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Abstract: Using meta-analyses, we introduce a unicellular attractor (UCA) model integrating essential
features of the ‘atavistic reversal’, ‘cancer attractor’, ‘somatic mutation’, ‘genome chaos’, and ‘tissue
organization field’ theories. The ‘atavistic reversal’ theory is taken as a keystone. We propose a
possible mechanism of this reversal, its refinement called ‘gradual atavism’, and evidence for the
‘serial atavism’ model. We showed the gradual core-to-periphery evolutionary growth of the human
interactome resulting in the higher protein interaction density and global interactome centrality in
the UC center. In addition, we revealed that UC genes are more actively expressed even in normal
cells. The modeling of random walk along protein interaction trajectories demonstrated that random
alterations in cellular networks, caused by genetic and epigenetic changes, can result in a further
gradual activation of the UC center. These changes can be induced and accelerated by cellular
stress that additionally activates UC genes (especially during cell proliferation), because the genes
involved in cellular stress response and cell cycle are mostly of UC origin. The functional enrichment
analysis showed that cancer cells demonstrate the hyperactivation of energetics and the suppression
of multicellular genes involved in communication with the extracellular environment (especially
immune surveillance). Collectively, these events can unleash selfish cell behavior aimed at survival
at all means. All these changes are boosted by polyploidization. The UCA model may facilitate an
understanding of oncogenesis and promote the development of therapeutic strategies.

Keywords: oncogenesis; cancer; atavistic reversal; interactome; gene expression; phylostratigraphy;
polyploidy

1. Introduction

The ‘War on Cancer’ was declared in 1971. Now, after a half hundred years, this
war is not yet won, albeit certain progress in patients’ survival taking place, mostly be-
cause of medical programs of early detection [1]. Possibly, this unsatisfactory state of
the art is due to a lack of clear understanding of the nature of cancer and its origin. The
phenomenology is well outlined in the hallmarks of cancer first formulated by Hanahan
and Weinberg and extended later [2–6]. The main hallmarks include proliferative advan-
tage, replicative immortality, inducing/accessing vasculature, invasion and metastasis,
reprogramming cellular metabolism, avoiding immune destruction, dedifferentiation, and
transdifferentiation [2–6].

However, albeit the hallmarks providing a fine description of what goes wrong in
cancer cells, they do not explain why those alterations appeared [4]. The prevailing
paradigm—a classic gene-centered ‘somatic mutation’ theory (SMT)—suggests that cancer
is caused by an alteration in a limited number of special genes (in simple formulation, gain
of function in oncogenes or loss of function in tumor suppressors) [7,8]. However, recent
discoveries raised issues in the SMT. Even the former active proponents of SMT raised
concerns recognizing an increasing complexity of the problem [7]. The main issues with
the SMT are as follows.
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The gene mutation pattern shows remarkable intratumor differences and significant
changes over time, from the early tumor development up to the spreading of distant
metastases [8]. A distinct set of genes shows mutations during different stages of cancer
development, and doubts about the causative role of these genes are mounting [8]. The
expression array analyses of various breast cancers showed that different gene sets were
equally useful in predicting future clinical behavior but contained almost no genes in
common [9,10]. Several important mutations were found only in a limited percentage of
cancer cells of the same tumor, whereas a significant part of neoplastic cells do not show
these mutations [11,12]. In a similar vein, mutations usually associated with cancer were
also found in noncancerous tissues [13–15]. Importantly, the mutation load and spectra
of normal cells resemble those of cancer cells [16]. As for the latter, a bibliometric study
showed that nearly every gene (87.7%) was considered in the literature in association with
cancer [17]. The multitude of altered molecular mechanisms were identified in cancer cells,
most with low clinical predictability [18].

Furthermore, there is a discrepancy between the experimental data obtained on rodent
models and human cells. Cancer transformation caused by the overexpression of oncogenes
was achieved mostly in rodents, whereas human cells display a remarkably high resilience
to these manipulations [19–21]. Mutated oncogenes, when incorporated into normal human
cells, failed to immortalize or transform them [19]. The rodent cells are much more easily
immortalized, which is one of the hallmarks of cancer [21]. This is probably because of a
special way of evolution in the murine-like rodents, where natural selection favored the
speed of development and reproduction at the expense of reliability of organization [22,23].
These results suggest an involvement of systemic factors, which cause the discrepancy
between the human and rodent data.

Most carcinogens are mutagenic, yet up to 20% of known carcinogens lack genotoxic
activity [24,25]. Furthermore, for different chemicals, the correlation between mutagenic
and carcinogenic potencies is rather weak (r~0.3) [24]. The role of non-genetic plasticity
in the origin and development of cancer is increasingly emphasized [26–29]. Generally,
there is a paradox: depending on context, both the increase and decrease in a certain
molecular player can correlate positively with tumor malignancy [8]. There is an opinion
that the reductionist framework (gene-centered approach) can be inadequate for grasping
the complexity of oncogenesis [8,18,29,30].

These issues evoked interest in the more systemic concepts dealing with the context
of gene activity, which can be cell- or tissue-centered. The most important for our study
is the cell-centered atavistic theory, suggesting that cancer is an evolutionary reversal
to a unicellular state [31–34]. The genes of unicellular (UC) origin are overexpressed in
cancer tissues, whereas the genes appearing at multicellular (MC) evolutionary stages are
downregulated [35–37]. The human gene coexpression network and protein interaction
network contain the giant cluster strongly enriched in the genes of UC origin and corre-
sponding functions [38,39]. The expression of this cluster is upregulated in cancers [38,40].
A recent refinement of the atavistic theory (‘serial atavism’) suggests that cancer onset and
progression involve a series of reversals [34]. Notably, the atavistic model relates rather
to adult than childhood cancers, which are quite different and much less frequent than
cancers associated with aging [34].

The other cell-centered, ‘cancer attractor’ theory suggests that oncogenesis is caused
by a shift in cellular program activity towards a cancer attractor (stable state of cellular
systems), which is achieved mostly via epigenetic mechanisms [29,41,42]. However, with a
minor exception of transmissible tumors, cancers are not inheritable and reduce the fitness
of a host organism. Therefore, it is unlikely that natural selection could create a special
cancer attractor. Yet, a hybridization of this concept with the atavistic theory can solve this
problem. The clusters of protein interaction networks have denser interactions within than
between them, therefore they may serve as attractors for cellular programs. Importantly,
the UC giant cluster shows a higher inside/outside connection ratio compared with the
MC clusters, which suggests a stronger attractor effect [39]. In other words, evolutionary
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history can explain the appearance of the UC attractor (arising because of activation of
ancient UC programs) but not of a particular cancer attractor.

The cell-centered ‘genome chaos’ theory assumes that oncogenesis is caused not
so much by point mutations but rather by a large-scale genome rearrangement [18,30].
Chromosome instability is a typical feature of cancer cells [43,44]. A special assumption
of the ‘genome chaos’ theory is that this genome rearrangement can be adaptive under
stressful conditions [18,30]. In other words, chromosome recombination allows cancer cells
to search for survival via genetic and epigenetic alterations (genes in the altered genome
environment can change their expression pattern). This theory can be reconciled with the
‘atavistic reversal’ because it also assumes the appearance of selfish UC-like behavior of
cancer cells, which was acquired during the evolutionary history.

The tissue-centered ‘tissue organization field’ theory (TOFT) suggests that gene muta-
tions are not the cause of oncogenesis but rather its by-products [8,45,46]. According to the
TOFT, cancer is caused by the disruption of normal tissue organization. The cases of tumor
suppression by the replacement in the normal microenvironment support this theory [47].
Another supporting fact is the foreign-body-based carcinogenesis, when tumors develop
in the proximity of inserted materials, devoid of chemical activity [48,49]. The insertion
of a foreign body can cause local tissue disorganization that is followed by oncogenesis.
The metastases, when cancer cells proliferate in the novel microenvironment, seemingly
contradict the TOFT. However, only a very tiny part (<0.02%) of invading cells develop
macro-metastases [50], which suggests that most cancer invasions are consistent with the
TOFT. The TOFT assumes that the default internal cell state in MC organisms is proliferation
as in UC organisms, which is bounded only by tissue constraints [8,45,46]. This assumption
is an overstatement because cells in MC organisms are very different. If placed in the
culture (i.e., when there are no tissue constraints), the terminally differentiated cells do not
proliferate at all, while the others proliferate only in the presence of growth factors [51,52].
Were proliferation the default state of normal cells, the growth factors were not needed, and
even with growth factors, proliferation of cells from adult MC organisms is constrained by
the Hayflick limit [53,54]. However, after replacement of ‘default proliferation’ by a UC
attractor, the TOFT can be reconciled with the ‘atavistic reversal’ theory.

On the grounds of bioinformatic analyses performed here, we propose a unicellular
attractor (UCA) model, which integrates essential features of the ‘atavistic reversal’, ‘cancer
attractor’, SMT, ‘genome chaos’, and ‘tissue organization field’ theories. We propose a
possible mechanism of the ‘atavistic reversal’ and its refinement called ‘gradual atavism’.
In addition, we provide evidence supporting the ‘serial atavism’ model, which is a recent
refinement of the ‘atavistic reversal’ theory [34].

2. Results
2.1. The Unicellular Attractor (UCA) in the Human Interactome

The human protein interaction network demonstrates the gradual core-to-periphery
evolutionary growth (Figure 1A–C). Both the local and the global centralities of the hu-
man interactome decrease with the decrease in the evolutionary age of encoding genes.
The local centrality is defined by the number of direct (one-step) interactions of a protein
(Figure 1A). The global centralities are presented by two measures: closeness and between-
ness (Figure 1B,C). The closeness is the reciprocal of the sum of the length of the shortest
paths between a protein and all other proteins. The more central a protein is in the network,
the closer it is to all other proteins. The betweenness is the number of the shortest paths
between all pairs of other proteins passing through a given protein. The more central a
protein is in the network, the higher the number of the shortest paths passing through
it. These observations show that the products of younger genes tend to participate on
the periphery of the interactome. Therefore, the ancient network center may serve as an
attractor for cellular programs in the cases of random alterations in protein interactions.
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Figure 1. The evolutionary profile of local interaction density and global centrality measures in the
human interactome. (A) The number of direct (one-step) interactions (degree). (B) Closeness (the
reciprocal of the sum of the length of the shortest paths between a protein and all other proteins). The
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more central a protein is, the closer it is to all other proteins in the interactome. (C) Between-
ness (the number of the shortest paths between all pairs of other proteins passing through a given
protein). The more central a protein is in the network, the higher the number of the shortest
paths passing through it. The protein interactions are from the STRING database [55], and the
gene phylostratic mapping (shallow) is from [56]. Phylostrata: 1—cellular organisms (Prokary-
ota); 2—Eukaryota; 3—Opisthokonta; 4—Metazoa; 5—Eumetazoa; 6—Bilateria; 7—Chordata;
8—Vertebrata; 9—Euteleostomi; 10—Tetrapoda; 11—Amniota; 12—Mammalia; 13—Theria;
14—Eutheria; 15—Boreoeutheria; 16—Primates; 17—Hominidae. The pictures at the top show
recent organisms corresponding to phyletic branching used for human gene dating.

This suggestion was tested by the modeling of random walks along the protein
interaction trajectories in the human interactome. A walk started from one of the youngest
proteins (belonging to the 17th phylostratum), taken randomly. This was the first protein.
From all its interactants, one was chosen randomly (second protein), and the next step
started already from this protein, again to a randomly chosen next interactant (third protein),
and so on. The reverses to the first and other previous proteins were allowed. The series
of walks of a different length (from 5 to 10,000 steps) were tested. To ensure statistical
significance, there were 10,000 repeats of each random walk, each repeat starting randomly
from one of the proteins in 17th phylostratum. The number of repeats, which ended in each
phylostratum, was normalized to the number of genes belonging to this phylostratum. We
assume that these random walks can simulate random alterations in the interactome caused
by mutations in encoding genes or disturbances in gene expression or protein configuration.
It was shown previously that alterations in protein interactions are associated with changes
in gene expression [57].

The random walks ended much more frequently in the UC phylostrata than in the
MC phylostrata (Figure 2). Already after a few steps, the walk ends begin to appear in the
UC phylostrata, with a depression between the most recent phylostratum (from which the
walks started) and the UC center (Figure 2A). This observation indicates the existence of
the UC attractor. With the increase in the number of steps, the frequency of walks ending
in the UC phylostrata only grows. After about 30 random steps, the frequency of walks
ending in the UC phylostrata stabilizes, indicating a balanced state (Figure 2B).
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Figure 2. The results of random walks along the protein interaction trajectories in the hu-
man interactome: the frequency of walk ends in each phylostratum normalized to gene num-
ber in this phylostratum (all walks began in 17th phylostratum): (A) walks of 5–20 steps long;
(B) walks of 30–10,000 steps long. The enrichment of walk ends in the UC center is highly sig-
nificant (beginning from 10 steps, p < 10–16). Phylostrata: 1—cellular organisms (Prokaryota);
2—Eukaryota; 3—Opisthokonta; 4—Metazoa; 5—Eumetazoa; 6—Bilateria; 7—Chordata;
8—Vertebrata; 9—Euteleostomi; 10—Tetrapoda; 11—Amniota; 12—Mammalia; 13—Theria;
14—Eutheria; 15—Boreoeutheria; 16—Primates; 17—Hominidae. The pictures at the top show
recent organisms corresponding to phyletic branching used for human gene dating.

There are three phases in the stabilized picture: (i) the peak in the 1–3 phylostrata (UC)
with a frequency that is higher than expected from the number of genes belonging to these
phylostrata, (ii) the plateau in the 4–6 phylostrata (Metazoa-Bilateria) with a frequency that
is similar to expected, and (iii) the lower than expected frequency in the latter phylostrata
gradually declining towards more recent times (Figure 2B). These results suggest that
random alterations in protein interactions can cause gravitation of protein interaction
activity towards the UC center, which indicates the existence of the UC attractor. The
strength of this attractor gradually declines towards younger proteins.

2.2. Gene Expression Levels in Different Phylostrata

Similar to the interactome centrality measures and the results of random walk model-
ing along protein interaction trajectories, the level of gene expression is also higher in the
UC genes and declines towards younger genes (Figure 3A). Roughly, there are the same
three phases as in Figure 2B: (i) the peak in the 1–3 phylostrata (UC), (ii) the plateau in
the 4–6 phylostrata (Metazoa-Bilateria), and (iii) the decline in the latter phylostrata. This
observation indicates that the UC center of cellular networks is maintained in the more
active state, compared with more recent periphery. Notably, there is a minor distortion in
the monotonity of decline across the UC phylostrata in all tested measures—interactome
centrality, random walk modeling, and gene expression levels. The genes from the second
phylostratum show higher values than the genes from the first phylostratum. This exception
suggests that after the origin of eukaryotes (at the second phylostratum), the informational
processes dealing with epigenetic regulation (chromatin maintenance and modification)
put forward on the central place in cellular networks (interactome and transcriptome) at
the expense of metabolic pathways, which appeared mostly at the first phylostratum.
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Figure 3. The evolutionary profile of gene expression levels in normal and non-invasive cancer cells.
The analysis of means (ANOM) plot showing which phylostrata means are different from the total
mean: (A) normal cells in the ‘breast cancer’ dataset; (B) normal cells in the ‘melanoma’ dataset;
(C) non-invasive cancer cells in the ‘myeloma’ dataset. Red dotted lines show confidence intervals for
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individual phylostrata (p = 0.05). Phylostrata: 1—cellular organisms (Prokaryota); 2—Eukaryota;
3—Opisthokonta; 4—Metazoa; 5—Eumetazoa; 6—Bilateria; 7—Chordata; 8—Vertebrata;
9—Euteleostomi; 10—Tetrapoda; 11—Amniota; 12—Mammalia; 13—Theria; 14—Eutheria;
15—Boreoeutheria; 16—Primates; 17—Hominidae. The pictures at the top show recent organisms
corresponding to phyletic branching used for human gene dating.

2.3. Expression of Ancient Genes Is Upregulated in Cancer Cells in a Gradual Way

In the cancer cells, the expression of older genes is enhanced further, as can be seen
from the cancer/normal fold of expression level (Figure 4A,B). In the invasive cancer cells,
it is enhanced even more as compared with the non-invasive cancer cells (Figure 4C).
The gradual increase in the cancer/normal fold towards more ancient phylostrata is in
accordance with the interactome centrality measures and random walk modeling, which
showed a similar gradual shift towards the UC phylostrata. This phenomenon can be
called the ‘gradual atavism’. The similar increase in the invasive/non-invasive cancer
fold (Figure 4C) supports the ‘serial atavism’ model, which states that cancer onset and
progression involve a series of atavistic reversals [34]. Notably, in the case of expression
folds, there is no distortion of the ‘gradual atavism’ among the 1–2 phylostrata, which was
seen in the interactome centrality, random walk modeling, and expression levels. Probably,
metabolism (involving predominantly genes from the first phylostratum) becomes relatively
more important for cancer cells than epigenetic regulation (involving genes from the
second phylostratum).

The zinc finger C2H2 transcription factors (TF ZF-C2H2), which are expanded via
gene duplication in the human genome mostly in the last phylostrata (10–17) [56], can
slightly modify the pattern of the cancer/normal (or invasive/non-invasive) fold in these
phylostrata (Figure 4A). Their effect is more pronounced in the comparison of polyploid
and diploid cancer cells, which will be described later. For now, it is notable that a minor
distortion of the ‘gradual atavism’ in the invasive/non-invasive cancer cells (the fold
increase in 10–17 phylostrata compared with 7–9 phylostrata) cannot be explained by the
higher expression of TF ZF-C2H2 (Figure 4C).
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Figure 4. The evolutionary profile of gene expression folds: (A) cancer/normal fold in the
‘breast cancer’ dataset; (B) cancer/normal fold in the ‘melanoma’ dataset; (C) invasive/non-
invasive fold in the ‘myeloma’ dataset. Because the detailed picture for all 17 phylostrata is
noisy, the folds for consecutive phylostrata were averaged, roughly in accordance with the ex-
pression levels in Figure 3. The data without ZF-C2H2 genes are shown in red. The moderate
activation of ZF-C2H2 genes in breast cancer cells can be seen (A). Phylostrata: 1—cellular or-
ganisms (Prokaryota); 2—Eukaryota; 3—Opisthokonta; 4—Metazoa; 5—Eumetazoa; 6—Bilateria;
7—Chordata; 8—Vertebrata; 9—Euteleostomi; 10—Tetrapoda; 11—Amniota; 12—Mammalia;
13—Theria; 14—Eutheria; 15—Boreoeutheria; 16—Primates; 17—Hominidae.

2.4. Polyploid Cancer Cells

The presence of polyploid cells in cancers is associated with a poorer prognosis [58–63].
The polyploid cancer cells show a further gradual enhancement of expression of more
ancient genes as compared with diploid cancer cells (‘gradual atavism’) (Figure 5). The
only difference with the cancer/normal and invasive/non-invasive folds is that genes
from the second phylostratum show a higher fold than genes from the first phylostratum.
This picture is in accordance with the interactome centrality measures and random walk
modeling, which show a similar distortion among 1–2 phylostrata. This is probably because
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chromosome/chromatin maintenance (involving genes from the second phylostratum)
is more important than metabolic activity (involving genes from the first phylostratum)
for polyploid-diploid cancer cell transition compared with the basic cancer-normal cell
transition. Because polyploidization presents the progression of cancer, the increase in the
polyploid/diploid cancer fold supports the ‘serial atavism’ model [34].
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Figure 5. The evolutionary profile of gene expression fold in polyploid/diploid cancers (‘pan-
cancer’, the data integrated over about 10,000 cancer samples). The data without ZF-C2H2 genes
are shown in red. The strong activation of C2H2-ZF genes in polyploid cancer cells can be seen.
Phylostrata: 1—cellular organisms (Prokaryota); 2—Eukaryota; 3—Opisthokonta; 4—Metazoa;
5—Eumetazoa; 6—Bilateria; 7—Chordata; 8—Vertebrata; 9—Euteleostomi; 10—Tetrapoda;
11—Amniota; 12—Mammalia; 13—Theria; 14—Eutheria; 15—Boreoeutheria; 16—Primates;
17—Hominidae.

Importantly, the ZF-C2H2 TF showed a significantly higher polyploid/diploid cancer
fold than the other genes from 10–17 phylostrata (Figure 5). These TFs suppress mobile
elements (MEs) by initiating their heterochromatinization [64,65]. The MEs are activated
under stressful conditions because of chromatin opening and remodeling, and ZF-C2H2
TFs are upregulated to counteract ME activity [64,65]. Therefore, the upregulation of ZF-
C2H2 TFs in polyploid cancer cells suggests an activation of MEs, which is in agreement
with the ‘genome chaos’ theory.

2.5. Functional Analysis of Upregulated Genes in Cancer Cells

The genes that are most strongly upregulated in cancer cells are involved in ener-
getics and translation (Figures 6 and 7A). In the invasive vs. non-invasive cancer cells,
DNA replication is added (Figure 7A). In polyploid vs. diploid cancer cells, the processes
dealing with chromosomes and DNA replication are the most strongly upregulated pro-
cesses (Figure 7B). This observation is in agreement with the phylostratic distribution of
the cancer/normal fold in the UC region. This fold is higher in the first phylostratum
(metabolism) for the cancer/normal and invasive/non-invasive comparisons (Figure 4),
but it is higher in the second phylostrata for the polyploid/diploid comparison (Figure 5).
This fact suggests that processes dealing with genetic information are more important in
the polyploidization of cancer cells, whereas the metabolic boost is more prominent in the
cancer-normal transformation. Notably, the ‘female meiotic nuclear division’ is among
most strongly upregulated processes in polyploid/diploid cancer cells (Figure 7B).
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Figure 6. The most strongly enriched GO Biological Processes in the genes that are upregulated in
cancers. Fold difference: the difference between the mean cancer/normal expression fold for a given
process and the mean fold for all processes (log2). The processes with the highest folds (and having
>20 genes) are shown: (A) breast cancer (p < 0.0001 at least); (B) melanoma (p < 0.0001 at least).

2.6. Functional Analysis of Downregulated Genes in Cancer Cells

The genes, which are most strongly downregulated in cancer cells, are involved in
the immune activity (especially the major histocompatibility complex, MHC), plasma
membrane, phagocytic and Golgi-associated vesicles (Figure 8). The same can be seen
in the genes downregulated in the invasive/non-invasive and polyploid/diploid cancer
cells (Figure 9). These observations suggest that communication with the extracellular
environment and compliance with immune surveillance (realized through the MHC) are
suppressed in cancer cells and further suppressed in invasive and polyploid cancer cells.
This observation is in agreement both with the TOFT and the SMT, because suppression of
communication with the extracellular environment can be stipulated by the changes in this
environment and/or realized via the genetic and epigenetic changes within the cell.
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Figure 7. The most strongly enriched GO Biological Processes in the genes that are upregulated in
the invasive and polyploid cancers. Fold difference: the difference between the mean cancer/normal
expression fold for a given process and the mean fold for all processes (log2). The processes with
the highest folds (and having >20 genes) are shown: (A) invasive/non-invasive fold (myeloma)
(p < 0.0001 at least); (B) polyploid/diploid fold (‘pancancer’, the data integrated over about 10,000 can-
cer samples) (p < 0.0001 at least).
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Figure 8. The most strongly enriched GO Cell Components in the genes that are downregulated
in cancers. Fold difference: the difference between the mean cancer/normal expression fold for a
given cell component and the mean fold for all cell components (log2). The components with the
highest folds (and having >10 genes) are shown: (A) breast cancer (p < 0.0001 at least); (B) melanoma
(p < 0.01 at least).
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Figure 9. The most strongly enriched GO Cell Components in the genes that are downregulated in
the invasive and polyploid cancers. Fold difference: the difference between the mean cancer/normal
expression fold for a given cell component and the mean fold for all cell components (log2). The
components with the highest folds (and having >10 genes) are shown: (A) invasive/non-invasive
fold (myeloma) (p < 0.01 at least); (B) polyploid/diploid fold (‘pancancer’, i.e., the data integrated
over about 10,000 cancer samples) (p < 0.0001 at least).

2.7. Evolutionary Origin of Cell Stress and Cell Cycle Genes

The phylostratic distribution of genes involved in the cellular response to stress and
the cell cycle reminds the distribution of interactome centrality, the results of random
walk modeling along protein interaction trajectories, the levels of gene expression, and the
cancer/normal, invasive/non-invasive, and polyploid/diploid folds (Figure 10). The only
exception exists with the cell cycle genes of prokaryotic origin (first phylostratum), which
suggests that informational processes dealing with epigenetic regulation (chromatin and
chromosome maintenance and modification), appearing in the second phylostratum, are
more important for cell cycle activity than metabolic pathways (appearing mostly in the
first phylostratum).
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11—Amniota; 12—Mammalia; 13—Theria; 14—Eutheria; 15—Boreoeutheria; 16—Primates; 
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Figure 10. The evolutionary profile of genes belonging to GO Biological Processes: (A) ‘cel-
lular response to stress’ (GO:0033554); (B) ‘mitotic cell cycle’ (GO:0000278). Red dotted lines
show confidence intervals for individual phylostrata (p = 0.05). For all phylostrata taken
as points, Spearman rank correlation between gene proportion and phylostrata: r = −0.96,
p < 0.0001 (A); r = −0.82, p < 0.001 (B). Phylostrata: 1—cellular organisms (Prokaryota);
2—Eukaryota; 3—Opisthokonta; 4—Metazoa; 5—Eumetazoa; 6—Bilateria; 7—Chordata; 8—
Vertebrata; 9—Euteleostomi; 10—Tetrapoda; 11—Amniota; 12—Mammalia; 13—Theria; 14—Eutheria;
15—Boreoeutheria; 16—Primates; 17—Hominidae. The pictures at the top show recent organisms
corresponding to phyletic branching used for human gene dating.

3. Discussion
3.1. General Model

The human interactome shows the gradual core-to-periphery evolutionary growth,
which results in the higher protein interaction density and global interactome centrality in
the UC center of cellular networks. The random-walk modeling demonstrates that the UC
center serves as an attractor for random steps along protein interaction trajectories (even if
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started from the youngest proteins and normalized to gene number in each evolutionary
stage). These observations suggest that random alterations in the interactome caused
by genetic and epigenetic changes can result in the shift of protein interaction activity
towards the UC center. The strength of the UC attractor gradually declines towards
younger proteins.

Similarly, gene expression is also higher in the UC center and gradually declines
towards younger genes, indicating that the UC center is maintained in the more active
state, compared with more recent periphery. In cancer cells, this effect is enhanced, and
in invasive cancer cells, it is enhanced further. The most strongly upregulated processes
in cancer cells include energetics and translation. In invasive vs. non-invasive cancer
cells, DNA replication is added. In both comparisons (cancer vs. normal and invasive vs.
non-invasive), the genes from the first phylostratum (Prokaryota) are the most strongly
upregulated, which corresponds with the functional analysis revealing energetics and
translation as the most strongly activated processes. This feature is in minor disagreement
with the phylostratic pattern of gene expression, interaction density, interactome centrality,
and random walk modeling in normal cells, where the genes from the second phylostratum
(unicellular Eukaryota) show the highest values. This deviation indicates an important
role of metabolic boost in cancer cells, whereas in normal cells, the informational processes
(regulation of transcription and chromatin modification) are more prominent.

Collectively, these data suggest that the UC center of cellular networks, which already
in normal cells is more active compared with the later network layers, further activates in
cancer cells. Furthermore, the activation of gene expression shows not only the UC/MC
contrast but also a gradual decline across the MC phylostrata towards more recent genes,
which can be called the ‘gradual atavism’. This activation is enhanced in invasive and
polyploid cancer cells. Because invasive and polyploid cancer cells present the progression
of cancer, these observations support the ‘serial atavism’ model, which states that cancer
onset and progression involve a series of atavistic reversals [34].

The UCA model does not contradict the SMT because it suggests that activation of
UC center and relaxation of MC control can be caused by somatic mutations. However, the
difference between the cell-centered UCA and the gene-centered SMT is that the critical
genetic and epigenetic changes causing oncogenesis may belong to a broad gene spectrum,
not necessarily limited to specific genes (oncogenes or oncosuppressors). For instance,
the expression array analyses of different breast cancers showed that different gene sets
were equally useful in predicting future clinical behavior but contained almost no genes in
common [9,10]. Furthermore, both the increase and decrease in the same molecular actor
can correlate positively with tumor malignancy [8].

The genes that are most strongly downregulated in cancer cells are involved in the im-
mune activity (especially the major histocompatibility complex, MHC), plasma membrane,
phagocytic and Golgi-associated vesicles. These cellular network modules are involved in
communication with the extracellular environment and compliance with immune surveil-
lance. Thus, conformity with the MC control, which counteracts the activity of the UC
attractor in normal cells, is suppressed in cancer cells. These observations suggest an
important role of extracellular effects in maintaining the normal cell state, which is in
agreement with the ‘tissue organization field’ theory (TOFT) [8,45,46]. The TOFT states that
cancer is a tissue-based disease. However, these observations do not contradict the SMT
because suppression of communication with the extracellular environment can be realized
via genetic and epigenetic alterations within the cell.

As the SMT cannot completely explain oncogenesis, the same can be said about
the TOFT. Both molecular and biophysical components of the stroma can drive cell fate
commitment in opposite directions, even in the presence of the same stimulus [8]. In
other words, tissue effects also do not determine cell fate completely. Furthermore, TOFT
states that proliferation is the default state for all cells [45,46], which is an overstatement
because, in the culture (when there are no tissue constraints), cells can proliferate only in
the presence of externally provided growth factors [45,46]. In addition, even with growth



Int. J. Mol. Sci. 2023, 24, 6196 17 of 27

factors, the proliferation of adult organism cells is constrained by the Hayflick limit [53,54].
However, after the replacement of ‘default proliferation’ by the UC attractor causing the
within-cell alterations, the TOFT can be reconciled with these observations.

The genes involved in cellular stress response are mostly of UC origin. Therefore, the
upregulation of these genes under stressful conditions can further activate the UC center,
thus becoming a potential first step to oncogenesis. The prolonged intensive stress may
fix this hyperactivation epigenetically. If stress occurs during the cell cycle, this effect may
be even stronger because the cell cycle genes are also mostly of UC origin. In addition,
stress increases the mutation rate due to both direct damage by stressful conditions (e.g., by
reactive oxygen species) and ancient error-prone DNA repair, especially during the cell
cycle when the genome occurs in a most vulnerable state, called ‘proliferation stress’ [66–68].
The relationship between the tissue proliferation activity and the probability of cancer was
shown [69].

Being random alterations, mutations can shift the activity of cellular systems towards
the UC attractor (according to the results of random walk modeling) and destroy mech-
anisms of MC control. When the MC control weakens because of genetic and epigenetic
changes, the activity of cellular networks further shifts towards the UC center (manifested
in the hyperactivation of UC genes in cancer cells), causing a loss of tissue-specific cell
functions (dedifferentiation) and unleashing selfish cell behavior directed at survival by
all means.

Thus, there can be a synergism between the high gene expression in the UC center
and the UC interactome attractor that is triggered by intensive cell stress, especially during
cell proliferation. As a result, the Waddington epigenetic landscape of ontogenesis [70,71],
which, in accordance with the biogenetic law, roughly recapitulates phylogenesis [57,72],
can turn over. (The biogenetic law was validated on the cellular level [57].) In normal
cells, this landscape is slanted towards cell differentiation, yet under stressful conditions it
can be counteracted by the activity of UC attractor, causing landscape turnover and cell
dedifferentiation (Figure 11). This turnover can occur in a series of steps, according to the
‘serial atavism’ model.
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3.2. Cell Learning, Genetic Recombination, and Metastases

The hyperactivation of energetics in cancer cells is probably a reaction to prolonged
intensive stress and the search for survival. This search can activate not only the ancient
UC programs but also create novel programs via adaptation. Importantly, metabolic
reprogramming in cancer cells is associated with the epigenetic remodeling via chromatin
opening [73]. The search for novel pathways to survival is necessary because stressed cells
found themselves under altered conditions of MC organisms, which were not previously
met during both UC and MC life, and therefore require novel solutions. Recent studies
showed that individual cells demonstrate exploratory learning for adaptation to novel
conditions, which is not dependent on pre-existing pathways [50]. This learning is probably
performed by epigenetic remodeling, which searches via trial and error for gene expression
patterns allowing survival under novel stressful conditions. Thus, the yeast cells confronted
with a severe challenge (media to which their biochemical networks were not adapted),
while not dividing, continue to intensively metabolize and finally find an adapted network
configuration and resume proliferation [74]. This adaptation requires a significant amount
of energy; supposedly it is performed via non-genetic means because the adaptation rate is
orders of magnitude higher than expected based on known mutation rates [74].

Notwithstanding their overall reversal to a UC-like state, selfish cancer cells can
obtain at their disposal all genetic and epigenetic arsenals, accumulated during the MC
evolution: the exploitation of the microenvironment, stimulating vascularization, immune
response modulation, cell cooperation, etc. The cancer-associated fibroblasts, i.e., fibroblasts
compelled to help cancer cells, are one of the examples [75,76]. Cell cooperation promotes
many of the hallmarks of cancer via the secretion of diffusible factors affecting cancer
cells or stromal cells in the tumor microenvironment [77]. The acquiring of the genetic
and epigenetic arsenal, which was developed in MC evolution but not specific for a given
cell type, is especially spectacular for metastatic cells invading alien environments. Many
organ-specific adaptations of metastatic cells in the lung, bones, brain, and liver were
identified [78]. For instance, most cancer cells from lung or breast cancer that infiltrate
the brain will die, yet some of them acquire an ability to express brain-specific protective
factors (plasminogen activator inhibitory serpins), allowing their survival [79]. In the
liver, metastatic cells from colorectal cancer adapt their metabolic pathways to the hepatic
environment [80]. Such adaptations require the activation of tissue-specific pathways that
are not specific for progenitors of metastatic cells, which is probably achieved via network
rewiring by epigenetic remodeling. The resistance of cancer cells to chemical treatment (not
previously met both in UC and MC life) arises practically for all drugs that target specific
molecules [81]. This resistance can arise by epigenetic mechanisms [26,27,29]. Similarly,
the acquired epigenetic and transcriptional changes are critical drivers of metastasis [28].
The bivalent genes, which enable rapid switching between cellular programs, are probably
involved in this epigenetic remodeling [61].

Genetic recombination caused by chromosome rearrangement may also have adaptive
significance, which is suggested by the ‘genome chaos’ theory [18,30]. Genetic recombi-
nation may allow finding solutions for problems, which neoplastic cells encounter under
novel stressful conditions. There may be an analogy with the alteration of sexual and
asexual (clonal) generations in animal and plant populations. Sexual reproduction appears
under worsening (stressing) conditions and allows finding adapted genomic variants using
genome recombination [82,83]. Similarly, in cancer cells, the activation of the recombination-
based adaptive search increases cell diversity, and some cells may acquire solutions to
encountered problems. Notably, while 80% of cancer cells which invade the circulation
system manage to survive and extravasate, only a very minor part (<0.02%) form macro-
metastases [50].

Furthermore, even the normal cells contain a delay-action bomb—the selfish mobile
elements (ME). They are suppressed by heterochromatinization initiated by C2H2 zinc
fingers appearing in waves from the beginning of cellular life [56]. Most genes belonging
to old waves were lost, leaving only small remnants [56]. These waves probably reflect the
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bursts of ME activity. The MEs are activated under stressful conditions because of chromatin
opening and remodeling [64,65]. This is a general problem of the multilevel organization
where the higher levels control the lower ones, which under stressful conditions can get
out of control. Similarly, the MC organisms contain a delay-action bomb of potentially
selfish cells. Metaphorically, one can consider oncogenesis as a ‘cell riot’ getting out of
organismal control, which can be associated with a ‘genomic parasite riot’ getting out of
cellular control, both arising because of stress [84]. The storm of activated ME enhances
genome chaos and may participate in the search for genomic configurations adapted to
novel stressful conditions. Propagation of MEs can alter gene expression patterns because
they may insert in regulatory regions [64,65]. The activity of MEs leads to random genetic
and epigenetic alterations, which further shift cellular network activity towards the UC
attractor.

3.3. Polyploidization

The polyploid cancer cells show a further gradual enhancement of ancient gene
expression, indicating that polyploidization presents the next stage in cancer progression.
In polyploid vs. diploid cancer cells, the most strongly upregulated processes are DNA
replication and chromosome processing. In agreement with this observation, genes from the
second phylostratum show a higher upregulation than genes from the first phylostratum.
In cancer vs. normal cells, the metabolic boost is stronger than the upregulation of processes
dealing with genetic information. On the contrary, in polyploid vs. diploid cancer cells,
the processes dealing with genetic information are activated stronger than metabolism.
Notably, even in normal mammalian cells, polyploidization shifts gene expression towards
more ancient genes [85].

Polyploidy results from the overall instability of stressed cancer cells [58,61,63,86,87].
This is probably because of the competition between the cell cycle and cellular stress
response. The importance of this competition for polyploidization was reported even
for functional stress [88,89]. Stress caused by diseases, which results in the formation
and survival of polyploid cells, can be considered as an analog of environmental stress
conferring an adaptive advantage to polyploid organisms [63].

Polyploidization makes cancer cells even worse because of chromosomal instabil-
ity caused by difficulties with chromosome pairing and segregation [58–61,63]. Another
recently recognized factor of gene expression changes in polyploid cells is the opening
of chromatin owing to a decrease in surface/volume ratio, which relaxes chromatin ar-
chitecture because of the loss of interactions of nuclear lamina with lamina-associated
domains [90]. Chromatin opening may also cause cell dedifferentiation. Notably, the
pluripotency signature (PluriNet) is upregulated in polyploid vs. diploid cancer cells,
whereas the genes involved in regulation of multicellular organismal development (associ-
ated with cell differentiation) are downregulated [63].

Polyploid cancer cells show a general increase in adaptivity, which is reminiscent of the
rapid growth, stress resistance, and the evolutionary plasticity of polyploid organisms [63].
Neoplastic cells also demonstrate higher adaptability for growth under stressful conditions
because of the relaxation of cell cycle checkpoints, which can cause polyploidization. Thus,
under the action of a chemical tumor promoter, human lymphocytes in primary culture
continued DNA synthesis even when mitosis or cytokinesis were blocked by colchicine or
cytochalasin, thereby forming polyploid cells [91]. The authors concluded that pretumor
and tumor cells have more flexibility compared with normal cells, which stop growth when
coming across any hindrance in their stringently programmed performance. Therefore,
tumor cells can better adapt to varied conditions, and “such adaptability reflects the
transition from cellular to organismal level of biological integrity (because, unlike a normal
cell, tumor cell can be considered as a unicellular organism)” [91].

Importantly, rodent cells are more prone to malignant transformation than human
cells [19–21]. This is probably because of the relaxed cell cycle control in these rodents,
where natural selection favors the speed of development and reproduction at the expense
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of the reliability of cellular processes [22,23]. This feature is reminiscent of the action of
a tumor promoter. For instance, the mitotic spindle assembly checkpoint is relaxed in
the mice and hamsters compared with humans, which is caused by the evolutionarily
conserved MAD1 gene mutation [92]. The transfection of the human MAD1 into the mouse
and hamster cells corrected the relaxed checkpoint to a more stringent form [92]. The
spindle assembly checkpoint fidelity is positively correlated with the body mass of adult
mammal species [93]. In a similar vein, cardiac interstitial tetraploid cells can escape
replicative senescence in murine models but not large mammals (humans and swine) [94].
These observations suggest that relaxed cell cycle control, caused either by tumor promoters
or evolutionary trade-offs, can be associated with the easiness of malignant transformation
and polyploidization.

Among the most strongly upregulated GO processes in polyploid vs. diploid cancer
cells is the ‘female meiotic nuclear division’. This observation confirms previous reports
on the activation of meiotic genes in polyploid cancer cells [95–98]. This fact can be a sign
of genetic recombination, which is reminiscent of sexual generations arising in apomictic
(clonal) animal and plant populations under stressful conditions and may be inherited from
the evolutionary past. This assumption is in agreement with the ‘genome chaos’ model sug-
gesting the adaptive nature of chromosomal instability in cancer cells [18,30]. In addition,
polyploid cancer cells show a higher expression of C2H2 zinc finger transcription factors,
compared with diploid cancer cells. The main function of C2H2-ZF is the counteraction of
mobile elements (ME) [64,65]. This observation suggests the activation of ME in polyploid
cancer cells, which can enhance genome chaos.

3.4. Conclusions

On the grounds of the meta-analyses performed here, we propose a unicellular at-
tractor (UCA) model integrating the essential features of the ‘atavistic reversal’, ‘cancer
attractor’, ‘somatic mutation’ (SMT), ‘genome chaos’, and ‘tissue organization field’ (TOFT)
theories put forward earlier. The ‘atavistic reversal’ is taken as a keystone. We propose
a possible mechanism of this reversal, its refinement called the ‘gradual atavism’, and
evidence for the ‘serial atavism’ model. The UCA model suggests that the UC attractor
arises owing to the gradual core-to-periphery evolutionary growth of cellular networks
resulting in the higher protein interaction density and global interactome centrality in the
UC center. Even in the normal cells, the ancient genes are more actively expressed. Random
walk modeling along protein interaction trajectories suggests that random alterations in
cellular networks caused by genetic and epigenetic changes can result in further shifts of
network activity towards the UC center. These changes can be caused and accelerated by
cellular stress, which additionally activates UC genes, especially during cell proliferation,
because genes involved in cellular stress response and cell cycle are mostly of UC origin.
Genetic and epigenetic changes can also disrupt tissue control over individual cells be-
cause cancer cells demonstrate the downregulation of genes involved in communication
with the extracellular environment (especially in immune surveillance). The UCA model
does not contradict the SMT because it suggests that the activation of UC attractor and
the relaxation of MC control can be caused by somatic mutations (as well as epigenetic
alterations). However, the difference between the cell-centered UCA and the gene-centered
SMT is that critical genetic and epigenetic changes can belong to a broad gene spectrum,
not necessarily limited to specific genes (oncogenes or oncosuppressors). The activation of
gene expression is gradually declined towards more recent genes, which was called the
‘gradual atavism’. In invasive and polyploid cancer cells (both presenting cancer progres-
sion), gene hyperactivation is further shifted towards the UC center, also in agreement
with the ‘serial atavism’ model. Collectively, these events may unleash selfish cell behavior
aimed at survival at all means. While the selfish behavior of neoplastic cells is probably
triggered by the activation of ancient UC programs, it can be realized not only by these
programs but also by MC programs non-specific for a given cell type and by new programs
created via network rewiring afforded by epigenetic remodeling (cell learning) and genetic
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recombination (‘genome chaos’). In the case of genetic recombination, only a minor part
of novel genome configurations can be adaptive, which results in the clonal evolution of
cancer cells.

3.5. Possible Limitation and Future Prospective

Albeit the single-cell transcriptome datasets studied here being limited to three cancer
types, they are very different cancers, including invasive and non-invasive forms. Fur-
thermore, for polyploid/diploid cancers, the ‘pancancer’ data were used, which were
integrated over about 10,000 samples of very different cancer types [60]. The main results
were consistent for all datasets. The phylostratigraphy of the human interactome, the
evolutionary course of its centrality measures, and the random walk modeling across
protein interaction trajectories are of a general nature, not limited to a cancer type. The
same is relevant to the phylostratigraphic analysis of the genes beloning to the cell cycle
and cellular stress response.

We hope that the UC attractor model could facilitate an understanding of oncogen-
esis and promote the diagnostics and development of therapeutic strategies. The ratio
of expression of unicellular genes to multicellular ones can be used in the diagnostics
for cancer grading and prognosis. The genes and proteins of unicellular origin should
probably be targeted predominantly so as to overcome the activity of the UC attractor. For
instance, certain unicellular-specific drugs can be applied for this purpose [36,99]. The
systemic nature of oncogenic alterations suggests the necessity in multi-target strategies
against the unicellular genes whose expression is enhanced most drastically in cancer cells.
The extracellular systemic alterations suppose an important role of immunotherapy (in
combination with other treatments), which now achieved certain advancement [100–103].
The extracellular matrix “normalization” can also be proposed as a potential strategy for
anti-malignant treatment [104]. As for regenerative medicine, healthy regeneration could
involve an ontogenetic reversal to a younger organism’s state (which, according to the
biogenetic law, corresponds to earlier multicellular stages) without a phylogenetic reversal
to a unicellular cell state [57].

4. Materials and Methods
4.1. Interactome and Random Walk Modeling

The human pairwise protein interactions were acquired from the STRING database [55].
We selected the interactions with a top-half confidence (>0.5), which is slightly higher than
default confidence used by the STRING server (>0.4). The number of direct (one-step)
interactions and the measures of global centrality (betweenness and closeness) for each
protein were determined using Cytoscape [105] (version 3.9.1).

The random walk modeling along the protein interaction trajectories in the human
interactome was performed as follows (Figure 12). A walk started from one of the youngest
proteins (belonging to 17th phylostratum), taken randomly. This was the 1st protein. From
all its interactants, one was chosen randomly (2nd protein), and the next step started already
from this protein, again to a randomly chosen next interactant (3rd protein), and so on. The
reverses to 1st and other previous proteins were allowed. The series of walks of a different
length (from 5 to 10,000 steps) were tested. To ensure statistical significance, there were
10,000 repeats of each random walk, each repeat starting randomly from one of the proteins
in 17th phylostratum. The number of repeats, which ended in each phylostratum, was
normalized to the number of genes belonging to this phylostratum. We assume that these
random walks can simulate random alterations in the interactome caused by mutations
in the encoding gene or disturbances in gene expression or protein configuration. It was
shown previously that alterations in protein interactions are associated with changes in
gene expression [57].
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phylostratum), taken randomly. This was the 1st protein. From all its interactants, one was chosen
randomly (2nd protein), and the next step started already from this protein, again to a randomly
chosen next interactant (3rd protein), and so on. The reverses to 1st and other previous proteins were
allowed. The series of walks of a different length (from 5 to 10,000 steps) were tested.

4.2. Cancer and Normal Cell Transcriptomes

The human cancer and normal single-cell transcriptomes were acquired from the
Gene Expression Omnibus [106]. The datasets were the ‘breast cancer’ GSE75688 [107],
‘melanoma’ GSE72056 [108], and ‘myeloma’ GSE106218 [109]. These datasets were chosen
because they are single-cell transcriptomes (allowing analyses of homogenous cells), each
containing the transcript levels both for cancer and normal cells obtained by the same se-
quencing method in the same laboratory. The transcript levels (called in the text ‘expression’
for brevity) were normalized separately for each dataset using the ‘limma’ software imple-
mented in the R package (with the ‘quantile’ normalization method). The limma seems a
most universal approach for disparate datasets because it can treat both natural (counts)
and real numbers [110]. The limma makes log2-transformation. Then the log-transformed
values were averaged for each gene across all either cancer or normal cells (separately
in each dataset). The cancer/normal folds for each gene were calculated by subtraction
of the mean of cancer cells from the mean of normal cells. The mean log-transformed
transcript levels for cancer and normal cells or cancer/normal folds of the genes belonging
to a tested gene group (e.g., genes belonging to a phylostratum or GO category) were
averaged for this gene group in each dataset. The data on genes, which are differentially
expressed in polyploid vs. diploid cancer cells, were acquired from [60]. They contained
only the polyploid/diploid folds for cancers. The ‘pancancer’ data (i.e., integrated over
about 10,000 samples of different cancer types) were taken.

4.3. Phylostratigraphy and ZF-C2H2 Genes

The evolutionary stratification of human genes (phylostratigraphy, or gene dating) was
acquired from [56], where the problems of different gene dating methods were discussed
(shallow vs. deep). Here, we used the shallow phylostratigraphy, which is based on
the strict gene orthology obtained using the best reciprocal hits with the accurate Smith–
Waterman algorithm. (In contrast, the deep phylostratigraphy includes in-paralogous
genes, thus providing dating of whole gene families.) The list of ZF-C2H2 genes was
acquired from the InterPro database [111]. The genes encoding for proteins containing the
zinc finger C2H2 superfamily (IPR036236) domain were selected.
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4.4. Enriched Gene Modules

The functional enrichment analysis (presented in Figures 6–9) was performed by the
contrast test as described previously [22,23,88]. In this test, the mean parameter of genes
belonging to each Gene Ontology (GO) category is compared with the mean parameter of
total gene set. For each GO category, we collected all its subcategories using GO-directed
acyclic graphs (DAG), and a gene was regarded as belonging to a given category if it was
mapped to any of its subcategories. This is necessary because many genes are mapped
in the GO database only to their specific categories and not to a general category. As
an example, only one gene is mapped to the protein modification process (GO:0036211)
directly, whereas 2500+ genes can be mapped to this process using the GO DAG because
protein modifiers are distributed across specific protein modification processes.

The evaluation of statistical significance was conducted by the Monte Carlo method
as described previously [22,23,88]. For estimation of two-tailed significance of the contrast
between the mean cancer/normal (or polyploid/diploid) fold of a process/pathway and
the corresponding mean value of a total gene set, we conducted for each GO category
20,000 random samplings without replacement from the total gene dataset (with complete
replacement after each sampling). The size of random samples was equal to the number of
genes in a tested process/pathway. This procedure is analogous to random gene permuta-
tion (shuffling) when each GO category randomly acquires genes from the total dataset.
The means of random samples were compared with the mean of genes belonging to a tested
GO category. Depending on how frequently the random sample mean is higher (or lower)
than the mean of a tested GO category, the significance was calculated. This method is
preferable to parametric or non-parametric tests because the normal distribution that is
required for parametric tests is usually absent, whereas non-parametric tests can lose a con-
siderable amount of information. The random-sampling test is distribution-independent
(because random sampling follows the dataset distribution) and retains all information.
The correction for multiple comparisons was performed according to [112]. This procedure
gives the q-value (false discovery rate), which can be considered as the p-value corrected
for multiple comparisons.
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