
Citation: Errafii, K.; Boujraf, S.;

Chikri, M. Transcriptomic Analysis

from Normal Glucose Tolerance to

T2D of Obese Individuals Using

Bioinformatic Tools. Int. J. Mol. Sci.

2023, 24, 6337. https://doi.org/

10.3390/ijms24076337

Academic Editor: Jui-Hung Yen

Received: 6 January 2023

Revised: 23 February 2023

Accepted: 7 March 2023

Published: 28 March 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

 International Journal of 

Molecular Sciences

Article

Transcriptomic Analysis from Normal Glucose Tolerance to
T2D of Obese Individuals Using Bioinformatic Tools
Khaoula Errafii 1,2,3, Said Boujraf 1,2 and Mohamed Chikri 1,2,4,*

1 Clinical Neurosciences Laboratory, Faculty of Medicine and Pharmacy, Sidi Mohammad Ben Abdullah
University, Fez 30000, Morocco

2 Biochemistry and Molecular Biology Laboratory, Faculty of Medicine and Pharmacy, Sidi Mohammad
Ben Abdullah University, Fez 30000, Morocco

3 African Genome Center, Mohamed IV Polytechnic University, Benguerir 43151, Morocco
4 Inserm Unite CNRS, Lille University UMR 1283-8199, F-59000 Lille, France
* Correspondence: mohamed.chikri@usmba.ac.ma

Abstract: Understanding the role of white adipose tissue (WAT) in the occurrence and progression of
metabolic syndrome is of considerable interest; among the metabolic syndromes are obesity and type
2 diabetes (T2D). Insulin resistance is a key factor in the development of T2D. When the target cells
become resistant to insulin, the pancreas responds by producing more insulin to try to lower blood
glucose. Over time, this can lead to a state of hyperinsulinemia (high levels of insulin in the blood),
which can further exacerbate insulin resistance and contribute to the development of T2D. In order to
understand the difference between healthy and unhealthy obese individuals, we have used published
transcriptomic profiling to compare differences between the WAT obtained from obese diabetics and
subjects who are obese with normal glucose tolerance and insulin resistance. The identification of
aberrantly expressed messenger RNA (mRNA) and the resulting molecular interactions and signaling
networks is essential for a better understanding of the progression from normal glucose-tolerant
obese individuals to obese diabetics. Computational analyses using Ingenuity Pathway Analysis
(IPA) identified multiple activated signaling networks in obesity progression from insulin-resistant
and normal glucose-tolerant (IR-NGT) individuals to those with T2D. The pathways affected are:
Tumor Necrosis Factor (TNF), Extracellular signal-Regulated protein Kinase 1/2 ERK1/2, Interleukin
1 A (IL1A), Protein kinase C (Pkcs), Convertase C5, Vascular endothelial growth factor (Vegf), REL-
associated protein (RELA), Interleukin1/1 B (IL1/1B), Triggering receptor expressed on myeloid cells
(TREM1) and Nuclear factor KB1 (NFKB1) networks, while functional annotation highlighted Liver
X Receptor (LXR) activation, phagosome formation, tumor microenvironment pathway, LPS/IL-1
mediated inhibition of RXR function, TREM1 signaling and IL-6 signaling. Together, by conducting a
thorough bioinformatics study of protein-coding RNAs, prospective targets could be exploited to
clarify the molecular pathways underlying the development of obesity-related type 2 diabetes.

Keywords: T2D; obesity; insulin resistance; transcriptomics

1. Introduction

The worldwide obesity pandemic is driving a significant rise in the incidence of
metabolic diseases, such as T2D [1]. Obesity, T2D and insulin resistance are all well-known
to be closely linked [2]; diabetes brought on by insulin resistance is triggered by obesity [3].
As a result, it is critical to look at whether obesity is a causal risk factor for T2D in its
early stages. In obesity, the body’s adipose tissue secretes proinflammatory cytokines and
adipokines, which can impair insulin signaling and promote insulin resistance [4]. This
happens due to the activation of several signaling pathways, such as the JNK, IKKβ/NF-
κB and SOCS3 pathways, which inhibit insulin signaling and reduce glucose uptake by
muscle and adipose cells [5,6]. Furthermore, inflammation has been linked to both obesity
and insulin resistance [7]. Diet-induced obesity causes insulin resistance in mouse brown
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adipose tissue, according to a new study [8]. In mice, natural killer cells have been shown
to mediate the link between fat and insulin resistance [9]. Adipose tissue releases more
non-esterified fatty acids, glycerol, hormones and proinflammatory cytokines in obese
people, which may contribute to the emergence of insulin resistance [10]. The direction of
the driving connection between obesity and insulin resistance in humans, however, is yet
unknown. Hence the need to understand how obesity directly causes insulin resistance.

Adipose tissue is one of the most essential tissues contributing to obesity because
of its fundamental roles of lipogenesis (fat storage) and lipolysis (fat mobilization) [11].
The primary function of WAT is to store energy in the form of triglycerides and release
it when needed [12]. WAT also secretes several hormones and cytokines that regulate
energy metabolism, immune function and inflammation [13]. On the other hand, the
primary function of brown adipose tissue (BAT) is to generate heat through a process called
thermogenesis [14]. This process occurs in specialized organelles called mitochondria,
which contain a protein called uncoupling protein 1 (UCP1) that uncouples the electron
transport chain from ATP synthesis, resulting in the production of heat instead of ATP [15].
As a result, it is crucial to figure out how much this endocrine tissue plays a role in
insulin resistance and T2D. Insulin targets adipose tissue as one of its primary targets
besides muscle and liver [16]. In adipocytes, insulin efficiently inhibits triglyceride (TG)
breakdown and the release of free fatty acid (FFA) into circulation [17]. In obese people,
however, insulin’s suppressive effect on lipolysis is diminished [18]. Insulin resistance
in adipose tissue causes extra FFA to be released into circulation, resulting in increased
diacylglycerol (DAG) and triacylglycerol (TAG) production in muscle cells and hepatocytes,
culminating in ectopic fat deposition [19]. Consequently, DAG can activate protein kinase C
(PKC) in muscle and liver [20], inhibiting insulin signaling and promoting skeletal muscle
and liver insulin resistance, leading to systemic insulin resistance [21] and a variety of
metabolic disorders such as hyperglycemia, hypertension, dyslipidemia, non-alcoholic
fatty liver (NAFLD) and T2D [22]. Several studies revealed differentially expressed genes
(DEGs) associated to insulin resistance [23]. However, the difference in transcriptomic
progression and core pathways affected from normal glucose-tolerant obese individuals to
T2D obese individuals in WAT is still unclear.

The NCBI-Gene Expression Omnibus (GEO) is a public database that contains a high
quantity of gene expression data [24], including data from next-generation sequencing [25].
With the flood of gene data generated by high-throughput biology research, identifying and
analyzing differentially expressed genes (DEGs) is a crucial yet vast task. However, this
data may be analyzed using an integrated bioinformatics approach to find DEGs related to
certain human diseases.

For that purpose, we found recent GEO gene datasets from human adipose tissues
related to obesity and T2DM [26]. We examined the expression of genes in human WAT and
their relationship with obesity, insulin resistance and T2D to determine the possible path-
ways affected by dysregulated genes in human WAT and introduce a deeper comprehensive
analysis of the progression of the disease.

2. Results
2.1. Identification of DEGs in Obese IR-NGT and Obese T2D

The Sequence Read Archive (SRA) database was used to collect expression data for
lean individuals, obese individuals with IR-NGT, and obese patients with T2D. The CLC
Genomics Workbench 21 program was used to examine each Fastq file and determine the
DEGs, followed by a comparison of Gene Expression (GE) tracks of the datasets relating to
lean individuals and obese individuals with IR-NGT. The results of hierarchical clustering
indicated two distinct DEGs in the obese IR-NGT and obese T2D groups when compared
to lean subjects (Figure 1). Heat-map analyses of significant DEGs showed a progressive
change of gene expression from lean individuals to obese individuals with IR-NGT and to
obese individuals with T2D in WAT. The Venn diagram shows a total of 593 DEGs from
obese individuals with IR-NGT were extracted, which were then submitted to differential
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expression analysis (Figure 2 ), revealing 368 upregulated and 225 downregulated DEGs
(absolute(abs) fold change > 2, p-value ≥ 0.05; Table 1). In addition, a total of 1474 DEGs
from obese patients with T2D were extracted (Figure 2), which was then submitted to
differential expression analysis, revealing 1087 upregulated and 387 downregulated DEGs
(fold change abs value > 2, p-value ≥ 0.05; Table 2). Indeed, both obese groups showed a
similar pattern of DEGs when compared to lean individuals, but these changes were most
marked in obese individuals with T2D.
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Figure 1. Cluster analysis of most significant DEGs. The abscissa represents different samples n = 25;
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Table 1. Top 20 DEGs in obese insulin resistant—normal glucose tolerance.

Top Upregulated DEGs Obese IR-NGT Top Downregulated DEGs Obese IR-NGT

Name Log2 Fold
Change Description Name Log2 Fold

Change Description

RNF17 5.66 ring finger protein 17 DCD −7.77 dermcidin

CTAG2 4.83 cancer/testis antigen 2 MUCL1 −6.66 mucin-like 1

TBC1D3K 4.69 TBC1 domain family member
3K SCGB2A2 −6.66 secretoglobin family 2A

member 2

TBC1D3E 4.13 TBC1 domain family member
3E SCGB1D2 −6.19 secretoglobin family 1D

member 2

DEUP1 3.95 deuterosome assembly protein 1 MSLN −5.09 mesothelin

TMEM215 3.77 transmembrane protein 215 BORCS7-
ASMT −4.76

BORCS7-ASMT
readthrough (NMD

candidate)

CEACAM20 3.66 CEA cell adhesion molecule 20 NTSR2 −4.66 neurotensin receptor 2

C2orf83 3.42 chromosome 2 open reading
frame 83 CA6 −4.66 carbonic anhydrase 6

DPYSL4 3.37 dihydropyrimidinase-like 4 EEF1E1-
BLOC1S5 −4.08

EEF1E1-BLOC1S5
readthrough (NMD

candidate)

ZNF723 3.24 zinc finger protein 723 ZPBP −3.78 zona pellucida binding
protein

PMCH 3.23 pro-melanin concentrating
hormone ABHD16B −3.57 abhydrolase domain

containing 16B

RPP21 3.2 ribonuclease P/MRP subunit
p21 GABRR3 −3.53

gamma-aminobutyric acid
type A receptor subunit

rho3

TRIM39-
RPP21 3.15 TRIM39-RPP21 readthrough RASSF6 −3.38 Ras association domain

family member 6

COMP 3.14 cartilage oligomeric matrix
protein SPX −3.27 spexin hormone

HOXD10 3.07 homeobox D10 IQCA1L −3.24 IQ motif containing AAA
domain 1-like

CCDC54 3.06 coiled-coil domain containing
54 CYP1A2 −3.12 cytochrome P450 family 1

subfamily A member 2

Table 2. Top 20 DEGs in obese T2D.

Top Upregulated DEGs Obese T2D Top Downregulated DEGs Obese T2D

Name Log2 Fold
Change Description Name Log2 Fold

Change Description

HBG2 5.14 hemoglobin subunit gamma 2 TMEM52 −1.05 transmembrane protein 52

AC008763.3 5.04 alpha hemoglobin stabilizing
protein CFAP74 −2.84 cilia and flagella associated

protein 74

HBD 4.45 hemoglobin subunit delta GABRD −3.07 gamma-aminobutyric acid
type A receptor subunit delta

DEFA1B 4.1 defensin alpha 1B ARHGEF16 −1.26 Rho guanine nucleotide
exchange factor 16
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Table 2. Cont.

Top Upregulated DEGs Obese T2D Top Downregulated DEGs Obese T2D

Name Log2 Fold
Change Description Name Log2 Fold

Change Description

AC139530.2 4.07 5′-aminolevulinate synthase 2 TAS1R1 −1.11 taste 1 receptor member 1

ARMH2 3.8 armadillo-like helical domain
containing 2 CA6 −2.62 carbonic anhydrase 6

MAG 3.7 myelin-associated glycoprotein SLC25A34 −1.4 solute carrier family 25
member 34

TMEM215 3.62 transmembrane protein 215 CLCNKB −1.31 chloride voltage-gated
channel Kb

AC104389.6 3.62 prokineticin 2 PLA2G5 −1.05 phospholipase A2 group V

PTPRN 3.59 protein tyrosine phosphatase
receptor type N GRIK3 −1.53 glutamate ionotropic receptor

kainate type subunit 3

FAM72C 3.53 family with sequence similarity
72 member C GJA9 −1.87 gap junction protein alpha 9

POPDC3 3.53 popeye domain containing 3 NT5C1A −1.34 5′-nucleotidase, cytosolic IA

LCN1 3.53 lipocalin 1 HYI −1.12 hydroxypyruvate isomerase
(putative)

NPFF 3.53 neuropeptide FF-amide peptide
precursor AGBL4 −1.47 ATP/GTP binding

protein-like 4

HBA1 3.51 hemoglobin subunit alpha 2 ELAVL4 −1.25 ELAV-like RNA binding
protein 4

IZUMO3 3.48 IZUMO family member 3 CDKN2C −1.62 cyclin-dependent kinase
inhibitor 2C

LY6G6F 3.42 lymphocyte antigen 6 family
member G6F GLIS1 −1.41 GLIS family zinc finger 1

EGFL6 3.38 EGF-like domain multiple 6 FOXD3 −1.77 forkhead box D3

CAMP 3.37 cathelicidin antimicrobial
peptide TTLL7 −1.1 tubulin tyrosine ligase-like 7

HBB 3.37 hemoglobin subunit beta MCOLN3 −1.01 mucolipin TRP cation channel
3

AC034102.2 3.37 chromosome 2 open reading
frame 83 GBP7 −2.33 guanylate-binding protein 7

ITLN1 3.29 intelectin 1 UBL4B −1.3 ubiquitin-like 4B

COMP 3.21 cartilage oligomeric matrix
protein CHIA −2.71 chitinase acidic

GYPB 3.2 glycophorin B (MNS blood
group) CASQ2 −1.77 calsequestrin 2

SLC4A1 3.19 solute carrier family 4 member 1
(Diego blood group) PHGDH −1.49 phosphoglycerate

dehydrogenase

TRIM10 3.18 tripartite motif containing 10 CIART −1.01 circadian-associated repressor
of transcription

HBQ1 3.17 hemoglobin subunit theta 1 RORC −1.43 RAR-related orphan receptor
C

DUSP13 3.16 dual specificity phosphatase 13 S100A1 −1.74 S100 calcium-binding protein
A1

KLF1 3.13 Kruppel-like factor 1 NUP210L −1.13 nucleoporin 210-like
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Table 2. Cont.

Top Upregulated DEGs Obese T2D Top Downregulated DEGs Obese T2D

Name Log2 Fold
Change Description Name Log2 Fold

Change Description

KCNA10 3.13 potassium voltage-gated
channel subfamily A member 10 DCST2 −1.03 DC-STAMP domain

containing 2

JCHAIN 3.1 joining chain of multimeric IgA
and IgM NHLH1 −2.31 nescient helix-loop-helix 1

CMTM2 3.1
CKLF-like MARVEL

transmembrane domain
containing 2

TSTD1 −1.09
thiosulfate

sulfurtransferase-like domain
containing 1

CA1 3.07 carbonic anhydrase 1 SPATA46 −1.57 spermatogenesis associated 46

KRT72 3.05 keratin 72 FAM78B −1.41 family with sequence
similarity 78 member B

HBM 3.05 hemoglobin subunit mu MAEL −2.1 maelstrom spermatogenic
transposon silencer

S100P 3.01 S100 calcium-binding protein P SLC19A2 −1.05 solute carrier family 19
member 2

MMP7 3.01 matrix metallopeptidase 7 AXDND1 −1.4 axonemal dynein light-chain
domain containing 1

RIPPLY2 3.01 ripply transcriptional repressor
2 GLUL −1.53 glutamate-ammonia ligase

CBLIF 3.01 cobalamin binding intrinsic
factor ADORA1 −1.22 adenosine A1 receptor

TMEM132D 3 transmembrane protein 132D LEFTY2 −1.91 left-right determination factor
2

ZNF723 2.99 zinc finger protein 723 COQ8A −1.1 coenzyme Q8A

KLRC4 2.99 killer cell lectin-like receptor C4 TRIM67 −1.35 Novel protein

FCGR3B 2.98 Fc fragment of IgG receptor IIIb NTSR2 −4.63 tripartite motif containing 67

IFIT1B 2.97 interferon-induced protein with
tetratricopeptide repeats 1B LPIN1 −1.59 neurotensin receptor 2

FUT7 2.96 fucosyltransferase 7 VSNL1 −1.79 lipin 1

S100A8 2.95 S100 calcium-binding protein
A8 APOB −2.26 visinin-like 1

2.2. Functional Enrichment Analysis Highlights Inhibition of Inflammatory Responses in Obese
IR-NGT versus an Activation of Inflammatory Response and Immune Cell Trafficking of WAT in
Obese T2D Patients

To get a better understanding of the possible involvement of DEGs in obese IR-NGT
pathology and obese T2D in WAT, obese patients with IR-NGT and obese patients with
T2D datasets were submitted to IPA and downstream impact analysis (DEA). Affected
functional categories are depicted as a heat tree map, which clusters functionally related
categories together, resulting in a high-level view of enriched functional categories; the
orange boxes represent activated functions, whereas the blue boxes represent suppressed
functions. The data shown in (Figure 3) indicates a number of functional categories with
negative z-score, such as leukocyte migration, blood cell adhesion, cell movement of
monocytes and phagocyte recruitment. Most of the functional categories are categorized
under immune cell trafficking, inflammatory response and cellular movement in obese
patients with IR-NGT (Figure 4). On the other hand, the group of obese patients with T2D
showed overall enrichment of inflammatory response and similar functional categories
(Figure 4). These results indicated a crosstalk between the immune system and insulin
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sensitivity. The dysregulation of different functions in white adipose tissue was most
pronounced in obese patients with T2D. Previous studies showed that obesity-associated
adipose tissue inflammation is a major cause of decreased insulin sensitivity seen in T2D.
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2.3. Multiple Affected Signaling Network in Obese IR-NGT and Obese T2D Compared to
Lean Subjects

To identify potential upstream regulators, such as transcription factors (TFs) and any
gene or small molecule that has been observed experimentally to affect gene expression by
analyzing linkage to DEGs through coordinated expression, we used the new feature in
IPA, the upstream regulator analysis (URA) tool. IPA discovered 594 putative upstream reg-
ulators that have been detected (Bonferroni adjusted p-value 0.05). The upstream regulators
most inhibited by negative Z scores were TNF, ERK1/2, IL1A, Pkc(s), C5, Vegf, Oncostatin
M (OSM), RELA, IL1/1B, TREM1 and NFKB1, while Nuclear Receptor Subfamily 1 Group
H Member 3 (NR1H3), Retinoid X Receptor Alpha RXRA, Cbp/p300-interacting transac-
tivator with Glu/Asp-rich carboxy-terminal domain 2 CITED2 and Nr1h are enriched in
the obese patients in the IR-NGT group (Figure 5). The obese patients with T2D showed
a direct contrast of upstream regulator expression pattern (Figure 5). This contrast raised
the question of what is unified in the pathogenesis of obese patients with T2D and what is
individualized. An improved understanding of the relationship between obesity and type
2 diabetes may pave the way for more successful and cost-efficient approaches for both dis-
eases, including more customized treatment. Taking TNF as an upstream regulator found
in both groups’ analyses, integrating the results of the TNF-targeted genes and the DEGs
in canonical pathways, we found that the dysregulation of TNF-targeted genes (Figure 6),



Int. J. Mol. Sci. 2023, 24, 6337 8 of 14

Signal Transducer and Activator of Transcription 1/3 STAT1 and STAT3 contributed to the
insulin secretion-signaling pathway. TNF, NFkB complex, NFkBIA, NFkB1 and RELA were
also involved in type 2 diabetes signaling. Moreover, HIF1A and TP53 in the adipogenesis
pathway were regulated by TNF (Figure 7).
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2.4. Identification of Significantly Enriched Canonical Signaling Pathways in Obese IR-NGT and
Obese T2D in Comparison with Lean

In order to investigate significantly involved signaling pathways involved in obese
individuals with IR and normal glucose tolerance, DEGs from the dataset were subjected
to IPA canonical pathways analysis. The activated canonical signaling pathways in obese
individuals with IR-NGT were screened after categorizing the identified canonical signaling
pathway according to p-value and the number of gene sets in each canonical pathway. The
top-enriched canonical signaling pathways were assigned to LXR/RXR Activation. On
the other hand, phagosome formation, the tumor microenvironment pathway, LPS/IL-1
mediated inhibition of RXR function, TREM1 signaling and IL-6 signaling were categorized
with negative z-score (Figure 8). Interestingly, among the 167 significant canonical path-
ways identified by IPA (p-value 0.05), the following had absolute z-scores greater than 2.0,
phagosome formation, CREB signaling in neurons, cardiac hypertrophy signaling, neuroin-
flammation signaling pathway and TREM signaling were enriched, indicating that they
were strongly associated to T2D in the obese individuals with T2D (Figure 8). Unbiased IPA
analysis identified several canonical pathway terms related to cellular immune response,
cytokine signaling, lipid metabolism and immune cell trafficking; these results confirm the
progression of WAT inflammation from lean subjects to obese subjects with IR-NGT and
obese subjects with T2D and indicate that upregulation in the inflammatory response is
most pronounced in the group with T2D.
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3. Discussion

Excess white adipose tissue (WAT) mass has been related to a variety of problems,
including insulin resistance, type 2 diabetes and obesity [27]. Recent studies suggested
that reduced insulin sensitivity in adipocytes is a precursor to impaired WAT function and
whole-body insulin resistance [28]. Insulin has a complicated effect on its target cells by ac-
tivating multiple pathways that regulate glucose and lipid metabolism [29]. Understanding
the underlying molecular mechanisms might be a fresh approach to identifying prospective
targets suffering from obesity and T2D and provide more tailored therapy.

The primary goal of this project was to identify adipocyte-specific mRNAs linked to
obesity, insulin resistance and type 2 diabetes. We used 25 RNA-seq samples to characterize
gene expression profiles and identify significant transcriptional regulators in this study.
To avoid methodological inconsistencies in terms of data processing and bioinformatics
pipelines among original research, we used a consistent bioinformatics workflow to handle
the raw RNA-seq data (fastq files) of all datasets. As a result, we provide a transcriptome
analysis study of white adipose tissue from lean subjects, obese subjects with IR-NGT and
obese subjects with T2D.

According to the results of the IPA pathway enrichment analysis, significant DEGs
in obese subjects with IR-NGT were primarily involved in the activation of LXR/RXR
activation, while the same pathway was inhibited in obese subjects with T2D. Liver X
Receptors are integrators of metabolic and inflammatory signaling. LXRs play a central role
in lipid metabolism regulation. In accordance with our results, previous studies showed
that the activation of LXRs improves glucose tolerance in adipose tissue in the murine
model [30].

Additionally, for obese subjects with IR-NGT, the inhibited pathways were primarily
involved in phagosome formation, TREM signaling, IL-6/8/17 signaling and leukocyte
extravasation signaling. On the other hand, obese subjects with T2D showed a contrasting
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pattern of dysregulated canonical pathways. The latter group showed significant enrich-
ment in phagosome formation and IL-6/8/17 signaling. These dysregulated pathways
lie within the cellular immune response [31–33]. Recent studies showed increasing evi-
dence of T2D’s impact on the immune system; the immune response to elevated blood
glucose causes an inflammatory reaction along with inflammatory mediators released by
adipocytes [34].

Studies have well established that there is a link between obesity and T2D; however,
not all obese patients develop T2D [35]. The precise mechanisms linking the conditions
remain unclear, as does our comprehension of inter-individual differences. Previous
studies have also identified the possible link between obesity and T2D [36]. This link has
been shown to involve proinflammatory cytokines such as the tumor necrosis factor and
interleukin-6 [37]. In our study, TNFs were significantly downregulated in obese subjects
with IR-NGT and significantly upregulated in obese subjects with T2D.

Lipid metabolism functions in Adipose tissue is a simple surrogate measure that
represents pathophysiological changes in adipose tissue insulin sensitivity, with increasing
change from normal weight to obesity and from NGT to type 2 diabetes [38]. In our study,
we found that lipid metabolism functions such as adipose tissue lipolysis, the concentration
of phospholipids, lipid flux, the concentration of cholesterol, synthesis of triacylglycerol
and lipid efflux have higher Z-scores and are enriched in T2D while they are downregulated
in obese subjects with IR-NGT. FA concentration, lipid conversion, lipid concentration and
FA metabolism are enriched in obese subjects with IR-NGT when compared to those with
T2D. These data indicate a divergence in the lipid metabolism function analysis.

4. Materials and Methods
4.1. Source of Data

We searched the National Center of Biotechnology Information (NCBI) GEO database
(https://www.ncbi.nlm.nih.gov/geo/ (accessed on 15 May 2022)) using the keywords “Type
2 diabetes”, “obesity”, “insulin resistance” and “normal glucose tolerance”. We found one
dataset (GSE141432) that described two studies: Measurements of adipose tissue lipolysis
by microdialysis, a piece of case–control research examining the causes of obesity-driven
insulin resistance, and adipose tissue genetics. Figure 9 provides specific facts.
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4.2. Next-Generation Sequencing Data

We utilized a GSE141432 set gene expression profile. It was downloaded from the
GEO database, and it was based on the NextSeq 500 platform using the Illumina TruSeq
Total Stranded Ribo Zero library preparation and was submitted by Fryk et al. [26]. We
extracted the GSE141432 dataset containing 9 lean subjects, 7 obese insulin-resistant and
normal glucose-tolerant (IR-NGT) subjects and 9 obese subjects with Type 2 Diabetes (T2D).

https://www.ncbi.nlm.nih.gov/geo/
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The CLC Genomics Workbench Version 21.0.4. Software (QIAGEN, Hilden, Germany) was
used to look for differences in gene expression between lean individuals, obese individuals
with normal glucose tolerance with insulin resistance and obese individuals with type 2
diabetes from white adipose tissue. After the retrieval of raw RNA sequencing data from
the sequence read archive (SRA) database CLC Genomics Workbench-21 was used to align
pair-end reads to the hg38 human reference genome. TPM (Transcript Per Kilobase Million)
mapped reads were used to calculate the amount of transcript expression. An ANOVA test
was performed among the three groups to detect DEGs with an absolute value of the 2-fold
change. A statistically significant difference was defined as a p-value that is equal to or less
than 0.05. Figure 10 describes the methodological approach followed; however, the data of
lncRNAs (long non-coding RNAs) are still under investigation.
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Figure 10. Bioinformatics analysis workflow from the retrieval of the public data of GEO to the
analysis of dysregulated/affected pathways.

4.3. IPA Pathway Enrichment Analysis of DEGs

To discover DEGs at the biologically functional level, Ingenuity Pathway Analysis IPA
(Ingenuity Systems; www.ingenuity.com/, accessed on 20 January 2022) was used. Up-
stream regulator analysis (URA), downstream effects analysis (DEA), mechanistic networks
(MN) and causal network analysis (CNA) prediction algorithms were used to perform func-
tional annotations and regulatory network analysis [39]. IPA predicts functional regulatory
networks from gene expression data using a precise algorithm and assigns a significance
score to each network based on its fit to the set of focus genes in the database. The p-value
is the negative log of P and indicates the likelihood that the network’s focal genes were
discovered together by coincidence [40].

5. Conclusions

The present study utilized bioinformatic tools to perform a comprehensive investi-
gation of differentially expressed genes (DEGs) that may play a role in the development
of insulin resistance, obesity with normal glucose tolerance (NGT) and type 2 diabetes

www.ingenuity.com/
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(T2D). The results obtained from this analysis offer a significant contribution to our under-
standing of the molecular mechanisms that underlie these complex metabolic disorders.
The identification of these DEGs provides new avenues for future research, which may
lead to the discovery of novel therapeutic targets. Despite the potential significance of
these findings, further molecular biological tests are needed to confirm the specific roles
of the identified genes. It is essential to validate these findings in experimental models,
including cell cultures and animal models, to confirm the functional significance of these
genes. Such studies may provide more detailed insights into the molecular mechanisms
underlying insulin resistance and obesity with NGT and T2D and may ultimately lead to
the development of more effective treatments for these disorders. Overall, the findings of
this study highlight the potential of bioinformatic tools for identifying key genes involved
in the development of metabolic diseases. However, it is important to recognize that these
findings are preliminary and must be further validated through additional experimental
investigations. With further research, it may be possible to develop targeted therapies that
address the underlying molecular processes involved in these complex metabolic disorders.
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