example,
both extrusion printing and laser printing did not affect the survival and pluripotency of
hiPSCs [48,49]. There have also been novel technologies, such as a “microscopic painting
device using a painting needle method” that improved the printing resolution while
maintaining the high viscosity of the bio-ink and cell viability [50].
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tency [48,54]. There have also been advancements in bio-ink formulations. Crook et al.
used a clinically amenable bio-ink that was cross-linked to a 3D construct in order to
maintain the multilineage cell-induction potential of iPSCs [55]. Cofiño et al. created a
new formulation of bio-ink involving a methylcellulose and RAD16-I-based biomaterial
that had high printability and biocompatibility with embedded human mesenchymal stem
cells, resulting in high viability and differentiation [56]. Researchers proposed a core-sheath
multilayer cell-laden structure that combined a cell-laden collagen-based bio-ink for the
core and pure alginate for the sheath, and it protected cells and achieved efficient differenti-
ation [57]. Additionally, there has been increasing interest in decellularized extracellular
matrix (dECM) bio-inks [58,59], which create a more natural micro-environment and are
likely enhance cellular function. Jang et al. showed that heart-tissue-derived dECM bio-ink
provided benefits for the maturation of cardiac progenitor cells (CPC) and improved the
epicardial activation, as compared with collagen bio-ink [60].

3. Applications in the Discovery of Personalized Medicine

With the aid of advanced bio-inks and 3D bioprinting technology that can maintain
the viability and potency of cellular materials, such as stem cells, there have been successful
applications in tissue regeneration and drug-development models. This section presents
examples of bioprinting used to regenerate tissue for bones, livers, hearts, corneas, and
other tissues required by the central neural system, highlighting factors such as cell viability,
functionality, proliferation, maturation, and in vivo transplantation. In addition, the appli-
cation of bioprinting for the development of biomimetic platforms for drug development is
introduced. Examples of 3D-bioprinted cardiac tissue models, hepatic models, and glioblas-
toma models are presented to illustrate the potential of 3D bioprinting in advancing drug
development in personalized medicine. The selected major discoveries are summarized in
Table 3.

3.1. Printing of Stem-Cell Differentiated Organs for Tissue Regeneration
3.1.1. Bone

Currently, 3D bioprinting is a promising approach for bone and cartilage regenera-
tion [61]. In bone tissue engineering, a scaffold has been constructed as a bone substitute
that provided mechanical support and facilitated cellular activities, such as migration,
proliferation, and differentiation. Poly(lactide) (PLA) has become one of the most used
biomaterials for scaffolds, as it is biocompatible and biodegradable. Researchers combined
3D PLA scaffolds with human gingival mesenchymal stem cells (hGMSCs) and extracellular
vesicles (EVs) to test their cytotoxicity and regeneration effects [62]. The PLA degradation
of byproducts did not induce a cytotoxic response. After six weeks of in vivo implantation
in rats subjected to cortical calvaria bone tissue damage, new bone nodules and blood
vessels were observed in the calvariae [62]. Additionally, Teixeira et al. further showed
an improvement in the osteo-inductivity of 3D-printed PLA scaffolds by incorporating
polydopamine (PDA) and type-I collagen as surface coatings [63].

3.1.2. Kidney

The bioengineering of kidneys has been challenging due to the organs’ complex
development, spatial organization, and lineage specifications [64]. Studies have shown that
in vitro generated 3D cellular aggregates have superior long-term stability, as compared to
2D differentiation [65]. This agreed with findings by Goulart et al. [66], where bioprinting
hepatic tissues using human liver iPS-derived parenchymal cells as 3D spheroids enhanced
their cellular survival and function, as compared with in vitro single-cell dispersions [67].
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Table 3. Summary of selected major discoveries in bioprinting applications.

Target Tissue Bioprinting Method Cell Type Biomaterial Cellular Response References

Bone

Commercial fused-filament
fabrication 3D printer

(DeltaWASP 2040; CSP srl,
Massa Lombarda, Italy)

Human gingival mesenchymal
stem cells (hGMSCs)

Poly(lactide) (PLA),
extracellular vesicles (EVs),

polyethyleneimine
(PEI)-engineered EVs (PEI-EVs)

(1) Both 3D-PLA + EVs + hGMSCs and
3D-PLA + PEI-EVs + hGMSCs showed

no cytotoxicity
(2) Better osteogenic properties were

observed in 3D-PLA + PEI-EVs + hGMSCs.
New bone nodules and blood vessels were

observed in calvariae after in vivo
implantation in rats subjected to cortical

calvaria bone tissue damage. [62]

3D Cloning FDM printer
(Microbras, Brazil), PLA

white commercial filament
(1.75 mm in diameter,

produced by E-Sun, China)

Porcine bone marrow stem
cells (MSCs)

Poly(lactic acid) (PLA),
polydopamine (PDA), type-I

colla-gen (COL I)

PDA combined with COL coating
increased cell adhesion and the metabolic

activity of MSCs in the early stage
(<7 days) of cell culture and facilitated the
deposition of extracellular matrix by day

14, and produced much higher amounts of
alkaline phosphatase than un-coated PLA

by day 21.

Kidney and Liver

Extrusion bioprinting
(Cellink INKREDIBLE +

3D bioprinter)

iPS-derived parenchymal
(hepatocyte-like) cells,

iPS-derived
hepato-cyte-like cells spheroids

Matrigel

Liver constructs from 3D printing with
hepatic spheroids showed prolonged

survival, reduced cell death, increased
urea production, and prolonged secretion

of albumin and A1AT, as compared to
printed constructs using

single-cell dispersion.

[66]

Extrusion bioprinting
(Novogen 3D bio-printer) iPSC STEMdiff APEL and

TESR-E6 medium

Bioprinted line conformation increased
nephron numbers, as measured by an

increase in MAFB+ glomerular area, as
compared to manual organoids.

[68]
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Table 3. Cont.

Target Tissue Bioprinting Method Cell Type Biomaterial Cellular Response References

Heart

Spheroid bioprinting with
microfluidic-chip-based 3D

cell-culturing system
(Regenova, Cyfuse
Bio-medical K.K.,

Tokyo, Japan)

Human-induced pluripotent
stem-cell-derived

cardiomyocytes (hiPSC-CMs),
human adult ventricular cardiac

fibroblasts (FBs), and human
umbilical vein endothelial

cells (ECs)

Free of biomaterials

In vivo implantation of the 3D-bioprinted
cardiac patches onto nude rat hearts

showed viable cells in the patch along with
erythrocytes (evidence of vascularization),

and the presence of human nucleic acid
(HNA)-positive cells in rat myocardium

(evidence of engraftment).

[69]

Spheroid bioprinting with
microfluidic-chip-based 3D

cell-culturing system
(Regenova, Cyfuse

Biomedical K.K.,
Tokyo, Japan)

Human IPSC-derived
cardiomyocytes, fibroblasts, and

endothelial cells
Free of biomaterials

In vivo implantation of the bioprinted
cardiac patches onto rat myocardial

infarction model showed lower scar area,
higher vessel count, and higher cardiac

output than the control group without the
implantation. The survival rates were

100% and 83% in the experimental and the
control groups, respectively, after 4 weeks

of surgery

[70]

Nerve

Micro-extrusion bioprinting Frontal cortical human neural
stem cells (hNSCs)

Polysaccharides alginate (Al),
carboxymethyl-chitosan (CMC),

and agarose (Ag)

Co-printing of cells with bio-ink allowed
the formation of a porous 3D-scaffold
encapsulation of stem cells for in situ

expansion and differentiation.
Differentiated neurons formed synaptic

contacts and showed spontaneous calcium
spikes and bicuculline-induced

bursting activity.

[71]

Extrusion bioprinting Cortical neurons and glial cells
de-rived from human iPSCs Matrigel and alginate

Long-term survival of neurons, up to
70 days post-printing, was observed.
Functional analysis showed calcium

activity and a small degree of
synchronous activity.

[49]
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Table 3. Cont.

Target Tissue Bioprinting Method Cell Type Biomaterial Cellular Response References

Nerve

Lab-on-a-printer (LOP)
technology (Aspect

Biosystems’ RX1 printer)

hiPSC-derived neural
progenitor cells

Fibrinogen base with alginate,
cross-linked with a mixture of

chitosan, calcium chloride,
thrombin, and genipin

Cell viability was 91.65 ± 6.85% by day 6
of the culture period, and 64.12 ± 21.27%

by day 15. The printed neural tissues
showed neurite extension and the

expression of neuronal marker TUJ1 and
nucleated cell marker

[72,73]

Extrusion bioprinting

Induced pluripotent stem cell
(iPSC)-derived spinal neuronal
progenitor cells (sNPCs) and
oligodendrocyte progenitor

cells (OPCs)

Matrigel

Cell viability was >75% for both
iPSC-derived sNPCs and OPCs printed in
50% Matrigel after 4 days in culture. The

bioprinted sNPCs differentiated and
showed progressive axon propagation in

the micro-scale scaffold channels.
Functionality was verified by cellular

response signaling molecules, potassium
and glutamate.

[54]

Pancreas Micro-extrusion bioprinting Human umbilical vein
endothelial cells

Pancreatic tissue-derived
dECM (pdECM)

PdECM increased the insulin secretion
over the conventionally applied

biomaterials, alginate and collagen.
Co-culturing with human umbilical

vein-derived endothelial cells decreased
the central necrosis of islets. Culturing in
both 3D gels (without printing) and the

printed construct showed similar viability
on days 1 and 5.

[74]

Cornea Laser-assisted
bioprinting (LaBP)

Human embryonic
stem-cell-derived limbal

epithelial stem cells (hESC-LESC),
human adipose-tissue-derived

stem cells (hASCs)

Recombinant human laminin
and human sourced collagen I

The printed hESC-LESCs retained an
epithelium-like structure and showed

apical expression of CK3 and basal
expression of the progenitor markers.

After 7 days in vivo transplantation in the
porcine organ, the 3D-bioprinted stromal

structures showed interaction and
attachment to the host tissue.

[75]
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One of the major challenges in the transplantation of stem-cell derived kidney tissue
has been the limited number of nephron structures. Takasato et al. reported the presence of
approximately 100 nephrons within a transwell-cultured micro-mass kidney organoid that
was initiated with 5 × 105 cells [76]. The human kidney, however, is estimated to contain
approximately 1 × 106 nephrons [77]. Lawlor et al. compared extrusion-based 3D cellular
bioprinting of kidney organoids with manual organoid generation [68]. In the manual
approach, the organoids were generated by centrifuging cells to form an aggregate, and
then the cells placed onto a transwell filter (Figure 4A). In the bioprinting approach, the
organoids were generated by the automated deposition of cell pastes using a NovoGen
MMX extrusion-based 3D cellular bioprinter. The researchers also varied the deposition
ratio, that is, the ratio of the tip movement along the transwell surface to the volume of the
deposited cell suspension, to obtain 2 different bioprinting conformations: (1) a single-point
deposition (ratio 0, no tip movement at extrusion), and (2) a line of cells ~12 mm long
(ratio 40, movement of 12 mm during extrusion) (Figure 4A). They used an MAFBmTagBFP2

reporter line for the cell paste and the MAFB-positive area from the fluorescence imaging of
the resultant viable organoids as a surrogate for the nephron number [78,79]. They found
that despite starting with a smaller cell number of 1.1 × 105, the bioprinted R40 organoids
contained a greater area of glomeruli, as compared to the manual organoids that had been
initiated with 2.3 × 105 cells (Figure 4B). In addition, they further examined the distribution
and functionality of the patch organoid. With a deposition ratio = 30, they extruded the
cell paste, containing approximately 4 × 105 cells, across a total field of approximately
4.8 × 6 mm. They observed the uniform distribution of the epithelial structures (Figure 4C)
and the correctly patterned nephrons (Figure 4D) in the resulting patch. They also showed
evidence for the functionality of the nephrons, by the TRITC-albumin uptake into the
YFP-positive proximal tubules (Figure 4E). Given the potential of adapting the bioprinting
deposition ratio to enable additional nephron formation and larger fields of kidney tissue,
further studies could investigate the bioprinting parameters for maximizing the nephron
numbers to align with their human counterpart, the long-term formation of the nephron in
the resulting organoid, and the functionality of the patches in vivo.

3.1.3. Heart

There have been many efforts in the regeneration of heart tissue through cardiac
stem-cell therapy. Many studies have printed cardiac tissue with a scaffold for implanta-
tion. The inclusion of a scaffold, however, has resulted in challenges related to mechanical
properties, immunogenicity, and degradation. As previously mentioned, researches have
been searching for the optimal scaffold. Moreover, Ong et al. proposed a novel method for
bioprinting cardiac patches without a scaffold [69]. This scaffold-free approach involved
printing cardiac spheroids containing human-induced pluripotent stem-cell-derived car-
diomyocytes (hiPSC-CMs), fibroblasts (FB), and endothelial cells (EC). The cardiac tissue
exhibited spontaneous beating and desired ventricular myocyte-like electrophysiological
properties. Another in vivo implantation study examined the regenerative potential of this
approach. Female Lewis nude rats were subjected to myocardial infarction (Figure 5a), and
bioprinted cardiac patches were implanted and evaluated on the scar areas, in addition to
their vascularization and cardiac functions (Figure 5b,c). The implantation group exhibited
less scar area, higher vessel counts (Figure 5e,f), and a higher cardiac output than the
control group (Figure 5g). However, since the heart rate of rats was different from the
contraction rate of a human iPSC cardiac patch (CP) and the integration of the CP with a
natural heart was not shown, further studies should investigate the long-term regeneration
potential and the implant–host integration [70].
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BmTAGBFP2GATA3mCherry) cells, and manual organoids from 2.3 × 105 cells. (B) Comparison of MAFB 
reporter area in manual and bioprinted kidney organoids. Larger area was observed in R40 organ-
oids, suggesting greater nephron number formation. Bars indicate mean. R40-Man, p = 2.1 × 10−5, R40-R0, 
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Figure 4. Cellular extrusion bioprinting improved nephron formation in kidney organoid, as com-
pared to manual generation. (A) A schematic of the protocol for manual versus bioprinted kid-
ney organoid formation (R40, R0). R40 and R0 were generated from 1.1 × 105 differentiated iPSC
(MAFBmTAGBFP2GATA3mCherry) cells, and manual organoids from 2.3 × 105 cells. (B) Comparison of
MAFB reporter area in manual and bioprinted kidney organoids. Larger area was observed in R40
organoids, suggesting greater nephron number formation. Bars indicate mean. R40-Man, p = 2.1 × 10−5,
R40-R0, p = 2 × 10−16. (C) Uniform formation of nephron structures in the bioprinted kidney organoid
patch, analyzed by brightfield imaging. (D) Nephrons showed expression of markers of proximal
tubules (LTL (left panel; green) and HNF4A (right panel; red)), podocytes (mTagBFP2 (left panel; blue)),
nephron epithelium (EPCAM (left panel; red)), distal tubule/loop of Henle TAL (SLC12A1 (right panel;
green)), surrounded by interstitial endothelial cells (SOX17 (right panel; grey)). Analyzed by confocal
immunofluorescence imaging. (E) Patch organoid was generated from proximal tubule-specific iPSC
reporter line (where yellow fluorescent protein (YFP) was inserted under the control of the HNF4A
promoter), following incubation in TRITC-albumin substrate. Live confocal imaging shows uptake of
TRITC-albumin (red) into YFP-positive proximal tubules (yellow). Small panels below show higher
magnification of the outlined areas, with and without phase-contrast overlays. Scale bars = 100 µm.
Reproduced with permission from [68], copyright 2020 Springer Nature Ltd.

Int. J. Mol. Sci. 2023, 24, x FOR PEER REVIEW 11 of 22 
 

 

panel; green)), surrounded by interstitial endothelial cells (SOX17 (right panel; grey)). Analyzed by 
confocal immunofluorescence imaging. (E) Patch organoid was generated from proximal tubule-
specific iPSC reporter line (where yellow fluorescent protein (YFP) was inserted under the control 
of the HNF4A promoter), following incubation in TRITC-albumin substrate. Live confocal imaging 
shows uptake of TRITC-albumin (red) into YFP-positive proximal tubules (yellow). Small panels 
below show higher magnification of the outlined areas, with and without phase-contrast overlays. 
Scale bars = 100 µm. Reproduced with permission from [68], copyright 2020 Springer Nature Ltd. 

3.1.3. Heart 
There have been many efforts in the regeneration of heart tissue through cardiac 

stem-cell therapy. Many studies have printed cardiac tissue with a scaffold for implanta-
tion. The inclusion of a scaffold, however, has resulted in challenges related to mechanical 
properties, immunogenicity, and degradation. As previously mentioned, researches have 
been searching for the optimal scaffold. Moreover, Ong et al. proposed a novel method 
for bioprinting cardiac patches without a scaffold [69]. This scaffold-free approach in-
volved printing cardiac spheroids containing human-induced pluripotent stem-cell-de-
rived cardiomyocytes (hiPSC-CMs), fibroblasts (FB), and endothelial cells (EC). The car-
diac tissue exhibited spontaneous beating and desired ventricular myocyte-like electro-
physiological properties. Another in vivo implantation study examined the regenerative 
potential of this approach. Female Lewis nude rats were subjected to myocardial infarc-
tion (Figure 5a), and bioprinted cardiac patches were implanted and evaluated on the scar 
areas, in addition to their vascularization and cardiac functions (Figure 5b,c). The implan-
tation group exhibited less scar area, higher vessel counts (Figure 5e,f), and a higher car-
diac output than the control group (Figure 5g). However, since the heart rate of rats was 
different from the contraction rate of a human iPSC cardiac patch (CP) and the integration 
of the CP with a natural heart was not shown, further studies should investigate the long-
term regeneration potential and the implant–host integration [70]. 

 
Figure 5. A scaffold-free approach to heart regeneration through printing cardiac spheroids con-
taining human-induced pluripotent stem-cell-derived cardiomyocytes. (a) Surgical procedures of 
mouse myocardial infarction model. (b) Patch group: one cardiac patch (CP) and a natural omentum 
patch (OP) were sutured over the site of infarction. (c) One OP was sutured over the site of infarc-
tion. (d) Schematics of experimental setup. (e,f) vascularization of the infarcted area. Patch group 
vs. control group. Green: positive staining of the endothelial cell. Scale bar = 100 µm. (g) Cardiac 
output (mL/min). Patch group vs. control group. (CO: 104.6 ± 45.5 vs. 68.6 ± 16.4, p =0.1). Reproduced 
with permission from [70], copyright 2019 John Wiley & Sons, Ltd. 

3.1.4. Neurons and Central Nervous System 
Neurons and glial cells are fragile and, thus, challenging for 3D printing. Previous 

studies have printed undifferentiated hiPSCs first and then allowed the cells to 

Figure 5. A scaffold-free approach to heart regeneration through printing cardiac spheroids con-
taining human-induced pluripotent stem-cell-derived cardiomyocytes. (a) Surgical procedures of
mouse myocardial infarction model. (b) Patch group: one cardiac patch (CP) and a natural omentum
patch (OP) were sutured over the site of infarction. (c) One OP was sutured over the site of infarction.
(d) Schematics of experimental setup. (e,f) vascularization of the infarcted area. Patch group vs.
control group. Green: positive staining of the endothelial cell. Scale bar = 100 µm. (g) Cardiac output
(mL/min). Patch group vs. control group. (CO: 104.6 ± 45.5 vs. 68.6 ± 16.4, p = 0.1). Reproduced
with permission from [70], copyright 2019 John Wiley & Sons, Ltd.
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3.1.4. Neurons and Central Nervous System

Neurons and glial cells are fragile and, thus, challenging for 3D printing. Previous studies
have printed undifferentiated hiPSCs first and then allowed the cells to differentiate and self-
assemble in brain organoids. It was reported that co-printing biomaterials and human neural
stem cells (hNSCs) could encapsulate the stem cells, followed by their in situ expansion and
differentiation into functional neurons and neuroglia [71]. As this method lacked control over
the differentiation and the formation of brain constructs post-printing, there have been efforts
to print neurons directly. Salaris et al. demonstrated another approach based on the extrusion
printing of cortical neurons and glial cells, with Matrigel and alginate as the bio-ink. They
showed the long-term survival of neurons, up to 70 days post-printing. Their functional anal-
ysis showed early and immature network activity [49]. Other researchers have also developed
worked on the development of novel printing technology with fibrin-based bio-ink to print
hiPSC-derived neural progenitor cells and observed early neuronal expression markers [72,73].
In addition, there have been advancements in the implantation of biocompatible scaffolds
with neural stem cells (NSCs) and neural progenitor cells (NPCs). Hsieh et al. embedded
NSCs in polyurethane (PU)-based thermos-responsive and biodegradable hydrogels, which
repaired the nervous system function in zebrafish with brain injury, as demonstrated by a
significant increase in hatching rate [80]. Recently, Joung et al. embedded spinal neuronal
progenitor cells (sNPCs) and oligodendrocyte progenitor cells (OPCs) in a bioprinted scaffold,
and as a result of their multicellular approach, they observed the axon propagation of printed
sNPCs in the scaffold [54].

3.1.5. Others Approaches for Pancreatic and Corneal Applications

Furthermore, bioprinting with stem cells has other applications, including in pan-
creatic and corneal diseases. Kim et al. used a pancreatic-tissue-derived extracellular
matrix to recreate a natural tissue micro-environment and increase islet function in the 3D
constructs [74]. They also observed a decrease in the necrosis of the islets when adding
the human umbilical-vein-derived endothelial cells to the culture [74]. Sorkio et al. used
human embryonic stem-cell-derived limbal epithelial stem cells (hESC-LESC) and human
adipose-tissue-derived stem cells (hASCs) to print multilayer structures that resembled
natural corneal tissue [75]. The implantation in a porcine corneal organ demonstrated an
interaction with the host tissue and possible hASC migration [75].

3.2. Printing of In Vitro Models for Drug Development

The efficacy of personalized medicine is largely governed by the efficacy of the drug-
development process, defined as the process through which potential drugs are identified,
assessed, and optimized, prior to clinical trials [81]. Recent papers have explored the appli-
cation of bioprinting technologies for drug development, especially in the development
of 3D human cell organoids, organ-on-a-chip, and 3D-printed human cell assays. The
development of such anatomically relevant 3D-bioprinted models for various tissues and
disease states emphasizes the current status and future potential of bioprinting technologies
in advancing drug development and resolving a key challenge in personalized medicine.

The primary contribution of bioprinting to drug development in personalized medicine
has been through the development of more physiologically relevant models, which can
expedite the drug development process, improve model reproducibility, and facilitate
model customization. In comparison to conventional 2D models, 3D models have better
capabilities for modeling cell–cell/matrix interactions and the spatial distributions of cells,
thus improving the in vitro and in vivo correlations in clinical drug trials [82]. Based on
this increased physiological accuracy, 3D-bioprinted models have been predicted to reduce
resource demands and time intensity, as compared to the approximately USD 2.6 billion
and 15 years required by current models and drug development systems to introduce a new
drug to the market [83]. Furthermore, the bioprinting process provides significant control
in the development of models (e.g., organoids) and, thus, is likely to improve model repro-
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ducibility and customizability in personalized medicine. This section highlights examples
of 3D-bioprinted cardiac tissue and liver constructs and glioblastoma models.

3.2.1. Cardiovascular Models for Drug Development

Cardiovascular diseases represent the leading cause of death in the United States, and
cardiovascular drugs have clinical trial failure rates as high as 80%, which has established
cardiovascular drug development and discovery as a key area for advancement [19,20].
This high failure/market-retraction rate has been attributed to the lack of physiologically
natural 3D micro-environments in the cell cultures used to evaluate cardiotoxicity, as well
as to the disproportionate effects of these drugs on various populations (e.g., ethnicities,
the elderly, etc.) [82,84]. Therefore, representative and personalized biomimetic screening
platforms for cardiovascular drugs are urgently needed for advances in 3D bioprinting. Lind
et al. introduced multi-material inkjet 3D-bioprinting to advance existing microphysiological
systems, such as organs-on-chips, by condensing the multi-step lithographic development
of these systems into a single manufacturing step (Figure 6a). [85]. The authors of this study
developed multiple functional bio-inks based on factors, such as piezoresistance, to construct
micro-architectures that directed the self-assembly of laminar rat-derived cardiac tissues [85].
Researchers have similarly integrated non-invasive contractile stress sensors that enabled the
electronic communication of contractile stress data and eliminated the laborious microscopy-
focused designs involved in optical data communication, allowing data acquisition in cell-
incubator environments [85]. Researchers observed that a 3D-bioprinted microphysiological
device demonstrated inotropic responses to verapamil (L-type calcium channel blocker, which
were similar to data from isolated whole postnatal rat hearts, demonstrating the model’s
potential as a drug development platform [85]. The results of these preliminary studies and the
continuous refinement of these engineered cardiac tissues point to bioprinting as a promising
technology to advance personalized medicine.
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cardiac tissue model design with stress sensors (scale bars are 10 mm) and verapamil and isoproterenol
dose-response plots below. Adapted with permission from [85]. 2016, Nature Publishing Group.
(b) DLP-bioprinted hepatic model on left, fluorescence and bright field images of 3D-printed construct
on top-right, and CYP induction plots on lower-right with asterisks indicating statistical significance
with threshold of p < 0.05 (scale bars are 500 mm). Adapted with permission from [86]. 2015, S. Chen.
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3.2.2. Liver Models for Drug Development

Liver models are especially relevant for drug development since drug responses
can vary between individuals, and drug-induced liver injury is one of the most common
causes for discontinuing clinical trials [82]. Furthermore, conventional human models
are often costly and unreliable in terms of their translation to human studies due to
differences in the hepatocellular functions of different species [87–89]. A recent study
applied DLP technology to produce an in vitro 3D model of human-induced pluripotent
stem-cell derived hepatic progenitor cells (hiPSC-HPCs) and nonparenchymal cells with
micro-scale resolution (Figure 6b) [86]. The authors observed that the 3D-bioprinted
triculture model demonstrated an increase in the anabolic and catabolic functions of the
hiPSC-HPCs and key cytochrome P450 enzyme expression levels, as well as an improved
drug induction/metabolism potential, as compared to conventional 2D-monolayer and 3D
single-culture (HPC only) models [86]. This in vitro hepatic model and its facilitation of the
hiPSC-derived hepatic cell maturation and functional maintenance in a biomimetic micro-
environment signaled the significant potential for patient-specific drug development [86].

3.2.3. Kidney Models for Drug Development

Traditionally, 2D cell cultures used to assess nephrotoxicity in drug development have
been unable to accommodate the 3D micro-environment of the adult human kidney, thus
directing attention to the development of 3D models for the in vitro study of the organ, as
well as for drug development and nephrotoxicity screening [90]. While bioprinted renal
constructs have been challenged by the selection of appropriate cells and materials for
bio-inks and by the development of complex renal structures, bio-inks such as a kidney-
derived extracellular matrix and gelatin-fibrin hydrogels have demonstrated significant
potential in recreating the in vivo kidney micro-environment [90]. Pluripotent stem-cell-
derived renal progenitors have likewise been used to construct rudimentary multicellular
structures, similar to those in vivo [91]. For example, Lawlor et al. utilized extrusion-based
3D bioprinting to deliver the rapid, high-throughput generation of kidney organoids with
improved reproducibility and viability [68]. These organoids rivaled the morphology,
the component cell-type, and the gene expression of organoids produced manually [68].
The automatic bioprinting of iPSCs into a 96-well-plate platform with a high number of
viable and reproducibly patterned organoids was similarly assessed for high-throughput,
drug-induced nephrotoxicity testing [68]. The authors treated the organoids with a series
of nephrotoxic aminoglycosides and observed a concentration-dependent decrease in cell
viability, which was consistent with observations of kidney injury in patients treated with
aminoglycoside therapy (Figure 7a) [68]. The authors ultimately concluded that bioprinting
was a feasible strategy for drug-testing in kidneys [68].

3.2.4. Brain Models for Drug Development

Multiple groups have similarly applied 3D bioprinting to develop disease models
to assay potential drugs. A recent study utilized DLP to develop an in vitro biomimetic
tissue model for the glioblastoma tissue and micro-environment and to simulate immune
interactions in the neural environment (Figure 7b). [92]. The authors identified that their
bioprinted constructs with integrated macrophages were highly similar to patient-derived
transcriptional profiles that were predictive of patient survival and the maintenance of
stemness, invasion, and drug resistance [92]. Furthermore, the authors compared the gene
expression data from the 3D tetra-culture model with the gene expression and drug sensi-
tivity data from the Cancer Cell Line Encyclopedia and the Cancer Therapeutic Response
Platform to derive predictions of drug sensitivity and resistance in the bioprinted construct
based on its transcriptional signatures [92]. While these models were unable to completely
recreate the disease state, more current models have been highly promising [92].
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Adapted from [92]. 2020, Nature Publishing Group. 
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Figure 7. Bioprinted kidney and glioblastoma models for drug development. (a) Application of 96-
well bioprinted organoids for testing viability in response to aminoglycoside antibiotics. The curves
represent a non-linear fit for each compound, with n = 19 (amikacin), n = 24 (tobramycin), n = 30
(gentamycin), n = 30 (neomycin), n = 22 (streptomycin). Adapted from [68]. 2020, Nature Publishing
Group. (b) Development of 3D glioblastoma model involving glioblastoma stem cells (GSCs),
macrophages, astrocytes, and neural stem cells (NSCs) on left, methodology of evaluating drug
sensitivity based on 3D tetra-culture gene expression signature from Cancer Cell Line Encyclopedia
(CCLE) and the Cancer Therapeutic Response Platform (CTRP) datasets in middle, therapeutic
efficacy prediction of drugs in CTRP dataset cancer cells using differentially expressed genes (as
determined by RNA-sequencing) between 3D tetra-culture model and GSCs grown in sphere culture.
Adapted from [92]. 2020, Nature Publishing Group.

Preliminary studies indicated a significant potential for 3D bioprinting to advance
personalized medicine. However, current constructs have been limited by the need for
appropriate and accurate bio-ink materials and by the lack of consistency in differentiation
and maturation protocols for induced pluripotent stem cells [24]. Furthermore, while a bio-
printing resolution of nearly 200 µm has been achieved and demonstrated to be suitable for
blood vessel models and organoids, higher printing resolution is required to produce fine
capillary networks [32]. The density–viability–resolution trilemma has acknowledged the
difficulty of producing a 3D-bioprinted structure that has a high cellular density (≥20 mil-
lion cell/mL), a high cell viability (≥80%), and a high fabrication resolution (≤50 µm),
simultaneously [93]. As 3D bioprinting advances in these sectors (as it undoubtedly will,
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given the field’s rapid progress and current attention), this novel technology could improve
its capacity to model human tissues and advance personalized medicine.

4. Conclusions

Bioprinting enables the fabrication of tissue-like 3D constructs with tissue-level in-
tegrity by patterning living cells and biocompatible materials in a well-defined, layer-by-
layer manner. There is no one-size-fits -all technique or material for bioprinting currently.
The most impactful techniques have included inkjet printing, extrusion printing, laser-
assisted printing, and stereolithography. The predominant materials have included natural
(e.g., collagen) and synthetic (e.g., PEG) hydrogels.

Bioprinting stem cells is a promising method for personalized tissue regeneration.
Most studies have been able to print hiPSCs or hiPSC-derived cells with high viability,
differentiation, and proliferation, as well as subsequent tissue constructs with certain
functionalities at the tissue level. Despite its promising future, bioprinting tissue has
several key challenges to solve before it can be further evolved for regenerative implants.
For example, it is still difficult to directly print small tissues (e.g., capillary vessel, 8–10 µm
in diameter). Therefore, to fully reconstruct the cellular micro-environment, bioprinting
techniques with higher resolution and better structural integrity need to be developed
in order to maintain highly detailed, microscopic features during printing. In addition,
while the short-term integration and vascularization were demonstrated in the preliminary
in vivo studies on implantation, the long-term immunogenicity, integration, and maturation
of implanted bioprinted tissues has yet to be determined. As allogeneic transplants often
cause graft-versus-host disease (GvHD), we suspect there is a demand to comprehensively
understand the host-immune response to the bioprinted grafts in future preclinical and
clinical trials.

In addition to the in vivo applications, multiple groups have similarly developed
3D-bioprinted models to recreate natural tissue activity in vitro to expedite drug develop-
ment. Such efforts have attracted significant attention from the pharmaceutical industry
and regulatory agencies (i.e., FDA). Indeed, in early 2023, the FDA lifted the mandatory
requirement of animal studies before human trials in the drug discovery pipeline. This
reveals the immense potential for bioprinting-mediated in vitro drug development. With
more research into reproducibility, quality control, and automation, we predict that bio-
printing can be standardized for next-generation preclinical drug testing in the near future.
It may also be possible to fluidically or physically connect bioprinted tissues to simulate
body-level drug responses.

In conclusion, after two decades of development, 3D bioprinting has become a pow-
erful yet versatile technique to generate tissue-like 3D constructs. With further technical
development and additional biological validation, 3D bioprinting has the potential to
transform the design of next-generation personalized medicine.
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