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Abstract: Asthma in elderly populations is an increasing health problem that is accompanied by
diminished lung function and frequent exacerbations. As potent anti-inflammatory drugs, corticos-
teroids are commonly used to reduce lung inflammation, improve lung function, and manage disease
symptoms in asthma. Although effective for most individuals, older patients are more insensitive to
corticosteroids, making it difficult to manage asthma in this population. With the number of indi-
viduals older than 65 continuing to increase, it is important to understand the distinct mechanisms
that promote corticosteroid insensitivity in the aging lung. In this review, we discuss corticosteroid
insensitivity in asthma with an emphasis on mechanisms that contribute to persistent inflammation
and diminished lung function in older individuals.
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1. Introduction

Aging is a natural process that is accompanied by changes to lung function and im-
munity, influencing lung disease susceptibility and progression [1]. In healthy individuals,
lung function peaks around 25–30 years of age and then naturally declines [2]. This can be
exacerbated by environmental exposures and comorbidities such as smoking, obesity, and
diabetes [3]. Aged populations have an increased risk of developing chronic lung diseases,
such as COPD and pulmonary fibrosis, and greater risk of death from infection [1]. As the
number of individuals older than 65 years continues to increase in the United States and
throughout the world, there is a pressing need to understand underlying mechanisms that
mediate chronic lung diseases in aged populations.

As a reversible obstructive airway disease, asthma is characterized by chronic airway
inflammation, airway thickening and remodeling that leads to airway narrowing and
airflow obstruction. Structural changes to the airway diminish lung function and are largely
irreversible despite standard of care anti-inflammatory and bronchodilator treatments [4].
The rates of asthma within aged populations are increasing, with more than 8% of people
with asthma being older than 65 [5]. These increases include individuals who develop
asthma early in life (early-onset asthma) and those who develop asthma as adults (late-
onset asthma) [5]. Asthma symptoms in aged populations are difficult to manage due to
factors that influence asthma pathogenesis and severity in older individuals including lung
function decline, environmental exposures, and altered immunity [6,7]. Asthma diagnosis
in older populations is further complicated by comorbidities, such as obesity and smoking,
that confound asthma diagnosis and treatment.

Asthma pathogenesis involves complex innate and adaptive immune pathways that
promote inflammation and may influence responsiveness to corticosteroids. Type 2 in-
flammation is commonly found to have increased T helper (Th) 2 effector cytokine levels
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(IL-4, IL-5, and IL-13) and eosinophil lung infiltration. The importance of type 2 inflam-
mation in asthma is highlighted by the effectiveness of biologic therapies that target and
inhibit IL-4 and IL-5 signaling pathways. Biologics, such as dupilumab (anti-IL4Rα) and
mepolizumab (anti-IL-5), improve lung function and reduce exacerbation frequency in
patients with asthma [8]. Asthma endotypes with increased type 1 or 17 inflammation
have increased neutrophil infiltration and are mediated by effector cytokines, namely IFNγ

and IL-17A, respectively. Recent studies show the presence of type 1 and 17 inflammation,
characterized by increased neutrophils and IL-17A and IFNγ levels, are more common in
older individuals with asthma [9]. These inflammatory endotypes in asthma are associated
with corticosteroid insensitivity, poor symptom control, and greater asthma severity [10,11].

Although anti-type 2 biologics are safe and effective for individuals 65 and older with
asthma [12,13], they are restricted to older patients with a predominant type 2 eosinophilic
endotype. Additionally, those with increased type 1 and/or type 17 inflammation are
unlikely to benefit from type 2 biologics, potentially making it more difficult to treat asthma
in elderly populations [14]. Given the increasing aging population and limited therapeutic
options, it is important to understand mechanisms that mediate asthma in the elderly. In
this review, we discuss the current understanding of asthma pathogenesis in the context of
aging with particular emphasis on mechanisms that may promote persistent inflammation
and corticosteroid insensitivity.

2. Glucocorticoid Receptor Signaling and Hormones in the Aging

Corticosteroids inhibit inflammation through binding the glucocorticoid receptor
(GR) and reduce pro-inflammatory pathway activation in immune and airway structural
cells [15]. Upon ligand binding, GR translocates to the nucleus where it interacts with
and binds DNA. GR enhances anti-inflammatory gene expression while also repressing
pro-inflammatory transcriptional programs that regulate inflammation [15]. In asthma,
corticosteroid insensitivity involves impaired GR signaling with increased GRβ expres-
sion, reduced GR nuclear translation, altered GR phosphorylation and DNA binding
activity [16–19]. Little is known about how GR expression and activity changes with age.
In the brain, studies in aged rodents have shown reduced GR expression levels in hip-
pocampal regions [20], but it is unclear whether aging leads to reduced GR expression in
the lung. In regard to aging and GR activity, one study in peripheral blood mononuclear
cells reported reduced corticosteroid–GR binding affinity in cells isolated from patients
55–64 years old with severe asthma [21]. Inflammation is known to reduce corticosteroid–
GR binding affinity in asthma [22], suggesting aging could affect steroid sensitivity by
reducing GR expression or DNA binding activity in asthma.

Aging also has an impact on endogenous cortisol production, which can influence
lung immunity and inflammatory responses. Cortisol is a circulating stress hormone that is
secreted by adrenal glands and whose levels are tightly regulated [23]. The suprachiasmatic
nucleus (SCN), which regulates the circadian clock, allows the release of adrenocorti-
cotropin (ACTH) from the pituitary gland and ACTH stimulates the release of glucocorti-
coids from adrenal glands via the hypothalamic–corticotropic–adrenal (HPA) axis [24]. Free
cortisol levels can affect metabolism and immune function in the lung [25,26]. Although
old age is associated with increased free cortisol levels, it has been shown that cortisol
levels are lower in children with asthma, contributing to increased inflammation and exac-
erbations [26,27]. These effects may be due to prolonged corticosteroid use which is known
to reduce cortisol levels [28,29].

Dehydroepiandrosterone (DHEA) and DHEA sulfate (DHEAS) are also important
circulating steroid hormones whose levels are inversely related to age [30]. DHEA and
DHEAS are converted into androgens by 3β-hydroxysteroid dehydrogenase-1 (3β-HSD1).
One study showed that DHEA supplementation reduces house dust mite-induced Th2
inflammation in mice [31]. Similarly, Dashtaki et al. found that DHEA reduced proliferation
of rat tracheal smooth muscle stimulated with PDGF and inhibited AP-1 binding activity.
These studies suggest that DHEA can suppress allergic airway inflammation [32]. Andro-
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gens activate androgen receptors and have recently been shown to have anti-inflammatory
effects in asthma [33–35]. Recent studies in a severe asthma cohort found that asthma
patients with a permissive 3β-HSD1 genotype that enables greater DHEA conversion into
androgens was associated with better lung function and corticosteroid sensitivity [36].
These studies highlight the impact of adrenal hormones on inflammation and corticosteroid
sensitivity in asthma, yet this has not been explored in aged populations. With the known
impact of aging and corticosteroid treatment on adrenal hormones, such as cortisol and
DHEA, it is important to consider how they change with age and may impact asthma
management in elderly populations.

3. Asthma in the Elderly Pathogenesis
3.1. Airway Inflammation

Recent studies have identified distinct immune cell compositions in elderly popu-
lations that are associated with corticosteroid insensitivity and more severe asthma phe-
notypes. It has been shown that elderly asthmatics have greater sputum neutrophil and
eosinophil levels than younger adults with asthma [37]. Elderly people with asthma also
exhibit greater sputum cytokines levels, including IL-6 and IL-1β, which were both asso-
ciated with increased likelihood of hospitalization due to asthma [37]. In a similar study,
sputum neutrophils were greater than eosinophils in total cell number and percentage
in elderly asthmatics [9]. This elderly asthma cohort also had increased IFNγ and IL-17
levels in sputum, while levels of type 2 markers, IgE and FeNO, were lower than those in
younger asthma patients. The neutrophil/Th17 phenotype has been shown to be correlated
with increased age and inhaled corticosteroid (ICS) dose, suggesting an impact on asthma
severity in the elderly [38]. Together, these studies show elderly individuals with asthma
may have an inflammatory profile that is distinct from younger individuals with asthma
and may be less likely to respond to current corticosteroid and biologic treatments.

Studies in aged allergen-challenged rodents exhibit airway inflammation that is sim-
ilar to that in aged humans with asthma. In response to ovalbumin or house dust mite
sensitization, older mice exhibit an inflammatory milieu in the lung that is distinct from
that in younger mice [39–42]. Studies show that eosinophil and neutrophil airway in-
filtration are greater in allergen-challenged aged mice, which is accompanied by more
pro-inflammatory cytokine levels and IgE production [39,40]. Notably, studies show that
aged mice have greater type 1 and 17 inflammation than young mice, exhibiting increased
CD4+ Th1 and Th17 cells in the lung and spleen, and increased IFNγ and IL-17A expression
levels [39,41]. The reason for enhanced Th1 and Th17 inflammation in aging and asthma
remains unclear. The Th17 immune response is important for host defense at the mucosal
interface [43]. In the intestinal mucosa, it has been shown that IL-17A is important for the
clearance of bacterial infection [44]; thus, changes to the local environment due to reduced
mucociliary clearance functions in the aged lung may play a role and lead to persistent
airway inflammation. These studies implicate neutrophils as a potential contributor to
airway inflammation in aging and highlight the relevance of aging rodent models to further
interrogate underlying mechanisms.

Immune cells and their effector functions can be impacted by aging. Aged neutrophils
are more hyperactive than younger neutrophils by exhibiting an increase in neutrophil
extracellular trap release (NETosis) and higher integrin expression to aid in migration [45].
They also exhibit upregulation in several pro-inflammatory pathways, including NFκB and
MAPK signaling, and cell death which is comparable to neutrophils activated by TNFα [45].
These findings raise the idea that enhanced neutrophil activation could underlie why the
elderly asthmatic milieu has increased neutrophilia [46,47]. Conversely, aged asthmatic
eosinophils are similar in number and presence of eosinophil-derived neurotoxin (EDN)
compared to younger asthmatics. However, aged asthmatic eosinophils released less EDN
upon stimulation than younger asthmatic eosinophils, thus suggesting decreased effector
activity in aged asthmatic eosinophils [48]. Within this same cohort, there was an increase
in sputum neutrophils in aged asthmatics but a decrease in sputum macrophages. These
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studies show the importance of better understanding the impact of age on not only the
presence of immune cell populations but also the impact of their effector functions.

3.2. Airway Structure and Function

Aging is accompanied by natural decline in lung function, with forced expiratory
volume (FEV1) peaking around 25–30 years of age [2]. Older individuals have diminished
ability to clear particles from the lung and have productive coughs [49,50]. Intercostal
muscle and diaphragm function are also decreased with increasing age due to the sarcopenic
characteristic of aged muscles [51]. Sarcopenia is used to describe muscles that have
decreased function and mass due to age. Chest expansion has also been found to be
inversely related to age [52]. A productive cough requires both a high FEV1 and high
contractile function of expiratory muscles. With the decrease of both of these functions
with age, the function of the mucociliary escalator also decreases, which could contribute
to increased risk of infection and alter the local immune environment [49].

It has been shown that aged human asthmatics have lower FEV1, higher BMIs, are
less likely to be atopic, and are more likely to have other comorbidities than younger
asthmatics. Elderly asthmatics are often prescribed higher doses of ICS compared to
younger asthmatics [53]. The need for increased ICS dosage is often required to limit
asthma symptoms and reduce exacerbation frequency [5,54]. It was also found that a
higher percentage of aged asthmatics are prescribed long-acting beta agonists and add-on
therapies such as leukotriene receptor antagonists than are younger asthmatics [37,53].
Aged asthmatics also exhibit decreased awareness of bronchoconstriction and recognition
of asthma symptoms, which could be a possible reason for the observed increase in asthma-
related deaths with age [55–57]. Although allergy decreases with age, the likelihood of
having controlled asthma decreases with age [53], suggesting inflammatory mechanisms
distinct from allergic responses contribute to asthma symptoms and exacerbations in the
aging lung.

Aging also impacts lung function and airway hyperresponsiveness (AHR) in asthma.
While asthma commonly affects conducting airways, airway dysfunction in elderly asth-
matics is more likely to also involve peripheral airways [58]. Using impulse oscillometry
(IOS), a forced oscillation technique that more accurately distinguishes the origin of lung
resistance between large airways and small airways, a recent study showed that elderly
asthmatics had significantly higher resistance in both large and small airways than younger
asthmatics [59]. Similar findings are observed in middle-aged 9-month-old mice, who had
greater airway inflammation and AHR in response to acute house dust mite challenge than
younger 3-month-old mice [60]. In regard to airway thickening and remodeling, airway
wall thickness is found to be decreased with age [61,62]; however, elderly asthmatics were
observed to have thicker airway walls compared to nonelderly asthmatics [59]. Addition-
ally, elderly asthmatics have higher sputum levels of pentosidine, a collagen cross-linker,
than younger asthmatics [63]. These findings implicate aging in changes to airway func-
tion and structure, particularly increased airway resistance and thickening, that can affect
asthma symptoms in elderly populations.

4. Aging-Related Mechanisms in Asthma
4.1. Cellular Senescence

Cellular senescence is defined by cell cycle arrest and plays a central role in aging-
related diseases [49]. While senescent cells have important roles in embryonic development
and homeostasis [50,51], they accumulate in aging and contribute to disease pathogen-
esis through secretion of inflammatory factors known as the senescence-associated se-
creted phenotype (SASP). Although cell- and tissue-specific, the SASP is composed of
pro-inflammatory and pro-fibrotic factors that include cytokines, chemokines, proteases,
and matrix metalloproteinases (MMPs), and extracellular matrix proteins [52]. Senescent
cells can also secrete exosomes and ectosomes that contain microRNA, DNA fragments,
chemokines, and other bioactive factors that enhance chronic inflammation [53]. In the
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context of lung diseases, targeting and eliminating senescent cells has been shown to re-
duce lung fibrosis in bleomycin-induced fibrosis in mice [54,55], suggesting senescence is a
targetable pathway to alleviate lung disease.

Airway smooth muscle (ASM) is important for maintaining airway tone and func-
tion [56]. In asthma, increased ASM hypercontractility, mass, hypertrophy, and extracellu-
lar matrix protein deposition contribute to airflow obstruction and asthma exacerbation.
Recent studies indicate that ASM is susceptible to aging-related mechanisms, notably
cellular senescence, that promote asthma pathogenesis. Oxidative stress induced by hy-
peroxia increases ASM senescence and induction of a specific SASP that has autocrine
and paracrine effects on the airway [57]. Increased senescence is also observed in asth-
matic bronchial fibroblasts, which exhibit lower DNA synthesis with cell passage and
in vitro lifespan than healthy controls [58]. Asthmatic ASM isolated from aged individuals
has increased expression levels of multiple senescence markers and pathways including
phospho-p53, p21, telomere-associated foci (TAF), as well as multiple SASP factors (PAI-1,
TNFα, MMP1, CCL2) [59]. In a similar study, human ASM from aged individuals had
greater intracellular Ca2+ response, fibronectin, and collagen III deposition than younger
human ASM [60]. These studies suggest aged ASM may have a greater capacity for SASP
production and hypercontractility that further promotes asthma pathogenesis. Despite
evidence of ASM dysfunction in the aging lung, it remains unknown how corticosteroids
may affect senescence-related pathways in ASM.

In addition to ASM, airway epithelial cells also play an important role in asthma [61]
and are affected adversely by aging. Aged primary human airway epithelial cell cultures
have reduced transepithelial resistance and altered gene expression of genes involved
in epithelial barrier integrity, with increased EPCAM and decreased TRPV4 expression
compared to younger cells [62]. Another protein important for airway epithelial adhesion
and barrier integrity, integrin β4 (ITGB4), has been recently implicated in aging and asthma.
Loss of ITGB4 in club cells in mice increases senescence in airway epithelial cells through
increased p53 pathway signaling [63]. Similarly, club cell-specific ITGB4 knockout mice
challenged with house dust mite develop greater airway thickening and remodeling with
more collagen deposition and mucous cell metaplasia [64]. Interestingly, treatment with the
corticosteroid dexamethasone reduced inflammation and remodeling in wild-type but not
club cell-specific ITGB4 knockout mice [64]. While the airway epithelial SASP is not defined
for asthma, recent studies reported altered WNT/β-Catenin signaling between bronchial
epithelium and fibroblasts that increased fibroblast senescence and airway remodeling [65].
These data suggest that aging may negatively impact the airway epithelium and disruption
to changes to adhesion and barrier integrity can promote senescence and persistent airway
remodeling in asthma.

Currently, there are very few studies that prove a clear connection between ag-
ing, senescence, and skewing to Th1 and Th17 inflammation. Studies in middle aged
(8–12-month-old) mice showed increased T helper cell skewing towards the Th1 phenotype
with observed increases in IFNγ in allergen-challenged mice [66]. This was further empha-
sized with a decrease in Th2 differentiation and effector IL-4 and IL-13 production, which
was attributed to decreased GATA-3 expression. In regard to corticosteroid sensitivity and
aging, Jaiswal et al. suggested that airway inflammation persists in aged mice treated
with corticosteroids, and further explore this relationship [39]. Upon house dust mite
challenge, dexamethasone decreased macrophage and IL-13 levels in 80–82-week-old mice
but neutrophil infiltration along with IL-17A, IFNγ, and IgE levels remained increased and
higher than those in 20–22-week-old mice. Aside from persistent airway inflammation, it
was also observed that aged mice had persistent airway remodeling that was not resolved
with the addition of dexamethasone. Aged mice challenged with house dust mite also
had increased p16+ senescent airway epithelial cells that produced SASP factors including
MMP10, MMP12 and TGFβ. Aged epithelial cells and dendritic cells also had increased
β-galactosidase+ cells, suggesting there is an increase in senescence. Through these studies,
it can be proposed that the SASP contributes to inducing skewing to Th1 and Th17 inflam-
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mation, leading to corticosteroid insensitivity (Figure 1). This reveals a possible connection
between the aging phenotype and the inflammatory phenotype of the aged asthmatic lung.
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Figure 1. Notable Inflammatory Mechanisms in the Aged Asthmatic Lung. The aged asthmatic
airway has persistent airway inflammation that includes increased senescent epithelial and airway
smooth muscle (ASM) cells, which secrete pro-inflammatory and pro-fibrotic factors that contribute
to airway inflammation. The senescence-associated secretory phenotype (SASP) can include IL-1β,
IL-6, IL-8, TNFα, matrix metalloproteinases, and extracellular matrix proteins such as fibronectin and
collagen. Among these inflammatory mediators are cytokines that are known to promote T helper
(Th) 1 and Th17 cell differentiation and effector functions which can promote neutrophil infiltration
and activation. Figure was created using BioRender.com accessed on 7 March 2023.

4.2. CD38 and NAD+ Metabolism

Cluster of differentiation 38 (CD38) is a glycoprotein that is expressed by ASM
in addition to other cells, including epithelial cells, dendritic cells, T and B cells, and
macrophages [67]. CD38 expression and activity has also been shown to increase with age
and is implicated in aging-related diseases [68,69]. CD38 cyclase activity converts nicoti-
namide adenine dinucleotide (NAD+) into cyclic adenosine diphosphate ribose (cADPR), a
calcium-signaling second messenger which is essential for ASM contraction (Figure 2) [70].
CD38 is the main consumer of NAD+, which coincides with the intuitive decrease in NAD+

levels with age [69]. In the context of asthma, CD38 promotes ASM hypercontractility and
AHR [70]. Notably, CD38 expression induced by type 1 pro-inflammatory cytokines, TNFα
and IFNγ, in human ASM is insensitive to corticosteroids [71,72]. Upon acute allergen chal-
lenge, adult CD38 knockout mice have decreased airway hyperresponsiveness compared
to allergen-challenged wild-type mice [73–76]. Recent studies by Cui et al. found increased
CD38 expression in idiopathic pulmonary fibrosis lungs and an important role for alveolar
epithelial cell CD38 in a bleomycin lung fibrosis aged mouse model [77]. Increased CD38
expression corresponded with reduced NAD+ levels. With this, it can be speculated that
increased CD38 expression and activity can further augment the aged asthmatic pheno-
type. However, there is still a need to study the role of CD38 in the context of aging and
corticosteroid insensitivity in asthma.

The impact of CD38 metabolism on NAD+ also has an impact on epigenetic and
transcriptional regulation in aging [69]. NAD+ is a master regulator of many metabolic
functions, including redox reactions, energy metabolism, and DNA repair [69]. One
example is Sirtuin 1 (SIRT1), which uses NAD+ as a substrate for its deacetylase activity
on histones and other target proteins. Increased CD38 activity and NAD+ metabolism
reduces SIRT1 deactylase activity (Figure 2). In the context of asthma, SIRT1 is thought
to play an anti-inflammatory role by regulating Th2 cell differentiation and inhibiting
pro-inflammatory pathways such as NFκB [78]. Additionally, SIRT1 expression levels and
activity have been found to be decreased in asthma and COPD patients [79,80]. Changes
in epigenetic regulation are very closely related to aging and often age-related epigenetic
changes lead to genomic instability [81]. The impact of CD38 on NAD+ metabolism and
sirtuins is an example of an aging-related mechanism that could contribute to airway
inflammation in asthma (Figure 2). It will be important to continue to identify metabolic
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and inflammatory mechanisms that contribute to highlighting asthma pathophysiology in
elderly populations.
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nicotinamide adenine dinucleotide (NAD+) to convert it to cyclic adenosine diphosphate ribose
(cADPR) which is used intracellularly to induce calcium (Ca2+) release from the sarcoplasmic reticu-
lum, which allows the contraction of airway smooth muscle (ASM). Sirtuin 1 (SIRT1) inhibits NFκB
activation; however, this consumption of NAD+, the SIRT1 cofactor, limits SIRT1 deacetylase activity,
which allows the production of pro-inflammatory mediators via NFκB activation. Figure was created
using BioRender.com accessed on 20 March 2023.

5. Factors and Comorbidities That May Influence Asthma in the Elderly

Aged asthmatics are more likely to have comorbidities than younger asthmatics, which
often complicates asthma diagnosis and disease management [82]. These comorbidities
can include cardiovascular disease, obesity, and chronic obstructive pulmonary disease
(COPD) [83]. Asthma patients with more than one comorbidity are more likely to have
difficult-to-treat asthma, suggesting an influence of aging-related comorbidities on asthma
severity [84]. One study specifically found ischemic heart disease, but not stroke, was
positively correlated with older asthmatics but not younger asthmatics [85]. Additionally,
it has been observed that those with persistent asthma have an increased cardiovascular
disease risk compared to those with intermittent asthma [86].

Obesity is another comorbidity that is associated with corticosteroid insensitivity
and poor control of asthma symptoms [87,88]. Asthma patients with obesity present with
a distinct inflammatory endotype that includes increased IL-6, Th17 inflammation, and
neutrophil infiltration [88–90]. Lung function is also worsened by obesity with increased air-
flow obstruction and airway hyperresponsiveness [91,92]. Studies in human ASM isolated
from obese individuals exhibit greater intracellular Ca2+ and contractile responses that
are attributed to increased myosin light chain phosphorylation and ASM shortening [93].
Metabolic dysfunction is another important factor that could affect asthma. Metabolic
dysfunction and insulin resistance can be caused by obesity and were recently found to
be associated with worsened lung function in a severe asthma cohort [94]. Severe asthma
patients with insulin resistance had increased blood neutrophil levels and were poor re-
sponders to corticosteroids and β-agonists [94]. Mice fed a high-fat diet for several weeks
develop metabolic dysfunction and AHR [95]. In addition to impaired lung function, these
mice exhibit increased IL-17A levels that were dependent upon innate lymphoid type 3
cells and inflammasome activation in macrophages [95]. These studies suggest obesity can
induce nonallergic airway inflammation that is mediated by innate immune responses.
Although similar pathways are observed in elderly patients with asthma, additional studies
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in aged mice are required to identify nonallergic inflammatory mechanisms that promote
asthma symptoms.

As a leading risk factor for COPD, cigarette smoke induces oxidative stress and lung
inflammation that includes Th17 inflammation and senescence [96,97]. Smoking history
is common in elderly individuals with asthma, making it an important influencing factor
in asthma pathogenesis [9]. Asthma–COPD overlap (ACO), a syndrome with persistent
airflow obstruction and distinct clinical presentation, is an additional consideration that may
be important to understanding asthma in aging populations [98,99]. These patients tend to
be older, have a >10 pack-year smoking history, and require use of inhaled corticosteroids at
relatively high doses, suggesting corticosteroid insensitivity [99]. In a new mouse model of
ACO, female mice were exposed to house dust mite and cigarette smoke for 11 weeks [100].
ACO mice had increased immune cell infiltration, with eosinophils and neutrophils, and
AHR. Interestingly, cigarette smoke did not cause house dust mite-induced allergic airway
inflammation as evidenced by the absence of an increase in serum IgE levels, suggesting
an impaired allergen sensitization response. RNA-seq analysis of airway and parenchyma
tissue identified a transcriptional profile that was unique to combined cigarette smoke and
house dust mite exposure. While treatment with dexamethasone was largely ineffective,
inhibition of the transcription factor SPI1 Proto-oncogene led to reduced collagen deposition
and AHR in ACO mice [100]. While these studies were not performed in aged mice, they
do suggest a potentially unique interaction between allergic airway inflammation and
cigarette smoke exposure that may affect asthma in aged populations.

Given the complex biology in the aging lung and throughout the body, it will be
important to consider how additional factors and comorbidities, such as sex hormones,
impact asthma in aged populations. In addition to cortisol and DHEA, the levels of sex
hormones, such as estrogen and testosterone, change with age and undoubtedly impact
the development of late-onset asthma [101,102]. In a recent meta-analysis, it was shown
that the proportion of adult females categorized as having late-onset asthma was higher
than that of adult males [103]. This increased prevalence can be attributed to cyclical
changes in estrogens, which regulate immune cell function and airway structural cell
function [102,104]. However, the influence of sex hormones on corticosteroid sensitivity in
the context of asthma in the elderly has yet to be explored.

6. Conclusions

The corticosteroid-insensitive, aged asthmatic phenotype has been well characterized,
with high Th17-associated inflammation and neutrophilia along with reduced lung func-
tion [5,9]. Yet little is known about the underlying mechanisms that lead to the persistence
of this potentially distinct phenotype despite corticosteroid treatment. Here, Th17 inflam-
mation, cellular senescence, and aging-related changes to NAD+ metabolism appear to
have important roles (Table 1), but there are likely additional mechanisms involved. Some
unanswered questions include the following: (1) Why does the inflammatory response
skew towards Th17 inflammation?; (2) What additional cellular mechanisms contribute to
dysfunction in airway structural cells?; and (3) Can alternative anti-inflammatory strategies
be developed to improve corticosteroid sensitivity? Our review highlights opportunities
for leveraging age-appropriate mouse models and primary lung cell models to study
aging-related mechanisms in asthma to further address these important questions.

Although the clinical presentation and characterization of elderly asthma has increased
in recent years [5,9,37], there is still a wide knowledge gap in understanding the underlying
mechanisms related to asthma in older individuals. Persistent inflammation and corticos-
teroid insensitivity among inflammatory pathways in immune and airway structural cells
may be a defining feature in asthma in the elderly. Understanding the unique manifestation
of elderly asthma can aid physicians in more effectively managing asthma and could lead
to better therapeutic options. For additional insight into asthma management in elderly
populations, we refer the reader to recent articles [105–107]. With the aging population
continuing to increase, research efforts to understand asthma in the elderly and improve
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corticosteroid sensitivity remain important and need to be addressed by basic, translational,
and clinical research.

Table 1. Mechanisms of Asthma in the Elderly.

Mechanisms Characteristics References

Hormone Production
• Decreased Free Cortisol
• Decreased DHEA [25–29]

Immune Cell Infiltration

• Type 1/17 Inflammation
• Increased Neutrophil Infiltration
• Increased Neutrophil Activity
• Decreased Eosinophil

Degranulation

[38,45,48]

Lung Function

• Decreased FEV1
• Increased AHR
• Increased Collagen Deposition

[82,108,109]

Cellular Senescence

• Increased SASP factors (MMPs,
TNFα, CCL2) in Airway Smooth
Muscle and Epithelium

• Reduced ITGB4 expression
[39,52,59,63,64]

NAD+ Metabolism

• Decreased NAD+ Levels
• Increased CD38 Expression
• Decreased SIRT1 Levels

[68,69,79,80]
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