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Abstract: Neurotrophic factors (NTFs) play an important role in maintaining homeostasis of the cen-
tral nervous system (CNS) by regulating the survival, differentiation, maturation, and development
of neurons and by participating in the regeneration of damaged tissues. Disturbances in the level
and functioning of NTFs can lead to many diseases of the nervous system, including degenerative
diseases, mental diseases, and neurodevelopmental disorders. Each CNS disease is characterized by
a unique pathomechanism, however, the involvement of certain processes in its etiology is common,
such as neuroinflammation, dysregulation of NTFs levels, or mitochondrial dysfunction. It has been
shown that NTFs can control the activation of glial cells by directing them toward a neuroprotec-
tive and anti-inflammatory phenotype and activating signaling pathways responsible for neuronal
survival. In this review, our goal is to outline the current state of knowledge about the processes
affected by NTFs, the crosstalk between NTFs, mitochondria, and the nervous and immune systems,
leading to the inhibition of neuroinflammation and oxidative stress, and thus the inhibition of the
development and progression of CNS disorders.

Keywords: neurotrophic factors; neuroinflammation; mitochondrial dysfunction; glial cells; oxidative
stress; neuroprotection

1. Introduction

Neuroinflammation is defined as an inflammatory response within the central nervous
system (CNS) and is mediated by resident CNS glial cells. Neuroinflammation is often
considered a pathological process, but it should be remembered that its destructive role
is associated not so much with presence as with intensity and dynamics [1]. The first
line of defense is microglia, which recognize the pathogen, recruit immune system cells,
remove the pathogen, and repair damaged tissue. Microglia become activated by pathogen-
associated molecular pattern molecules (PAMPs) that are derived from microorganisms,
and by damage-associated molecular pattern molecules (DAMPs) that are cell-derived
and initiate and perpetuate immunity in response to trauma, ischemia, and tissue damage,
either in the absence or presence of pathogenic infection (Figure 1) [2]. Activated microglia
express various surface molecules, such as Fc receptor, integrins (CD11b, CD11c), CD14,
major histocompatibility complex (MHC) molecules, toll-like receptors (TLRs), scavenger
receptors, and cytokine/chemokine receptors [3], and may release mediators such as
cytokines, matrix metalloproteinases (MMP), reactive oxygen species (ROS), nitric oxide
(NO), glutamate, and neurotrophic factors (NTFs) [4]. Microglia can be categorized into
two opposite types: classical (M1), which release inflammatory mediators and induce
inflammation and neurotoxicity, and alternative (M2), which release anti-inflammatory
mediators and induce anti-inflammatory and neuroprotective effects, although there is a
continuum of different intermediate phenotypes between M1 and M2, and microglia can
transfer from one phenotype to another. M2 activation is induced by anti-inflammatory
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cytokines, such as interleukin (IL)-4, IL-13, and IL-10, by binding of Fc receptors to immune
complexes, detection of apoptotic cells, and by activation of transcription factors [5]. M2
microglia release transforming growth factor-β (TGF-β), insulin-like growth factor-1 (IGF-
1), fibroblast growth factor (FGF), nerve growth factor (NGF), brain-derived neurotrophic
factor (BDNF), and glial cell-derived neurotrophic factor (GDNF), induce mannose receptor
(CD206) and arginase 1 (Arg1), promote phagocytosis of cell debris and misfolded proteins,
extracellular matrix reconstruction, and tissue repair, and support neuronal survival [6].
M1 activation can be induced by, for example, interferon-γ (IFN-γ) and lipopolysaccharide
(LPS), and produces inflammatory cytokines and chemokines, such as tumor necrosis
factor-alpha (TNF-α), IL-6, IL-1β, IL-12, and CC chemokine ligand (CCL) 2 [5].
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(Arg1), and promote neuronal survival. Shifting from M1 to M2 phenotype may occur via inhibition 
of nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB), mitogen-activated protein 
kinase (MAPK), activator protein 1 (AP-1), and signal transducer and activator of transcription (STAT) 
transcription factors, and activation of the peroxisome proliferator-activated receptor gamma (PPARγ) 
pathway. The figure was created with BioRender.com. 

Modulation microglia M1/M2 polarization and shifting from M1 to M2 phenotype 
have been suggested as promising therapeutic strategies in neurodegenerative diseases, 
such as Alzheimer’s (AD) and Parkinson’s (PD) disease, in which microglia-mediated neu-
roinflammation is a common feature. Some modulators were discovered that shifted micro-
glia from pro-inflammatory M1 to anti-inflammatory M2 by inhibiting nuclear factor kappa-
light-chain-enhancer of activated B cells (NF-κB) [6–8]. Furthermore, Zhang et al. have 
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Figure 1. Microglia are activated by pathogen-associated molecular pattern molecules (PAMPs)
and/or damage-associated molecular pattern molecules (DAMPs). The classical M1 activation can be
induced by interferon-γ (IFN-γ) and lipopolysaccharide (LPS). M1 microglia produce inflammatory
cytokines and chemokines, such as tumor necrosis factor-alpha (TNF-α), interleukin (IL)-6, IL-1β,
IL-12, and CC chemokine ligand (CCL) 2, and induce inflammation and neurotoxicity. The alternative
M2 activation is induced by anti-inflammatory cytokines such as IL-4, IL-13, and IL-10. M2 microglia
release growth factors (GFs), and neurotrophic factors (NTFs), induce mannose receptor (CD206) and
arginase 1 (Arg1), and promote neuronal survival. Shifting from M1 to M2 phenotype may occur
via inhibition of nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB), mitogen-
activated protein kinase (MAPK), activator protein 1 (AP-1), and signal transducer and activator of
transcription (STAT) transcription factors, and activation of the peroxisome proliferator-activated
receptor gamma (PPARγ) pathway. The figure was created with BioRender.com.

Modulation microglia M1/M2 polarization and shifting from M1 to M2 phenotype
have been suggested as promising therapeutic strategies in neurodegenerative diseases,
such as Alzheimer’s (AD) and Parkinson’s (PD) disease, in which microglia-mediated
neuroinflammation is a common feature. Some modulators were discovered that shifted
microglia from pro-inflammatory M1 to anti-inflammatory M2 by inhibiting nuclear factor
kappa-light-chain-enhancer of activated B cells (NF-κB) [6–8]. Furthermore, Zhang et al.
have shown that microglia M1/M2 polarization may occur via mitogen-activated protein
kinase (MAPK)-dependent inactivation [9]. Likewise, research on activator protein 1 (AP-1),
signal transducer, and activator of transcription (STAT) transcription factors suggest that
inhibiting them probably results in polarization from M1 to M2 microglia [6]. It was also

BioRender.com


Int. J. Mol. Sci. 2023, 24, 6321 3 of 21

shown that activation of the peroxisome proliferator-activated receptor gamma (PPARγ)
pathway, in conditions of ischemia/stroke, regulates the balance of pro-/anti-inflammatory
microglia polarization [10].

Although the vast majority of research is focused on microglia as key regulators of
neuroinflammation [11–13], more data highlight the importance and contribution of astro-
cytes to the inflammation found in various CNS diseases, including neurodegenerative
disorders such as AD and PD [14–16]. Under normal conditions, the main task of astrocytes
is to maintain the proper activity of neurons by glial transmission, adult neurogenesis,
neurotransmission, maintaining ionic homeostasis, protection against intoxication, partici-
pation in the metabolism, and storage of glucose and glycogen. Once exposed to damaging
factors, astrocytes are activated and, similarly to microglia, show dual nature (Figure 2).
Reactive astrocytes are induced by classically activated neuroinflammatory microglia via
secretion of IL-1α, IL-1β, TNF-α, and complement component 1q (c1q), leading to a loss of
their ability to promote neuronal survival, outgrowth, synaptogenesis, and phagocytosis,
and inducing the death of neurons and oligodendrocytes [17].

Int. J. Mol. Sci. 2023, 24, x FOR PEER REVIEW 3 of 21 
 

 

transducer, and activator of transcription (STAT) transcription factors suggest that inhibit-
ing them probably results in polarization from M1 to M2 microglia [6]. It was also shown 
that activation of the peroxisome proliferator-activated receptor gamma (PPARγ) pathway, 
in conditions of ischemia/stroke, regulates the balance of pro-/anti-inflammatory microglia 
polarization [10]. 

Although the vast majority of research is focused on microglia as key regulators of neu-
roinflammation [11–13], more data highlight the importance and contribution of astrocytes 
to the inflammation found in various CNS diseases, including neurodegenerative disorders 
such as AD and PD [14–16]. Under normal conditions, the main task of astrocytes is to main-
tain the proper activity of neurons by glial transmission, adult neurogenesis, neurotrans-
mission, maintaining ionic homeostasis, protection against intoxication, participation in the 
metabolism, and storage of glucose and glycogen. Once exposed to damaging factors, astro-
cytes are activated and, similarly to microglia, show dual nature (Figure 2). Reactive astro-
cytes are induced by classically activated neuroinflammatory microglia via secretion of IL-
1α, IL-1β, TNF-α, and complement component 1q (c1q), leading to a loss of their ability to 
promote neuronal survival, outgrowth, synaptogenesis, and phagocytosis, and inducing the 
death of neurons and oligodendrocytes [17]. 

 
Figure 2. Reactive astrocytes are induced by classically activated neuroinflammatory microglia via se-
cretion of interleukin (IL)-1α, IL-1β, tumor necrosis factor-alpha (TNF-α), and complement component 
1q (c1q). Astrocytes show dual nature. The signaling molecules involved in the induction of pro-in-
flammatory A1 astrocytes are nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB), 
signal transducer and activator of transcription 3 (STAT3), circlgf1r, Kir6.2, and microRNA2, while 
signaling molecules responsible for the induction of A2 astrocytes are phosphoinositide 3-kinase 
(PI3K)/protein kinase B (Akt), STAT3, tropomyosin receptor kinase B (TrkB), connexin30, chemokine 
receptor 7 (CXCR7), 17β-estradiol, fibroblast growth factor (FGF), milk fat globule epidermal growth 
factor 8 (MFG8), and transforming growth factor-β (TGF-β). A1 astrocytes release interleukin (IL)-1β, 
TNF-α, and C3 components to propagate the neuroinflammatory response. They also release D-serine 
and nitric oxide (NO), which may contribute to excitotoxicity. A2 astrocytes appear to release anti-
inflammatory compounds, such as neurotrophic factors (NTFs), IL-10, IL-6, and TGF-β, and promote 
the survival and growth of neurons and reparative functions. The figure was created with BioRen-
der.com. 

Figure 2. Reactive astrocytes are induced by classically activated neuroinflammatory microglia
via secretion of interleukin (IL)-1α, IL-1β, tumor necrosis factor-alpha (TNF-α), and complement
component 1q (c1q). Astrocytes show dual nature. The signaling molecules involved in the induction
of pro-inflammatory A1 astrocytes are nuclear factor kappa-light-chain-enhancer of activated B cells
(NF-κB), signal transducer and activator of transcription 3 (STAT3), circlgf1r, Kir6.2, and microRNA2,
while signaling molecules responsible for the induction of A2 astrocytes are phosphoinositide 3-kinase
(PI3K)/protein kinase B (Akt), STAT3, tropomyosin receptor kinase B (TrkB), connexin30, chemokine
receptor 7 (CXCR7), 17β-estradiol, fibroblast growth factor (FGF), milk fat globule epidermal growth
factor 8 (MFG8), and transforming growth factor-β (TGF-β). A1 astrocytes release interleukin (IL)-1β,
TNF-α, and C3 components to propagate the neuroinflammatory response. They also release D-
serine and nitric oxide (NO), which may contribute to excitotoxicity. A2 astrocytes appear to release
anti-inflammatory compounds, such as neurotrophic factors (NTFs), IL-10, IL-6, and TGF-β, and
promote the survival and growth of neurons and reparative functions. The figure was created with
BioRender.com.

Activated astrocytes are also able to create a glial scar isolating and protecting healthy
tissue from the neurotoxic environment in parallel to attenuating regenerative processes
of the injured tissue [18]. The signaling molecules involved in the induction of pro-
inflammatory A1 astrocytes or inhibition of anti-inflammatory A2 astrocytes are NF-κB,
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signal transducer and activator of transcription 3 (STAT3), circlgf1r, Kir6.2, and microRNA2,
while signaling molecules responsible for the inhibition of A1 astrocytes or induction
of A2 astrocytes are phosphoinositide 3-kinase (PI3K)/protein kinase B (Akt), STAT3,
tropomyosin receptor kinase B (TrkB), connexin30, chemokine receptor 7 (CXCR7), 17β-
estradiol, FGF, milk fat globule epidermal growth factor 8 (MFG8), and TGF-β [19].

In the acute phase after injury, local neuroinflammation is tightly controlled, may have
neuroprotective significance, and may be one of the mechanisms that increase compensatory
processes activated in the damaged area of the CNS. In some circumstances, the balance of
inflammatory and intrinsic repair processes that influence the functional recovery of CNS
may be disturbed, leading to chronic inflammatory reactions, secretion of harmful factors,
and propagation of the pathological process. A positive aspect of the interaction of the
immune system with the nervous system is the release of neuroprotective mediators by
glial cells, of which NTFs deserve special attention. NTFs can support the growth, survival,
and differentiation of neurons. Additionally, the recent literature suggests that they may
also be important regulators of inflammation [20] and mitochondrial function [21,22].
Since dysregulation of inflammatory pathways and mitochondria dysfunction are common
features of CNS pathologies, especially in PD and AD, and it is suggested that NTFs
can limit neuroinflammation, in this review we are aiming to outline the current state of
knowledge about overlapping expression patterns of NTFs in the immune and nervous
systems and the ability of NTFs to influence the activity of immune cells and mitochondria-
dependent inflammation in the CNS.

2. Neurotrophic Factors in the Healthy and Diseased Brain

Stress is part of the daily life of individuals. Although short-term stress can be
associated with positive changes in the brain, such as improving cognitive function, chronic
stress is destructive to the nervous system, leading to microglia activation, the release of
pro-inflammatory substances, recruitment of peripheral immune cells to the brain, and,
thus, the initiation of an inflammatory response and an increase in the risk of developing
neuropsychiatric disorders [23]. The proper transition from the pro-inflammatory to the
anti-inflammatory phenotype of glial cells means that the pathology can be successfully
repaired by the release of substances such as anti-inflammatory cytokines, growth factors
(GFs), and NTFs, thereby possibly preventing cell death and promoting neuronal survival
and neuroprotective processes. NTFs are a group of GFs that are active both in prenatal and
adult life. In prenatal life, most neurons die, and the survival of individual cells depends
on access to NTFs [24], while in adulthood, NTFs are involved in the processes responsible
for maintaining the balance between neuroregenerative and neurodegenerative processes.
Although NTFs are mainly synthesized and released in the CNS by neurons and glial
cells [25,26], their expression is also observed in cells of the peripheral nervous system
and other non-neuronal peripheral cells such as T and B lymphocytes, monocytes [27],
vascular endothelial [28], and smooth [29] and skeletal muscle cells [30]. The first identified
neurotrophic factor was NGF. Since the discovery of NGF, several other NTFs have been
described, each with a unique character and biological activity. Depending on the type of
specific neurotrophic factor activated and its receptor, signaling pathways for neuronal
differentiation, maturation and survival, axonal and dendrite growth, synapse formation, or
apoptosis can be triggered (Figure 3). Furthermore, NTFs are involved in the enhancement
of synaptic plasticity, a key process for learning and memory.

Recent evidence suggests that alterations in NTFs, their dysregulated sorting and
secretion, and the loss of their trophic support for selective neuronal populations may lead
to the neuronal degeneration characteristic of AD, PD, and other neurodegenerative and
neuropsychiatric diseases [31–33]. The etiopathology of neurodegenerative diseases is still
not understood but it is known that chronic neuroinflammation and NTF dysregulation are
processes involved in the initiation and/or progression of CNS diseases [34,35]. Similar to
the pathomechanism of neurodegenerative diseases, data suggest that abnormal regulation
of NTFs is also involved in the course of conditions related to impaired development of the
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brain and psychosis. Studies on various animal models indicate that even maternal immune
activation (MIA) during pregnancy is a sufficient factor in developing neuropsychiatric
disorders in the offspring, such as autism [36,37].
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Figure 3. Signaling cascades activated by neurotrophic factors (NTFs). The precursor of brain-derived
neurotrophic factor (proBDNF) or nerve growth factor (NGF) binding the p75NTR leads to activa-
tion of c-Jun N-terminal kinase (JNK) or nuclear factor kappa-light-chain-enhancer of activated B
cells (NF-κB) signaling pathways, which promote processes such as apoptosis and neuronal sur-
vival. The mature brain-derived neurotrophic factor/tropomyosin receptor kinase B (mBDNF/TrkB),
NGF/tropomyosin receptor kinase A (TrkA), and glial cell-derived neurotrophic factor/GDNF family
receptor α1/ receptor tyrosine kinase rearranged during transfection (GDNF/GFRα1-RET) com-
plexes trigger activation of mitogen-activated protein kinase (MAPK), phosphoinositide 3-kinase
(PI3K)/protein kinase B (Akt), and phospholipase C-γ (PLC-γ) pathways that, in turn, activate the
cAMP response element-binding protein (CREB) and transcription of genes responsible for devel-
opment and survival of neurons. Cerebral dopamine neurotrophic factor (CDNF) receptors and
CDNF-activated signaling pathways are still poorly understood, but the mechanism of CDNF action
is associated mainly with the regulation of endoplasmic reticulum (ER) function. The figure was
created with BioRender.com.

2.1. BDNF

BDNF is one of the most studied NTFs. BDNF controls synaptic plasticity through its
learning and memory processes, which are interrelated phenomena. The action of BDNF
and the type of activated signaling pathway depends on which biologically active isoforms
bind to different types of its receptors. Because the precursor of BDNF (proBDNF) and
mature BDNF (mBDNF) often exert an opposite effect on the survival, differentiation,
growth, and apoptosis of neurons, their balance is an important factor in the regulation
of many processes in the CNS. The mBDNF/TrkB receptor complex triggers signaling
pathways responsible for dendritic growth, pine maturation and stabilization [38–40],
development of synapses [41,42], learning- and memory-processes-dependent synaptic
plasticity [43,44], and survival of neurons [45–48].

Howells et al. have examined the BDNF mRNA expression in substantia nigra
pars compacta (SNpc) of PD patients and showed its 70% reduction compared to con-
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trols. Although this reduction partially resulted from the loss of dopaminergic neurons in
SNpc, which express BDNF, surviving dopaminergic neurons also expressed less BDNF
mRNA [49]. A Danish case-cohort study has revealed an association between lower blood
levels of BDNF in newborns and an increased risk of developing autism spectrum disorder
(ASD) [50]. Additionally, researchers found a trend toward elevated levels of inflammatory
markers and reduced levels of BDNF [50]. On the other hand, a meta-analysis performed
by Liu et al. showed higher levels in the peripheral blood of BDNF, NGF, and vascular
endothelial growth factor (VEGF) in children with ASD compared to healthy controls [51].
Thus, BDNF expression seems to be delayed in ASD cases [50]. Interestingly, post-mortem
examination of the brains of children with ASD showed an increased number of prefrontal
neurons, which can be a result of abnormal regulation of BDNF, leading to subsequent
excess of axonal connections, and disrupting the process of circuit formation [51–53]. Most
previous studies have shown decreased peripheral levels of BDNF in schizophrenic patients.
Furthermore, the lower peripheral level of BDNF in individuals with an at-risk mental state
for psychosis compared to first-episode psychosis and chronic schizophrenia patients was
investigated [54]. Thus, BDNF has been proposed to play a role as an indicator of the risk
of psychosis development and cognitive deficit in schizophrenia [55].

2.2. GDNF

GDNF was first purified from rat B49 glial cell line and characterized by promoting the
survival and morphological differentiation of dopaminergic neurons and increasing high-
affinity dopamine uptake by them [56]. GDNF binds to the GDNF family receptor (GFR) α1
or, with lower affinity, to GFRα2 or GFRα3, and transmits signals by its receptor tyrosine
kinase rearranged during transfection (RET). The biological responses of GDNF after RET
activation and initiation of the signaling of the MAPK, PI3K/Akt, and proto-oncogene
tyrosine-protein kinase (Src) pathways are morphological transformation, proliferation, cell
migration, neurite elongation, and neurite branching [57]. Independently of RET signaling,
GDNF-GFRα1 complex may bind neural cell adhesion molecule (NCAM) and activate
Fyn and FAK protein kinases supporting Schwann cell migration and axonal growth in
hippocampal and cortical neurons [58]. GDNF was shown to be expressed in many different
regions of the developing nervous system. Levels of GDNF were observed in the thalamus,
hippocampus, cerebellum, cortex, spinal marrow, and substantia nigra (SN) [59,60]. In
addition, GFRα1 and GDNF were found to be expressed in the thymus, which may indicate
the relationship between GDNF and the development and function of immune cells. It has
been shown that GDNF protects dopaminergic neurons, increases the number of tyrosine
hydroxylase (TH)-positive cells, and protects neurons from toxic assault [61–64].

Since many studies have demonstrated the crucial role of GDNF in maintaining
the proper functioning of dopaminergic neurons, it has been proposed to reduce GDNF
expression in the brains of PD patients. Chauhan et al. found that the level of GDNF was
significantly reduced in the SNpc of patients with PD compared to the control group [65,66].
On the contrary, Hunot et al., using in situ hybridization, observed no detectable expression
of GDNF, possibly due to very low levels of expression in the adult human brain [65].

2.3. CDNF

Cerebral dopamine neurotrophic factor (CDNF) is a novel neurotrophic factor that is
structurally and mechanistically distinct from other growth factors. CDNF has recently
been shown to have therapeutical properties in PD [67]. The mechanism of CDNF ac-
tion is associated mainly with the regulation of endoplasmic reticulum (ER) function by
modulation of unfolded protein response (UPR) pathways, which creates new research
opportunities in the modulation of the inflammatory response [20]. Arancibia et al. have
confirmed that CDNF triggers the induction of an adaptive UPR and increases binding
immunoglobulin protein (BiP), activating transcription factor 4 (ATF4), transcription factor
6 (ATF6), and X-box binding protein 1 (XBP-1) expression both in HEK293-T cells and
hippocampal neurons, thus leading to inhibition of ER-stress [68].
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While the data concerning the changes in the expression of CDNF in various CNS
disorders are scarce, interesting studies are showing that CDNF alleviates ER stress-induced
cellular damage and suppresses the secretion of pro-inflammatory cytokines from astro-
cytes [69], thus promoting recovery and survival of midbrain dopaminergic neurons in
animal models of PD [70,71]

2.4. NGF

NGF was discovered by Rita Levi-Montalcini and collaborators in the 1950s, and
originally was characterized by its ability to stimulate growth, differentiation, survival, and
maintenance of peripheral sympathetic neurons, sensory neurons, and cholinergic forebrain
neurons in CNS [72,73]. NGF is a neurotrophin that is abundantly expressed in the CNS
in neurons, oligodendrocytes, microglia, and astrocytes as well as in the periphery [73,74].
NGF acts through the p75NTR and tropomyosin receptor kinase A (TrkA) receptors, often
with the opposite effect. By acting on TrkA receptors, NGF triggers three main signaling
pathways: Ras/Raf/MAPK, phospholipase C-γ (PLC-γ), and PI3/Akt kinase, and leads
to neuronal survival, growth, and differentiation. While acting on the p75NTR receptor, it
stimulates NF-κB and MAPK- c-Jun N-terminal kinase (JNK) pathways, leading to neuronal
survival and apoptosis, respectively [73]. NGF is essential for maintaining the phenotype
of cholinergic neurons [75,76]. Administration of NGF into the brain prevents degeneration
of damaged cholinergic neurons, increases the activity of undamaged cholinergic neurons,
and affects spatial memory and recognition in aged rats. NGF was shown to be upregulated
in inflammation [77,78] and chronic pain [79,80].

Several studies have reported the preventive role of NGF in the course of AD [81–83].
Peng et al. have shown a negative correlation between proNGF levels and Mini-Mental
Status Examination (MMSE) score, demonstrating that the accumulation of proNGF corre-
lated with loss of cognitive function [84], whereas biochemical and immunocytochemical
studies of TrkA, TrkB, and TrkC levels demonstrated their reduction in the nucleus basalis
of Meynert in AD patients [85]. Scott et al., using two-site ELISA, have shown upregulated
NGF levels in the hippocampus, superior temporal gyrus, superior frontal gyrus, inferior
parietal lobule, frontal and occipital cortical poles, cerebellum, amygdala, and putamen
compared to age-matched control and PD cases. Only in the nucleus basalis of Meynert the
NGF level was significantly reduced. This NGF upregulation may be due to the widespread
distribution of TrkA throughout the brain, and abnormalities in the utilization, internaliza-
tion, or transport of NGF in the course of AD could play a role in the widespread increase
in NGF-like activity [86].

Data presented above suggest that each CNS disease may have a unique profile of
NTFs and, upon looking more deeply into molecular pathways of abnormally regulated
NTFs, the pathogenesis of some diseases may be partially explained (Table 1).
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Table 1. Neurotrophic factors (NTFs) expression in central nervous system (CNS) disorders and disease models.

NTF Physiological Function Disease Model Structure Cell Type/Expression References

Brain-derived
neurotrophic factor

(BDNF)

Binds to tropomyosin receptor kinase B (TrkB);
activates phospholipase C-γ (PLCγ) and Ras;

induces dendritic growth, development of
synapses, survival of neurons; regulates

synaptic plasticity

Parkinson’s disease (PD) PD patients; post-mortem Substantia nigra pars
compacta (SNpc) Dopaminergic neurons ↓ [49]

Alzheimer’s disease (AD) APP23 transgenic mice Cortex Astrocytes, microglia ↑ [87]

Autism spectrum
disorder (ASD)

Newborns Peripheral blood Dried blood spot samples ↓ [50]

Children Peripheral blood ↑ [51]

Glial cell-derived
neurotrophic factor

(GDNF)

Binds to GDNF family receptor (GFR)α1, GFRα2,
and GFRα3; GDNF/ receptor tyrosine kinase

rearranged during transfection (RET) activates
mitogen-activated protein kinase (MAPK),

phosphoinositide 3-kinase (PI3K)/protein kinase
B (Akt), and proto-oncogene tyrosine-protein

kinase (Src) pathways; GDNF/ neural cell
adhesion molecule (NCAM) activates Fyn and
FAK protein kinases, stimulates proliferation,
cell migration, neurite elongation and neurite

branching, Schwann cell migration, and
axonal growth

PD

PD patients; post-mortem SNpc Neurons [66]

Mesencephalon/striatum 0 [65]

1-methyl-4-phenyl-1,2,3,6-
tetrahydropyridine (MPTP)

mice model
Striatum Parvalbumin-positive (PV+)

interneurons↔ [88]

Nerve growth factor
(NGF)

Binds to tropomyosin receptor kinase A (TrkA);
activates MAPK, PLC-γ, and PI3/Akt kinase;

stimulates neuronal survival, growth, and
differentiation; binds to p75NTR; stimulates c-Jun

N-terminal kinase (JNK) and nuclear factor
kappa-light-chain-enhancer of activated B cells

(NF-κB); activates neuronal survival
and apoptosis

AD

AD patients; post-mortem

The hippocampus, superior
temporal gyrus, superior

frontal gyrus, inferior
parietal lobule, frontal and

occipital cortical poles,
cerebellum, amygdala,

and putamen

↑
[86]

Nucleus basalis of Meynert ↓

Mild cognitive impairment
(MCI) and AD patients;

post-mortem
Parietal cortex ↑ [85]

PD 6-hydroxydopamine
(6-OHDA) rat model Striatum Astrocytes ↑ [89]

ASD Children Peripheral blood ↑ [51]

↑, expression is upregulated; ↓, expression is downregulated;↔, expression is not changed; 0, no expression detected.
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3. Neurotrophic Factors in Glia-Neuronal Crosstalk and Their Role in Neuroinflammation

Neurotrophic factors are crucial for proper CNS structure and function and play a cen-
tral role in the regulation of signaling between microglia or astrocytes and neurons. Firstly,
the relationship between NTFs and glia affects the expression of inflammatory mediators
(Table 2). However, NTFs, such as GDNF and BDNF, released from glial cells also play a
significant role in glia-mediated synapse formation, since pre- and postsynaptic terminals
cooperate with astrocytes and microglia in “quad-partite” synapses [90]. BDNF expressed
and secreted by glial cells promotes the development of inhibitory synapses [91,92]; simi-
larly, GDNF promotes the formation of new synaptic terminals and increases dopamine
release through an unknown mechanism [93]. In addition, astrocytes can prevent excitotox-
icity by releasing GDNF and NGF, which support neuronal survival [94], suggesting that
glia-derived neurotrophic factors could play significant roles during neurodegenerative
disorders. What is more, some exogenously administered NTFs, such as BDNF and NGF,
affect glial activation states with beneficial effects on these disorders’ outcomes. Jiang et al.
have reported that intranasal administration of BDNF modulated the local inflammatory
process, in the rat’s brain after a stroke, on the cellular, cytokine, and transcription level,
through activation of anti-inflammatory microglia, downregulation of both protein and
mRNA levels of TNF-α, upregulation IL-10 and mRNA levels, and modulation of NF-κB
activity [95]. Furthermore, it was shown that BDNF pretreatment suppressed the expression
of inflammatory factors, including TNF-α, IL-1β, and IL-6, and increased the expression of
the anti-inflammatory factor IL-10 in a rat model of Streptococcus pneumoniae meningitis.
In vitro data have shown that overexpression of CDNF in astrocytes reduced secretion
of inflammatory cytokines induced by ER stress [69], whereas microglia suppressed LPS-
induced release of pro-inflammatory cytokines [96]. The anti-inflammatory properties of
NTFs were also reported by Rickert et al. [97]. Their study revealed that pretreatment of pri-
mary rat microglia with factor GDNF family members reduced the LPS-induced expression
of pro-inflammatory cytokines and cyclooxygenase-2 (COX-2) [97]. Furthermore, the ability
of GDNF to suppress the activation of microglia was also confirmed in animal models of
PD [96,98]. Another key mediator in crosstalk between the nervous and immune systems
is NGF. It has been demonstrated that NGF acts on microglia, directing them toward a
neuroprotective and anti-inflammatory phenotype, increases amyloid beta (Aβ) uptake by
microglia, and enhances its degradation [99].

Table 2. Main signaling pathways involved in neurotrophic factors (NTFs) and glia-neuronal crosstalk.

Signaling Pathway NTFs Effect References

Suppression of p38

Brain-derived neurotrophic
factor (BDNF);

Glial cell-derived
neurotrophic factor (GDNF)

Reduction of inflammation
(inhibition of production of

inflammatory
cytokines and enzymes)

[41,100,101]

Stimulation of
phosphoinositide 3-kinase

(PI3K)/protein kinase B (Akt),
and extracellular

signal-regulated kinase (ERK)

Nerve growth factor (NGF);
BDNF;
GDNF

Reduction of inflammation,
upregulation of antioxidant defense,
enhancement of neuronal survival
(inhibition of glycogen synthase

kinase 3 (GSK3) activity,
suppression of nuclear factor

kappa-light-chain-enhancer of
activated B cells (NFκB)-dependent
transcription of pro-inflammatory

cytokine genes, induction of nuclear
factor erythroid 2-related factor 2
(Nrf2), increased cAMP response
element-binding protein (CREB)

activity)

[102–106]
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Table 2. Cont.

Signaling Pathway NTFs Effect References

Inhibition of c-Jun N-terminal
kinase (JNK)

Cerebral dopamine
neurotrophic factor (CDNF);

BDNF
Regulation of microglia activation [106–108]

Unknown CDNF Inhibition of α-synuclein aggregation [109]

Stimulation of
Hippo/yes-associated

protein (YAP)
GDNF Reduction of amyloid beta

(Aβ)-induced inflammation [110]

3.1. The Role of BDNF in Neuroinflammation

Since BDNF downregulation and neuroinflammation play a crucial role in the patho-
genesis of many brain disorders, the question arises whether BDNF can affect inflammatory-
related processes and reduce pro-inflammatory progress. However, there is still little re-
search into the mechanism underlying the anti-inflammatory properties of BDNF. Liang et al.
have demonstrated that overexpression of BDNF in a spinal cord injury model induced
the expression of TrkB and suppressed the p38-MAPK signaling pathway, thus reducing
inflammation, as indicated by decreased levels of TNF-α, IL-1β, IL-6, IL-18, inducible
nitric oxide synthase (iNOS), and COX-2 [100]. Inverse results were obtained when TrkB
ANA-12 inhibitor was used. One of the key processes induced in response to BDNF action
by the stimulation of PI3K/Akt seems to be the modulation of NF-κB, which is a pivotal
mediator of chronic stress and inflammatory responses. An additional mechanism of
anti-inflammatory properties of BDNF is the reduction of the activity of glycogen synthase
kinase 3 beta (GSK-3β) after the stimulation of PI3K/Akt and extracellular signal-regulated
kinase (ERK) 1/2 pathways [102–105]. The inhibition of GSK-3β prevented the phospho-
rylation of NF-κB, diminished the production of pro-inflammatory cytokines [111], and
increased cAMP response element-binding protein (CREB) DNA binding activity [112].
Wu et al. have revealed the ability of BDNF to inhibit microglial activation due to an upreg-
ulation of MAPK-1 and subsequent dephosphorylation of p38 and JNK, and its ability to
activate the Erk-CREB pathway [113]. It has been demonstrated that activated CREB could
inhibit NF-κB activity through competition for limited amounts of CREB-binding protein,
an important coactivator in regulating the transcriptional activity of these factors [113,114]
Interestingly, it was found that the BDNF affecting PI3K/Akt and ERK signaling pathways
induces nuclear factor erythroid 2-related factor 2 (Nrf2) activation [106,115], which is
mainly known as a regulator of cellular antioxidant defense but has also been shown to
be involved in anti-inflammatory pathways by interacting with NF-κB signaling. In Nrf2-
mediated NF-κB inhibition, heme oxygenase-1 (HO-1) plays an important role, inhibiting
NF-κB-mediated transcription of adhesion molecules, such as E-Selectin and vascular cell
adhesion molecule 1 (VCAM-1), in endothelial cells [116]. Understanding how neuroin-
flammation is involved in CNS disorders and what role BDNF plays in neuroinflammation
may be critical to the development of therapeutic strategies. The interaction between BDNF
and neuroinflammation is strongly related to the interaction with NF-κB. However, the
exact mechanism of this interaction is not well understood, so there is a need for more
research into the anti-inflammatory properties of BDNF.

3.2. The Role of GDNF in Neuroinflammation

Since chronic neuroinflammation plays a key role in the pathomechanism of many
neurodegenerative diseases, such as AD and PD, and in neurodevelopmental disorders
such as autism, compounds that have a modulating effect on this harmful process are
wanted. Recent studies indicate that GDNF may have anti-inflammatory properties. Rocha
and colleagues have found that GDNF derived from astrocytes was able to inhibit rat
midbrain microglial activation induced by the TLR2 agonist Zymosan A by stimulating
the intracellular signaling cascade GFRα1–Ret [57]. Furthermore, Chou et al. have shown
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therapeutic effects of adenoviral-mediated GDNF on neuropathic pain behaviors in rats by
inhibiting microglia activation and cytokine production via modulation of p38 and protein
kinase C (PKC)/iNOS signaling [101]. Bilateral intra-striatal administration of GDNF in
Gdnf+/− mice normalized several parameters including locomotor activity, GDNF protein
levels within the striatum and SN, the number of TH-positive neurons in the SN, upregula-
tion of COX-2, and downregulation of superoxide dismutase (SOD)-2 protein levels in the
SN. Rickert et al. have demonstrated that GDNF can reduce the production of microglial
NO and mRNA levels of IL-1β, TNF-α, IL-6, and COX-2 by reducing phosphorylation of
p38, which could result in subsequent neuroprotection [97]. Different microenvironments in
neurological pathologies, and especially in in vitro conditions, may lead to different forms
of microglial activation. Experiments performed by Wang et al. have indicated that in suba-
cute cerebral ischemia, activated microglia exert a neuroprotective role through balancing
the expressions of GDNF and TNF-α, whereas the inhibition of microglial activation by poly
[ADP-ribose] polymerase 1 (PARP-1), the co-activating factor of nuclear factor NF-κB sig-
naling pathway, attenuates GDNF production [117]. Researchers speculate that inhibition
of microglial activation attenuates the phosphorylation level of ERK, leading to reduced
GDNF secretion [117]. Using a 6-hydroxydopamine (6-OHDA) rat model of PD, Wang et al.
have demonstrated that lipid-coated GDNF microspheres injected into the striatum and
stimulated with low-frequency ultrasound reduced apomorphine-induced rotations, in-
creased striatal dopamine and nigral TH levels, and reduced caspase-3, TNF-α, matrix
metalloproteinase 9 (MMP-9), and MHC II compound levels induced by 6-OHDA [118].
Qing et al. have demonstrated the role of the Hippo/ yes-associated protein (YAP) pathway
in the anti-inflammatory effect of GDNF against Aβ [110]. The Hippo/YAP signaling
pathway was shown to be involved in the renewal of neural stem cells, the proliferation
of neural progenitor cells, differentiation and activation of glial cells, and myelination by
glial cells as well as in the development of inflammatory-related diseases [119]. Qing’s
group revealed that treatment with GDNF upregulated YAP expression and reduced the
production of TNF-α, TGF-β, IL-1β, and IL-12β, in a dose-dependent manner, whereas
YAP knockdown lowered the function of GDNF in microglial cells. There is some indication
that modulating microglial polarization may be a suitable strategy to treat neuroinflam-
mation. Zhong et al. have shown the ability of GDNF produced by adipose-derived stem
cells (ADSCs) to inhibit the microglia M1 phenotype, reduce the release of inflammatory
TNF-α and iNOS, and promote the M2 phenotype by upregulating the PI3K/Akt pathway
and then increasing the production of anti-inflammatory IL-10, IL-4, and TGF-β1 [120].
Collectively, these data further support the important role GDNF plays in maintaining the
normal activation state of microglia and protecting neurons, especially dopaminergic ones.

3.3. The Role of CDNF in Neuroinflammation

CDNF has demonstrated protective and restorative in neuropathology associated
with ER stress and was shown to be able to suppress inflammation and apoptosis [107].
Zhao et al. have provided evidence that CDNF reveals the anti-inflammatory properties by
inhibition of JNK but not the p38 or ERK signaling pathways in LPS-induced microglia [96].
Furthermore, in further studies, authors have indicated the involvement of CDNF in
the reduction of LPS-induced inflammation through the competitive inhibition of Akt
phosphorylation and suppression of downstream pathways, including forkhead box protein
O1 (FoxO1) and mTOR signaling [105]. Another study showed that the modulation of
inflammatory responses caused by CDNF is not only by decreasing microglia/macrophage
recruitment but also regulating its polarization and enhancing M2 subset polarization [121].
Degeneration of dopaminergic neurons can be caused by several processes, among which
the oligomerization of α-synuclein and the deposition of these forms of α-synuclein in
the cytoplasm of neurons play a key role. Albert et al. have identified a direct inhibitory
effect of CDNF on α-synuclein aggregation, mediated by its high-affinity association with
α-synuclein monomers. CDNF application reduced preformed fibrils (PFFs) uptake by
approximately 25%, and CDNF had a stronger effect on oligomeric species as opposed to
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the fibrillar form [109]. The inhibitory effect of CDNF on α-synuclein aggregation may be
due to ER stress modulation and UPR modulation or binding to α-synuclein or reduction
of α-synuclein uptake by its receptors. Even though phosphoSer129-α-synuclein inclusions
were detected in the rodent brains after PFFs injection into the striatum, significant loss of
TH was not observed and the effects of CDNF on the number of phosphoSer129-α-synuclein
inclusions were not indicated in the SN. CDNF likely affects the localization and the kinetics
of the association of α-synuclein to the aggregates but not its total levels [109]. Lindahl et al.
also did not observe a change in the number of dopaminergic neurons in SN and the
concentration of dopamine and its metabolite in the striatum in Cdnf−/− mice; however,
there was an age-dependent deficit in the function of the dopamine system in Cdnf−/− male
mice observed as D-amphetamine-induced hyperactivity, aberrant dopamine transporter
function, and as increased D-amphetamine-induced dopamine release [122]. Although
CDNF receptors and their signaling pathways are still poorly understood, there are more
and more reports of its neuroprotective and neurorestorative effects on TH-positive cells in
the nigrostriatal dopaminergic system and its inhibitory effect on the synthesis and release
of pro-inflammatory cytokines that reduce neuroinflammation.

3.4. The Role of NGF in Neuroinflammation

Since a significant increase in NGF synthesis has been reported in a wide range of
inflammatory conditions [78,123,124], NGF is considered to be one of the mediators in
crosstalk between the nervous and immune systems. The way by which NGF modulates
the immune response is however still not fully understood. NGF is known to support the
growth of cholinergic neurons [125,126] and is also associated with embryonal development
and the differentiation of peripheral neuronal cells [127]. Tuszynski has shown that intra-
parenchymal NGF infusions in rats prevented the degeneration of basal forebrain choliner-
gic neurons compared to vehicle-infused animals and cholinergic axons sprouted toward
the NGF infusion in an apparent gradient-dependent manner [128]. It was demonstrated
that brain cholinergic signaling may regulate local brain inflammation. Terrando et al.
have revealed the effect of trauma and endotoxemia on brain function in the context of
cholinergic signaling [129]. Administration of a selective α7 subtype nicotinic acetylcholine
receptor (α7 nAChR) agonist after LPS significantly improved neuroinflammation and
hippocampal-dependent memory dysfunction in mice. The mechanism underlying this
process was likely the modulation of NF-κB activation in monocytes and regulation of the
oxidative stress response through nicotinamide adenine dinucleotide phosphate (NADPH)
signaling. NGF increases the density of innervation, sprouting of axonal endings, and
dendritic arborization of neurons, and in the conditions of the inflammatory process it can
lead to indirect regulation of the immune response, but also the regulation of the production
of neurotransmitters and neuropeptides that have a direct impact on peripheral immune
cell [78]. Prencipe et al. have reported an increase in TrkA expression in monocytes after
TLRs stimulation. NGF, via its high-affinity receptor TrkA exerted an anti-inflammatory
effect by increasing Akt phosphorylation, inhibiting GSK-3β activity, reducing IκB phos-
phorylation and p65 NF-κB translocation, and increase of nuclear p50 NF-κB binding
activity [130]. Furthermore, a study performed by Fodelianaki et al. revealed that NGF
binding to TrkA downregulated LPS-induced production of pro-inflammatory cytokines
and NO in primary mouse microglia and inhibited TLR4—mediated activation of the
NF-κB and JNK pathways [108]. Therefore, NGF/TrkA activation may be one of the signals
that, when inflammatory stimuli act and the activation of the immune system occurs, is
involved in the regulation of the balance between pro- and anti-inflammatory pathways.

4. Possible Interaction between Neurotrophic Factors, Mitochondria,
and Neuroinflammation

The pathomechanism of neurodegenerative disorders such as AD and PD is morpho-
logically distinct and still only partially understood; however, it is a component of several
general pathological features, such as mitochondrial dysfunction, oxidative stress, and
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associated neuroinflammation. Loss of trophic support for neurons also plays a key role
in neurodegeneration. For this reason, it was hypothesized that NTFs may control the
course of inflammation by regulating the function and energy capacity of mitochondria.
Mitochondria are targets of stress by many factors, including aging, pathogens, misfolded
and/or aggregated proteins, such as α-synuclein, and environmental factors. Mitochon-
drial stress results in the release of DAMPs that activate innate immune receptors and
downstream signaling. Chronic activation of specific pathways results in mitochondria-
dependent inflammation (mitoflammation) and associated pathology. Growing evidence
from animal and in vitro studies have suggested that mitochondrial function and NTFs,
particularly BDNF, have a complex and reciprocal relationship, and that NTFs and mito-
chondria can modulate each other’s functions. It was shown that the neurotrophic receptor
TrkB is embedded in the mitochondrial membranes [131], which supports the thesis that
neurotrophins may modify mitochondrial functions. Recent data have described that
NTFs may affect cytoskeletal rearrangements and axonal branching, influence the motility
and actin-based docking of mitochondria in axons, induce an initial burst of fission of
mitochondria, or affect mitochondrial integrity by coupling of the oxidation to adenosine
triphosphate (ATP) synthesis [132–134]. Mitochondria act as intracellular Ca2+ buffers, but
when mitochondria are overloaded with Ca2+, there is an increase in ROS production, ATP
synthesis inhibition, and mitochondrial permeability transition pore (mPTP) opening, lead-
ing to the release of proapoptotic proteins and the processes of necrotic and apoptotic cell
death. Although ROS at physiological concentrations plays a pivotal role in several signal-
ing pathways, such as cell cycle regulation, phagocytosis, and enzyme activation, excessive
generation of ROS leads to several harmful effects, including mitochondrial damage, the
release of mitochondrial DNA (mtDNA), and, in turn, chronic mitoflammation and disease.
Many studies have been conducted to explore the mechanism by which mtDNA is released
into the cytoplasm space, which can cause cellular stress. Release of mtDNA following mi-
tochondrial outer membrane permeabilization (MOMP) in a BAX/BAK-dependent manner
allows the extrusion of newly unstructured inner membrane, facilitating further mtDNA
release into the cytoplasm, activating cyclic GMP–AMP synthase (cGAS) and generating
cyclic guanosine monophosphate–adenosine monophosphate (cGAMP), which binds di-
rectly to the stimulator of interferon genes (STING) pathway and further recruits and
activates tank-binding kinase 1 (TBK1) [135,136]. TBK1 induces the expression of various
interferon (IFN)-stimulated genes and activates the NF-κB signaling pathway through
phosphorylation, thus increasing the expression of IL-6 and TNF-α [135,137]. Furthermore,
the accumulation of mtDNA in the cytoplasm may spread to the extracellular space and
act on nearby microglia and astrocytes [138]. ROS formation is tightly associated with en-
dothelial cell dysfunction, and BDNF has been shown to possess a microvascular protective
effect. BDNF secreted by brain microvascular endothelial cells was observed to suppress
mitochondrial swelling, inhibit oxidative stress evaluated by intracellular ROS formation,
SOD activity, malondialdehyde, and NO content, prevent early apoptosis under hyper-
glycemic conditions, and induce mitophagy through the hypoxia-inducible factor 1/BCL2
interacting protein 3 (HIF-1α/BNIP3) signaling pathway [139]. It has been also shown that
BDNF induces the nuclear translocation of Nrf2, thus protecting cells against the oxidative
damage caused by injury and inflammation. Bruna et al. have revealed that BDNF-induced
Nrf2 nuclear translocation requires ROS and ryanodine receptor-mediated Ca2+ signals,
and the participation of the classical ERK and PI3K signaling pathways [106]. In addi-
tion, BDNF controls mitochondrial transport in neurons and affects mitochondria function
through the regulation of the respiratory control index (RCI) [140]. This BDNF-evoked
increase in the efficiency of respiratory coupling, ATP synthesis, and organelle integrity
has important implications for therapeutic approaches in neurodegenerative diseases [22].
Another research group has shown that depriving sympathetic neurons in cell culture of
NGF led to a Bax-dependent increase of mitochondrial-derived ROS in response to leakage
of electrons from the mitochondrial electron transport chain. When NGF was re-added to
these cells, glutathione redox cycling was activated, reducing H2O2 levels and blocking
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the release of cytochrome c [141,142]. Sun et al. have demonstrated that NGF reduces the
production of ROS in the primary cortical neurons exposed to oxygen-glucose deprivation
through a higher expression of HO-1 controlled by the MAPK/ERK survival pathway [143].
There is still a gap in research into the direct effects of NTFs on mitochondrial function in
the context of neuroinflammation. The abovementioned studies indicate, however, that the
link between the action of NTFs and the alleviation of neuroinflammation is their inhibitory
effect on oxidative stress, including the level of mitochondria-derived ROS production.

5. Conclusions and Further Prospects

Glial cell activation and neuroinflammation, mitochondrial dysfunction, and dysregu-
lation of NTFs contribute to the pathomechanism of various diseases of the CNS. There is a
growing interest in the interaction between the nervous and the immune system and the
impact of this relationship on homeostasis or, in cases when pathological stimuli act, on the
development of inflammatory diseases. Thus, the normalization of glial dysfunction or the
upregulation of neuroprotective ability may prevent progressive neurodegeneration. Data
from the literature show that NTFs are mediators that can regulate neuronal cell function,
immune cell activity, and oxidative stress. NTFs exert various effects and, depending on
the receptor on which they act, may have a pro-inflammatory effect activating immune
responses or anti-inflammatory properties activating the signaling cascades necessary to
abolish inflammatory response and limit tissue damage. This review summarizes the
ability of NTFs to influence the activity of immune cells. The proposed mechanism for this
neuroimmune crosstalk may be due to the overlapping pattern of NTF expression in the
immune and nervous systems.

Based on the promising results of animal studies [64,101,109,113,121,131], it was hy-
pothesized that NTFs could be a potential regenerative tool in inflammatory and degenera-
tive conditions of the CNS. Each NFT has its unique profile of action on specific subsets
of neurons to ensure their optimal function. Considering this, GDNF and CDNF could
be of particular interest for PD, NGF could be of particular interest for AD, and BDNF,
because of its rich expression in the brain, could provide support for AD, PD, spinal cord
injury, multiple sclerosis (MS), and Huntington’s disease (HD). Therefore, some NTFs have
been investigated as potential therapeutic therapies in preclinical and/or clinical trials.
Delivering NTFs to degenerating neurons appears to be a powerful neuroregenerative
agent; however, the greatest challenge is found in determining how they should be de-
livered to their destination in the brain. Studies on the possibility of NTFs crossing the
blood–brain barrier (BBB) are not clear. Some researchers state that some NTFs cross the
BBB [144,145] and others do not [146]. Furthermore, there are no such studies on all NTFs.
For the delivery of peripherally administered NTFs to the CNS, strategies for their chemical
modification and/or conjugation are promising [147].

The first clinical trial with NTFs was the systemic administration of ciliary neu-
rotrophic factor (CNTF) in amyotrophic lateral sclerosis (ALS) patients. Problems of CNTF
with crossing the BBB and side effects terminated the trial [148–152]. Then, GDNF was
directly injected into the cerebral ventricles of PD patients; however, side effects and no
beneficial effects were seen [153]. The clinical phase I safety trial of direct intraputamenal
GDNF infusion in patients with PD performed by Patel showed significant symptomatic
improvement [154]; however, another randomized, controlled, and blinded clinical trial
did not confirm these results [155]. In the next step, to solve problems with distributions
of NTFs in the brain, Bachoud-Le Âvi et al. [156] and Aebischer et al. [157] introduced
a macro-encapsulation technique, in which CTNF was administered stereotactically into
the lateral ventricle of patients with HD and ALS. No toxicity, but also no clinical benefits
were observed. Tuszynski et al. successfully performed a phase I trial of ex vivo NGF
gene delivery in eight individuals with mild AD, implanting autologous fibroblasts ge-
netically modified to express human NGF into the forebrain. Cognitive improvements
and increases in cortical 18-fluorodeoxyglucose after treatment in serial PET scans were
observed. Furthermore, a brain autopsy from one subject confirmed NGF expression in
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the cell grafts and robust growth responses to NGF [158]. Tuszynski et al. conducted
another phase I clinical trial in which 10 patients with early AD underwent NGF gene
therapy using ex vivo or in vivo gene transfer, and post-mortem analysis on 10 subjects
with survival times ranging from 1 to 10 years post-treatment was performed. NGF gene
therapy was safe and resulted in NGF-related axonal sprouting in all patients. This study
also showed that therapeutic genes and activation of cell signaling were indicated in neu-
rons with or without tau pathology [159]. Recently, more and more attention has been
paid to the possibility of using CDNF in the therapy of PD. In a 2020 safety and efficacy
study of intracerebrally administered CDNF protein therapy in patients with PD, use of a
neurosurgically implanted drug delivery system (DDS) was completed; however, results
were not made available [160]. The efficacy of some clinical trials indicates the powerful
potential of NTFs in the therapy of CNS disorders. The limitations of NTF therapies are
related to problems with the pharmacokinetics of NTFs and their proper delivery to the
target site in the brain, rather than to their dubious neuroregenerative effects.

There is still a need for further research that would explore the relationship between
the complex etiology of CNS diseases, NTF levels, and their interaction with immune cells.
Understanding how NTF signaling pathways affect some molecular processes and the
mechanism by which NTFs induce neuroprotective and anti-inflammatory effects can help
against CNS damage and shed new light on the treatment of CNS disorders.
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