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Abstract: Cardiovascular, rheumatic, kidney, and neurodegenerative diseases and mental disorders
are a common cause of deterioration in the quality of life up to severe disability and death worldwide.
Many pathological conditions, including this group of diseases, are based on increased cell death
through apoptosis. It is known that this process is associated with signaling pathways controlled by
a group of gaseous signaling molecules called gasotransmitters. They are unique messengers that
can control the process of apoptosis at different stages of its implementation. However, their role in
the regulation of apoptotic signaling in these pathological conditions is often controversial and not
completely clear. This review analyzes the role of nitric oxide (NO), carbon monoxide (CO), hydrogen
sulfide (H2S), and sulfur dioxide (SO2) in apoptotic cell death in cardiovascular, rheumatic, kidney,
and neurodegenerative diseases. The signaling processes involved in apoptosis in schizophrenia,
bipolar, depressive, and anxiety disorders are also considered. The role of gasotransmitters in
apoptosis in these diseases is largely determined by cell specificity and concentration. NO has the
greatest dualism; scales are more prone to apoptosis. At the same time, CO, H2S, and SO2 are more
involved in cytoprotective processes.

Keywords: gasotransmitters; apoptosis; nitric oxide; carbon monoxide; hydrogen sulfide; sulfur
dioxide; cardiovascular diseases; rheumatic diseases; kidney diseases; neurodegenerative diseases;
mental disorders; cytoprotection

1. Introduction

Cardiovascular, rheumatic, kidney, and neurodegenerative diseases (hereinafter re-
ferred to as internal diseases) and mental disorders are the most common diseases world-
wide that can lead to disability and death. Their development requires a deep under-
standing of the molecular and cellular processes underlying these pathological conditions.
However, many of the intracellular signaling mechanisms that are realized in internal
diseases and mental disorders are still poorly understood. Over the past decades, a lot of
scientific data have accumulated, which indicate that gasotransmitters play an important
role in the pathogenesis of these diseases, as well as in the process of cell death, which may
be associated with them, in apoptosis [1–5].

Apoptosis is the most common form of programmed cell death, characterized by
a complex set of biochemical and molecular genetic changes in the cell as a result of
which it breaks up into separate apoptotic bodies bounded by the plasma membrane. The
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induction of apoptosis can be caused by both internal and external physiological and
pathological factors. It should be taken into account that apoptosis is an integral part of the
normal functioning of the body. However, the redundancy of this process underlies many
pathological conditions [6].

Today, it is known that an important role in the regulation of apoptosis is played by
gasotransmitters—a new class of gaseous signaling molecules that perform a wide variety of
functions in the body, ranging from the regulation of vascular tone to subtle mechanisms of
neuromodulation [7]. So far, four gasotransmitters have been discovered: nitric oxide (NO),
carbon monoxide (CO), hydrogen sulfide (H2S) [8], as well as sulfur dioxide (SO2) [6,9].
All of them are a necessary link in maintaining intracellular homeostasis. However, these
messengers are also involved in the pathogenesis of internal diseases and mental disorders.
However, the role of NO, CO, H2S, and SO2 in the regulation of apoptotic signaling in these
pathological conditions is often controversial and has not been fully studied.

In our studies, we have already studied gasotransmitters in neurodegenerative pro-
cesses in the nervous tissue associated with axotomy [10] and photooxidative stress [11].
Having experience in studying this class of molecules, we observed the lack of a unified
concept of their role in apoptosis and the inconsistency of scientific results in internal
diseases and mental disorders, hence we decided to conduct this study.

Therefore, the purpose of this review was a large-scale analysis of gasotransmitter-
dependent processes associated with apoptosis in cardiovascular, rheumatic, kidney, and
neurodegenerative diseases and mental disorders. Consideration and comparison of a large
amount of literature data on the role of these messengers in apoptosis in these pathological
conditions will allow a better understanding of their role in cell survival and death as well
as help to choose the right strategy for further research in this area.

2. Apoptosis

One of the types of programmed cell death is apoptosis, which is constantly realized
in the body; however, under conditions of deviation from the norm, it can act as a negative
regulator of the progression of the pathological condition. As a result of apoptosis, the cell
breaks up into separate apoptotic bodies bounded by the plasma membrane. Fragments of
a dead cell quickly undergo the process of phagocytosis, bypassing the development of an
inflammatory reaction [12].

External and internal factors, such as hypoxia, disruption of cell cycle signals, DNA
damage, oxidative stress, chemical agents, physical impact, etc., can act as inducers of
apoptotic signaling. Despite the variety of factors that induce this process, there are
two signaling pathways of apoptosis: a receptor-dependent (external) signaling pathway
involving death receptors and a mitochondrial (internal) pathway [13].

2.1. Receptor-Dependent Pathway of Apoptosis

Initiation of the external pathway of apoptosis occurs by binding of death ligands to
membrane Fas or TNF1 death receptors, which leads to their activation and recruitment
of adapter proteins FADD (Fas-associated death domain) [14] or TRADD (TNF receptor-
associated death domain), respectively. As a result, a death-inducing signaling complex
(DISC-death-inducing signaling complex) is formed [15], which initiates the assembly and
activation of the initiator caspase-8, which triggers a cascade of effector caspases (caspases-3,
-6, -7) (Figure 1) [13–15].
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Figure 1. Signaling pathways of apoptosis: extrinsic and intrinsic pathways. Fas, death receptor; 
FasL, Fas ligand; FADD, Fas-associated death domain; PROCASP8, procaspase 8; PROCASP9, 
procaspase 9; CASP8, caspase 8; CASP9, caspase 9; CASP 3, 6, 7, caspases 3,6,7; Bid, BH3 interacting-
domain death agonist; t-Bid, truncated Bid; Bax, bcl-2-like protein 4; Bcl-2, B-cell lymphoma 2; 
PUMA, p53 up-regulated modulator of apoptosis; p53, tumor suppressor protein; IAPs, inhibitor of 
apoptosis protein; Omi/HtrA2, mitochondrially-located serine protease; Smac/DIABLO, second 
mitochondria-derived activator of caspase/direct IAP Binding protein with Lowp I; Cyt c, 
cytochrome c; APAF1, apoptotic protease activating factor 1; AIF, apoptosis inducing factor; Ca2+, 
calcium ions; ROS, reactive oxygen species. Arrows with a sharp end—positive regulation; arrows 
with a blunt end—negative regulation. 

Effector caspases cleave the musculoskeletal structures of the cell, inhibit protein 
biosynthesis, and activate endonuclease [16]. Caspase-8 can stimulate the release of 
cathepsin from lysosomes, which leads to the activation of Bax, which either inhibits Bcl-
2 or forms a complex with porin. This increases the permeability of the outer 
mitochondrial membrane and promotes the release of the key protein of the mitochondrial 
apoptosis pathway, cytochrome c (Cyt c) (Figure 1) [17]. 

  

Figure 1. Signaling pathways of apoptosis: extrinsic and intrinsic pathways. Fas, death receptor; FasL,
Fas ligand; FADD, Fas-associated death domain; PROCASP8, procaspase 8; PROCASP9, procaspase
9; CASP8, caspase 8; CASP9, caspase 9; CASP 3, 6, 7, caspases 3, 6, 7; Bid, BH3 interacting-domain
death agonist; t-Bid, truncated Bid; Bax, bcl-2-like protein 4; Bcl-2, B-cell lymphoma 2; PUMA, p53 up-
regulated modulator of apoptosis; p53, tumor suppressor protein; IAPs, inhibitor of apoptosis protein;
Omi/HtrA2, mitochondrially-located serine protease; Smac/DIABLO, second mitochondria-derived
activator of caspase/direct IAP Binding protein with Lowp I; Cyt c, cytochrome c; APAF1, apoptotic
protease activating factor 1; AIF, apoptosis inducing factor; Ca2+, calcium ions; ROS, reactive oxygen
species. Arrows with a sharp end—positive regulation; arrows with a blunt end—negative regulation.

Effector caspases cleave the musculoskeletal structures of the cell, inhibit protein
biosynthesis, and activate endonuclease [16]. Caspase-8 can stimulate the release of cathep-
sin from lysosomes, which leads to the activation of Bax, which either inhibits Bcl-2 or
forms a complex with porin. This increases the permeability of the outer mitochondrial
membrane and promotes the release of the key protein of the mitochondrial apoptosis
pathway, cytochrome c (Cyt c) (Figure 1) [17].
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2.2. Mitochondrial Pathway of Apoptosis

The mitochondrial pathway of apoptosis is based on the regulation of mitochondrial
outer membrane permeabilization (MOMP) by proteins of the Bcl-2 family. Proteins Bcl-
2, Bcl-W, Bcl-XL, MCL-1, and Bfl-1 suppress apoptosis by blocking the mitochondrial
release of cytochrome c. Apoptosis is stimulated by the proapoptotic proteins Bik, Bcl-Xs,
Bad, Bax, Bak, Bid, Bim, and Hrk, which increase MOMP. Mitochondrial Ca2+ overload
and development of oxidative stress underlie this process. As a result, Cyt c enters the
cytoplasm, which activates caspase-9 through the formation of an apoptosomal complex
with Apaf-1 (apoptotic protease activating factor 1) (Figure 1) [13,18].

Apoptosis can be modulated by a number of proteins released from mitochondria
into the cytoplasm: Smac (second mitochondria-derived activator of caspase)/DIABLO
(direct IAP Binding protein with Lowp I) [19], HtrA2/Omi [20], and others. They bind
apoptosis suppressors, proteins of the IAP family (inhibitor of apoptosis protein), which, in
turn, are capable of inhibiting caspases-3, -7, and -9 [21]. AIF (apoptosis inducing factor)
can induce caspase-independent apoptosis, causing chromatin condensation and DNA
cleavage [22]. One of the key proteins of the mitochondrial pathway of apoptosis is the
p53 protein, which can lead to the expression of many proapoptotic proteins, for example,
PUMA (Figure 1) [23].

3. Gasotransmitters and Their Role in Apoptosis

Gasotransmitters are a new class of gaseous messengers that perform signaling func-
tions in the cell and participate with high specificity in intercellular and intracellular
processes. This class of molecules is formed in the body endogenously under the action
of the corresponding enzymes. Unlike canonical transmitters, they are small molecules,
which allows them to easily diffuse through biological membranes, and their high reac-
tivity allows them to interact with a wide range of molecular targets. The classic triad of
gasotransmitters includes nitric oxide (NO), carbon monoxide (CO), and hydrogen sul-
fide (H2S) [8]. However, relatively recently, another gas mediator was discovered—sulfur
dioxide (SO2) [6,9].

These universal secondary messengers are involved in normal and pathological condi-
tions, tipping the balance either towards cell survival or cell death [6,8,9].

It is known that gasotransmitters can regulate apoptotic signaling. Their role in
this process is especially pronounced in conditions of pathological disorders in the body.
Depending on the type of gasotransmitter, various signaling mechanisms can be realized
that activate or inhibit apoptosis. The pathological process itself, in which one or another
gaseous second messenger is involved, is also important [7].

3.1. Nitric Oxide

NO is a universal messenger responsible for the relaxation of vascular smooth muscles,
neutralization of pathogenic agents, neurotransmission, antitumor activity, etc. Numerous
cell types produce NO, from endotheliocytes to neurons and glial cells. NO biosynthesis
occurs under the action of NO-synthase enzymes (Figure 2). To date, three main types of
NOSs are known: endothelial and neuronal NOSs (eNOS/NOS3, nNOS/NOS1), related to
constitutive (calcium-dependent), and inducible NOS (iNOS/NOS2, calcium-independent),
activated by cytokines and lipopolysaccharides within a few hours [7,8,24]. NOS isoforms
are expression products of different genes and perform different functions. It is believed
that at low concentrations, NO has cytoprotective properties, and at high concentrations, in
particular, due to the work of iNOS, it causes cell death [24].
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Figure 2. NO synthase structure and biocatalysis. (a) 3D-model of the structural organization of 
nNOS. (b) Monomeric organization of NOS: In NOS monomers, electron transfer can occur from 
reduced NADPH to FAD and FMH, resulting in the reduction of molecular oxygen to superoxide 
(O2−). Monomers and isolated reductase domains can bind to calmodulin (CaM). NOS monomers 
cannot bind to the cofactor tetrahydrobiopterin (BH4) or the substrate L-arginine, making NO 
generation impossible. (c) A functional dimer can form in the presence of heme. Heme is required 
for cross-domain electron transfer from flavins to heme of the opposite monomer. (d) NO 
biosynthesis by constitutive Ca2+-dependent NOS. 

NO is able to bind into stable compounds, be deposited in cells, and be transported 
over long distances in the body. S-nitrosothiols (RSNO) and iron dinitrosyl complexes 
(DNICs) can act as NO depots. Moreover, DNIC and RSNO can influence many 
physiological processes [25]. It is known that NO is involved in many pathological 
processes, such as stroke, myocardial infarction, kidney and liver failure, cancer, 
Parkinson’s, Huntington’s, Alzheimer’s, multiple sclerosis, schizophrenia, etc. [24]. All 
these pathological conditions are to some extent associated with cell death, in particular, 
apoptosis. 

Most often, the role of NO in the induction of apoptosis is considered in the context 
of the intensification of free radical processes, which are in a state of dynamic equilibrium 
of the oxidant/antioxidant system and are an important and necessary link in metabolism. 
However, a violation of the coordination of the action of the components of the 

Figure 2. NO synthase structure and biocatalysis. (a) 3D-model of the structural organization of
nNOS. (b) Monomeric organization of NOS: In NOS monomers, electron transfer can occur from
reduced NADPH to FAD and FMH, resulting in the reduction of molecular oxygen to superoxide
(O2
−). Monomers and isolated reductase domains can bind to calmodulin (CaM). NOS monomers

cannot bind to the cofactor tetrahydrobiopterin (BH4) or the substrate L-arginine, making NO
generation impossible. (c) A functional dimer can form in the presence of heme. Heme is required for
cross-domain electron transfer from flavins to heme of the opposite monomer. (d) NO biosynthesis
by constitutive Ca2+-dependent NOS.

NO is able to bind into stable compounds, be deposited in cells, and be transported
over long distances in the body. S-nitrosothiols (RSNO) and iron dinitrosyl complexes
(DNICs) can act as NO depots. Moreover, DNIC and RSNO can influence many physiologi-
cal processes [25]. It is known that NO is involved in many pathological processes, such as
stroke, myocardial infarction, kidney and liver failure, cancer, Parkinson’s, Huntington’s,
Alzheimer’s, multiple sclerosis, schizophrenia, etc. [24]. All these pathological conditions
are to some extent associated with cell death, in particular, apoptosis.

Most often, the role of NO in the induction of apoptosis is considered in the context of
the intensification of free radical processes, which are in a state of dynamic equilibrium of
the oxidant/antioxidant system and are an important and necessary link in metabolism.
However, a violation of the coordination of the action of the components of the antioxidant
system leads to the development of nitrosyl stress, which underlies many pathological
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conditions. NO can interact with molecular oxygen, superoxide anion, and transition metals
to form reactive nitrogen species, the most aggressive of which is peroxynitrite (ONOO−).
This radical nitrates amino acids, such as tyrosine, and also oxidizes various biomolecules,
including proteins, lipids, and nucleotides [26]. These processes lead to the intensification
of lipid peroxidation, depletion of the pool of adenosine triphosphoric acid, impaired
function of calcium channels, destruction of the cytoskeleton, mitochondrial dysfunction,
etc., which can ultimately trigger apoptosis [27]. For example, hyperproduction of NO can
cause Ca2+ excitotoxicity through the activation of NMDA receptors and, as a result, lead
to Ca2+ overload of the cell, an increase in MOMP, and the release of cytochrome c and
other proapoptotic factors from mitochondria into the cytoplasm [28].

Along with the crude mechanisms of NO-dependent apoptosis induced by nitrosyl
stress, there are subtle processes of regulation of the apoptotic signal by this messenger. NO
can directly interact with key proapoptotic proteins, modulating their activity, localization,
and expression. Thus, in our recent work, we were able to show that NO can induce
in axotomized neurons and surrounding glial cells the nuclear deposition of the p53
transcription factor known as the “guardian of the genome”, which is involved in many
cellular functions, including apoptosis [10]. This biological effect may be associated with
Tyr327 nitration in the tetramerization domain of p53, which leads to its accumulation in
the nuclear region [29]. NO can bind to the phosphorylation sites of the p53 molecule and
lead to disruption of its binding to Mdm2, a ubiquitin ligase that marks p53 for degradation
by the proteasome [30]. Moreover, NO can modulate the activity and level of E2F1, a
transcription factor for many genes, including TP53, the p53 protein gene. NO increases the
level of E2F1 through its hyperphosphorylation and pRb inactivation and also increases the
DNA-binding capacity of E2F1 through p38 MAPK activation [31]. In addition, caspase-3,
which plays a central role in the caspase cascade, can act as a molecular target for NO. It
has been shown that NO can inhibit caspase-3 activation through cGMP-dependent and
independent mechanisms [32]. NO-dependent S-glutathionylation is another mechanism
for regulating the activity of caspase-3, as well as other caspases [33]. S-nitrosylation
of the active site of caspase-3 is another NO-dependent regulator of the activity of this
enzyme [34]. NO can trigger the mechanisms of apoptotic cell death through activation of
p38 MAPK and endoplasmic reticulum stress [35] as well as regulate the expression of Bax,
DIABLO, Puma, Apaf-1, and a number of other proteins involved in apoptosis [36]. NO
can bind to iron or other metalloproteins that contain transition metals in the active site,
modulating their activity and exerting various effects on signaling pathways associated
with apoptotic signaling [7,8].

However, the role of NO in apoptosis is far from unambiguous. It, like a “two-faced
Janus”, can induce this process or block it through various signaling mechanisms [37].

3.2. Carbon Monoxide

CO is a gasotransmitter with a number of biological effects: vasodilation, neurotrans-
mission, inhibition of platelet aggregation, modulation of inflammation, proliferation, cell
death, etc. [8,38]. The enzyme responsible for CO synthesis is heme oxygenase (HO), which
catalyzes the oxidation of hemoglobin heme [39].

To date, two isoforms of HO are known, which are present in the cell in the form
of an inducible (HO-1) or constitutive (HO-2) form. HO-1 and HO-2 cleave the heme
ring in a reaction involving oxygen and NADP with the formation of biliverdin, iron,
and CO (Figure 3) [40]. The main source of endogenous CO is the hemoglobin of old
erythrocytes [8,40]. The concentration of HO-1 in tissues is at a fairly low level. HO-
1 is induced by various cell responses to stress and plays a mainly protective role in
damaged tissues, whereas HO-2 is constantly expressed and functions within the normal
physiological state. These HO isoforms have an anti-inflammatory effect due to the products
of their biocatalysis—bilirubin, which absorbs ROS and inhibits NADP H-oxidase, as well
as CO, which relaxes vascular smooth muscles and reduces cell death signals [39]. The
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HO/CO system is one of the key components of protection against cellular stress caused
by ROS, heavy metals, lipopolysaccharides, and other inflammatory factors [41].
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Figure 3. Structural organization of the enzymes responsible for the formation of CO and CO
biosynthesis. (a) 3D-model of the structural organization of the HO-2 dimer; (b) primary structure of
HO-1 and HO-2: C-terminal domain required for binding to the cytoplasmic membrane, catalytic
domain, and N-terminal cytoplasmic domain. HO-2, unlike HO-1, carries an additional 30 amino acid
residues at the N-terminus, as well as two Cys-Pro dipeptides near the C-terminus heme regulatory
motifs (HRM); (c) schematic pathway of CO biosynthesis: HO catalyzes heme oxidation to form
biliverdin CO and Fe2+. Biliverdin is converted to bilirubin by the enzyme Biliverdin reductase (BVR).

It has been established that CO is involved in apoptotic signaling; however, like NO,
it has a dual role in this complex process. A number of studies have shown that CO
can stimulate or inhibit apoptosis of smooth muscle [42], endothelial [43] and epithelial
cells [44], fibroblasts [45], hepatocytes [46], neurons [47], and so on. The CO-dependent
mechanisms of the described effects are still poorly understood. However, it is known
that endogenous CO induces compensatory expression of antioxidant enzymes through
the activation of transcription factors and stress-activated kinases, and also implements
other defense mechanisms under conditions of oxidative stress [41,48]. However, under
conditions of excessive production of CO, it can itself induce oxidative stress and lead to a
serious disruption of intracellular homeostasis, triggering apoptosis. The anti-apoptotic
effect of CO may be due to the modulation of Bcl-2. It has been shown that CO induces
the expression of this anti-apoptotic protein in neurons [49]. Many effects of CO are
due to the high affinity for the reduction of transition metals, for example, Fe2+, and the
combination of CO with metalloproteins is quite stable and causes various molecular
cellular events, including those leading to cell death [41]. CO-induced apoptosis may be
due to the activation of the FADD protein and caspase-8, -9, and -3 [50]. It is known that
CO at a high level can lead to blocking of electron transport in mitochondria and energy
collapse of the cell [51].

CO signaling is molecular cooperation in a feedback ring with NO, which can induce
CO synthesis by regulating mRNA and the HO-1 protein itself. In turn, CO can control the
formation of NO. Moreover, it has been shown that CO and NO can simultaneously interact
with heme [41]. Undoubtedly, CO is a unique signaling molecule that acts in cooperation
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with its older brother NO, triggering entire cascades of molecular–cellular events under
normal and pathological conditions.

3.3. Hydrogen Sulfide

The third gasotransmitter is H2S, which is formed in the nervous tissue of the brain [52]
and exists in the cell in the form of gaseous molecules or sodium bisulfide. H2S is deposited
in the form of sulfhemoglobin, as well as in the complex of some proteins [53]. The main
substrate for the production of H2S in the cell is L-cysteine and cystine. The enzymes
responsible for the synthesis of hydrogen sulfide are cystathionine-β-synthase (CBS), cys-
tathionine γ-lyase (CSE), and 3-mercaptopyruvate sulfurtransferase (3-MST) together with
cysteine aminotransferase (CAT) [52,53]. The main enzyme for H2S synthesis is CBS,
which is predominantly expressed in the brain [54]. In turn, CSE also makes a significant
contribution to the formation of H2S (Figure 4) [55].
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H2S catabolism can occur by oxidation, methylation, and exhalation [53].
To date, it is known that the functions of H2S are not limited to neuromodulation, but

much wider, ranging from angiogenesis to complex apoptotic signaling. This messenger
is involved in both normal processes and pathological processes associated with stroke,
neurodegenerative diseases, diseases of the kidneys, lungs, etc. [53,56,57]. In this regard,
the role of H2S in apoptosis is of particular interest, and although the scales tilt towards
the inhibitory effect of H2S on this process, there are studies showing the reverse side of
H2S—cytotoxicity.

It is known that H2S protects the cell from oxidative stress by increasing the level of
reduced glutathione (GSH), which is a key antioxidant. It has been shown that H2S enhances
the transport of cysteine and, as a consequence, the synthesis of GSH, which is a tripeptide
consisting of cysteine, glutamate, and glycine. At the same time, H2S itself can react and
quench the superoxide anion (O2

−), nitric oxide (NO), and its free radical products [58].
In addition, H2S increases the level of thioredoxin (Trx-1), an oxidoreductase that exhibits
antioxidant properties [59]. H2S can also activate a number of other antioxidant defense
enzymes, protecting cells from ROS-induced apoptosis [56]. However, a high level of H2S
can, on the contrary, induce the formation of ROS and cause an increase in oxidative stress.

H2S-dependent regulation of apoptosis can be carried out through the modulation
of the activity of NMDA receptors, which provide the incoming current of calcium and
depolarization of cell membranes. Violation of their functions leads to Ca2+ excitotoxicity
and cell death of neurons through apoptosis. H2S can directly interact with cysteine
residues of NMDA receptor subunits through their S-sulfhydration and modulate their
activity through a number of signaling pathways, for example, by activating PKA [60]. It
should be noted that H2S, as in the case of NO and CO, can regulate the level of anti- and
pro-apoptotic groups of proteins. Moreover, it can interact with them directly through S-
sulfhydration or persulfhydration of cysteine residues and through activation or inhibition
of signaling mechanisms. It has been shown that H2S can either activate or inhibit the
expression of p53 [61,62], caspase-3, Bax, and a number of other proteins involved in
apoptosis [56]. However, the subtle H2S-dependent mechanisms of regulation of anti- and
pro-apoptotic proteins remain poorly understood.

3.4. Sulfur Dioxide

Sulfur dioxide (SO2) is a recently discovered gasotransmitter that exhibits a number of
biological effects: antioxidant, anti-inflammatory, antihypertensive, antiatherogenic, and so
on. It was shown for the first time that SO2 is endogenously formed in the cardiovascular
system and has a pronounced vasorelaxant effect [8]. Later, its products were found in
the stomach, liver, lungs, spleen, brain, etc. [63,64]. Aspartate aminotransferase (AcAT) is
responsible for the synthesis of SO2. SO2 catabolism is carried out by hydrogenation of its
bisulfite (HSO3

−) and sulfite (SO3
2−) ions, which are further oxidized to sulfate [64,65].

To date, it has been established that SO2 is involved in apoptosis and oxidative
stress. SO2 increases the expression of antioxidant enzymes such as SOD2 and GSH-Px1
and reduces the production of ROS [66]. At the same time, the antiapoptotic effect of
SO2 may be due to increased expression of Bcl-2 and inhibition of Bax, stabilization of
mitochondrial membranes, a decrease in the release of cytochrome c, and a decrease in
caspase activation [67]. In addition, SO2 is involved in intracellular calcium homeostasis,
the violation of which lies in cell death in many pathological conditions [64,65].

4. Molecular Mechanisms of Gasotransmitter-Dependent Apoptosis in
Internal Diseases
4.1. Cardiovascular Diseases

Cardiovascular disease (CVD) is the leading cause of death worldwide, despite
tremendous progress being made in the medical and surgical treatment of these diseases
(Figure 5) [68].
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It is known that NO plays an important role in cardioprotection in CVD. It exhibits
various biological effects: relaxation of blood vessels, prevention of platelet aggregation,
inhibition of leukocyte adhesion, and control of proliferation of vascular smooth muscle
cells [69]. NO is produced by resident cardiac cells under stress and in large quantities
by activated immune cells that enter the damaged myocardium. A deficiency of eNOS
and nNOS exacerbates cardiac injury caused by ischemia/reperfusion or myocardial in-
farction [70]. NO activates soluble guanylate cyclase (sGC), which leads to an increase in
cGMP levels and activation of cGMP-dependent protein kinase (PKG) [71]. In addition,
NO induces the opening of mitochondrial K+-ATP channels and inhibits Ca2+ overload
(Figure 5) [72]. In addition, a mechanism has recently been described in which NO protects
endothelial cells from oxidative stress-induced apoptosis by inhibiting cysteine-dependent
superoxide dismutase (SOD1) monomerization and thus blocking its inactivation [73].

The diverse effects of CO are mainly explained by its regulation of general signaling
pathways such as stimulation of sGC, opening of Ca2+-activated large conductive K+

channels (BKCa), and activation of mitogen-activated protein kinase (MAPK) and protein
kinase B (Akt). The apoptotic effects of CO are tissue-specific and cell-specific. For example,
CO acts as an anti-apoptotic agent in endothelial cells [74] and cardiomyocytes [75], thus
preventing cell damage. The anti-apoptotic effects of CO appear to be dependent on p38
activation [43,76], phosphorylation of the protein kinase R-like kinase of the endoplasmic
reticulum, and/or via Akt activation [77]. CO has been shown to prevent TNF-α [78] and
endoplasmic reticulum (ER) stress-induced apoptosis through a p38 MAPK-dependent
mechanism (Figure 6) [74].
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Figure 6. Possible gasotransmitter-dependent signaling mechanisms regulating apoptosis in cardio-
vascular diseases. NO, nitric oxide; CO, carbon monoxide; H2S, hydrogen sulfide; SO2, sulfur dioxide;
SOD, superoxide dismutase; sGC, soluble guanylyl cyclase; cGMP, cyclic guanosine monophosphate;
PKA, protein kinase G; PKC, protein kinase C; PKG, protein kinase G; PI3K, phosphoinositide
3-kinases; Akt, protein kinase B; Bax, bcl-2-like protein 4; Bcl-2, B-cell lymphoma 2; CASP3, cysteine-
aspartic acid protease 3; MCP-1, monocyte chemoattractant protein 1; miR-30, microRNA-30; Trx1,
thioredoxin 1; CSE, cystathionine γ-lyase; ICAM1, intercellular adhesion molecule 1; HO-1, heme
oxygenase 1; GSH-Px, glutathione peroxidase; cAMP, cyclic adenosine monophosphate; MAPK,
mitogen-activated protein kinase; p38, mitogen-activated protein kinase p38; BKCa, large conduc-
tance calcium-activated potassium channels; CD11\CD18, beta2 integrins, members of the integrin
family; Nox, NADPH oxidase; K+-ATP, ATP-sensitive potassium channels; ROS, reactive oxygen
species; Nfr2, nuclear factor erythroid 2-related factor 2; ER, endoplasmic reticulum; SER, stress
endoplasmic reticulum; AAG, anti-apoptotic genes. Arrows with a sharp end—positive regulation;
arrows with a blunt end—negative regulation.
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H2S may be involved in the occurrence and development of some CVDs through
various mechanisms [79]. H2S has been shown to have a wide range of physiological
effects on the cardiovascular system, such as the modulation of blood pressure; effects on
angiogenesis, inflammation, and smooth muscle cell growth; apoptosis; antioxidant effects;
and cardioprotection [80].

H2S can activate Nrf2 signaling to suppress oxidative stress, thereby suppressing
atherosclerosis [58]. Nrf2 is known to be an important antioxidant stress transcription
factor that regulates the expression of many antioxidant and cytoprotective genes. ROS are
an important risk factor for CVD and can induce endothelial cell apoptosis by activating
NF-κB, increasing the expression of adhesion molecules and cytokines and enhancing
monocytic adhesion (Figure 6) [81,82].

Exogenous H2S inhibits endothelial cell autophagy induced by oxidative stress via
the Nrf2-ROS-AMPK signaling pathway [83]. The use of H2S donors can activate Nrf2
signaling in mice with myocardial ischemia and upregulate the antioxidant HO-1 and Trx1,
as well as reduce myocardial ischemic injury. It is assumed that exogenous H2S induces
nuclear translocation of Nrf2 in cardiomyocytes during myocardial infarction and increases
the expression of Trx1 and HO-1 [84].

Great importance is attached to the epigenetic regulation of H2S of the cardiovascular
system through various mechanisms. Thus, DNA methylation of CSE promoter regions
contributes to the development of atherosclerosis or inflammation by reducing CSE tran-
scription and H2S production in macrophages [85]. Recent studies show that H2S can
regulate miRNA expression in CVD. Inhibition of miR-30 can enhance CSE expression and
H2S production in myocardial ischemia/reperfusion (I/R) rats and counteract myocardial
ischemic injury [86]. In neonatal rat cardiomyocytes, NaHS administration can upregulate
miR-133a and inhibit cardiomyocyte hypertrophy [87]. Na2S administration can increase
miR-133a levels and inhibit cardiac muscle cell hypertrophy induced by hyperhomocys-
teinemia [88]. Overexpression of miR-133a protects against I/R-induced endoplasmic
reticulum stress and cardiomyocyte apoptosis [89]. It was also shown that miRNAs can reg-
ulate CSE expression in pathological conditions. In the human macrophage THP-1 model,
miR-186 directly inhibits CSE expression, which increases macrophage lipid accumula-
tion [90], whereas miR-216a can suppress the expression of CSE and ATP-binding cassette
transporter A1 (ABCA1), reducing cholesterol efflux from foam cells [91]. miR-21 overex-
pression in aortic smooth muscle cells inhibits CSE and specific protein 1 (SP-1) expression,
inhibits H2S production, stimulates smooth muscle cell proliferation, assembles genes
associated with smooth muscle cell differentiation, and regulates CSE/H2S-dependent
proliferation and differentiation of smooth muscle cells by influencing SP-1 [92]. In a
mouse model of myocardial ischemia and inflammation, Na2S inhibits myocardial cell
apoptosis and necrosis by inducing miR-21 expression, inhibits myocardial inflammation,
and reduces infarct size after reperfusion myocardial ischemia [93]. miR-1 attenuates the
protective effect of H2S on cardiomyocytes by reducing the expression of Bcl-2 [94]. H2S
increases levels of hypoxia-inducible factor 1-α (HIF1A) via the VEGFR2-mTOR pathway,
leading to a decrease in miR-640 levels (Figure 6).

SO2 acts as an important regulator of many biological processes in normal and patho-
logical conditions associated with CVD. Recently, studies of the effect of SO2 on cell
apoptosis have attracted much attention. SO2 can regulate the apoptosis of vascular smooth
muscle cells, endothelial cells, cardiomyocytes, and a number of other cells that may be
involved in the pathogenesis of arterial hypertension (AH) and myocardial damage [95].

ROS play a special role in the regulation of eNOS, which can contribute to the activa-
tion of the pro-inflammatory NF-κB-dependent pathway. Under these conditions, NF-κB
activation increases the levels of IL-6 and TNF-α cytokines, which can influence tyrosine ki-
nase phosphorylation and decrease NO levels (Figure 6) [96]. Hypertension is accompanied
by structural changes in blood vessels, such as hypertrophy and hyperplasia of the walls of
blood vessels, which contributes to an increase in vascular resistance. Some NO donors,
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such as LA-419, have a beneficial effect in preventing the progression of maladaptive
cardiac hypertrophy [97].

HO-1 is activated by hemodynamic stress in response to elevated blood pressure. At
the same time, the level of HO-1, sGC, and cGMP in vascular smooth muscle cells depends
on the stage of development of AH [98]. A number of researchers have demonstrated that
CO significantly reduced ventricular hypertrophy and aortic hypertrophy, attenuating the
development of angiotensin-dependent type II hypertension in mice. These cardioprotec-
tive mechanisms of CO were due to a decrease in ROS production due to a decrease in Nox
and Akt phosphorylation [99,100].

Numerous studies show that a decrease in the level of H2S contributes to the onset of
hypertension. It has been demonstrated in an experimental model that long-term treatment
with NaHS can reduce myocardial thickening, coronary intima thickening, interstitial fibro-
sis, and ROS levels in spontaneously hypertensive rats [101]. Other authors have shown
that CSE−/−mice exhibit a significant reduction in endothelium-dependent vasodilation
and AH. At the same time, the level of H2S in the blood serum, heart, aorta, and other
tissues was significantly reduced [102]. Similar results were obtained in children with
essential hypertension. Compared with healthy children with normal blood pressure,
plasma H2S levels in children with essential hypertension were significantly reduced, and
systolic blood pressure correlated negatively with the plasma H2S/Hcy ratio [103].

SO2 can enhance arterial vasorelaxation in spontaneously hypertensive rats by enhanc-
ing the vasodilatory response to NO in isolated aortic rings and promoting NO production
by aortic cells [104]. Abnormal proliferation of vascular smooth muscle cells induces vas-
cular remodeling and accelerates the development of hypertension. Additionally, SO2
significantly inhibits serum-stimulated proliferation of vascular smooth muscle cells by
preventing the transition of the cell cycle from G1 to S phase and DNA replication. In
addition, SO2 increased cAMP synthesis, which led to PKA activation, c-Raf blocking, and
extracellularly regulated protein kinase (Erk)/MAPK signaling (Figure 6). As a result, the
proliferation of vascular smooth muscle cells was significantly reduced [105].

NO plays an important role in the pathogenesis of atherosclerosis. NO in the endothe-
lium controls the expression of genes involved in atherogenesis. NO reduces the expression
of the chemoattractant protein MCP-1 [106]. NO can also inhibit leukocyte adhesion to the
vessel wall by reducing leukocyte adhesion molecules CD11/CD18 to bind to the surface of
endothelial cells and downregulating CD11/CD18 expression (Figure 6) [107]. Leukocyte
adhesion is an early event in the development of atherosclerosis. Endothelial-derived
NO prevents endothelial cell apoptosis induced by pro-inflammatory cytokines and pro-
atherosclerotic factors, including ROC and angiotensin II. Inhibition of apoptosis may also
contribute to the anti-inflammatory and anti-atherosclerotic effect of NO [108]. In addition,
NO has been shown to inhibit DNA synthesis, mitogenesis, and proliferation of vascular
smooth muscle cells [109]. These antiproliferative effects are likely mediated by cGMP [110].
Inhibition of platelet aggregation and adhesion protects smooth muscle from the effects
of platelet-derived growth factors. NO also prevents a later stage of atherogenesis, the
formation of fibrous plaque. Based on the combination of these effects, NO produced in
endothelial cells can be considered as an anti-atherosclerotic factor [111].

H2S has a protective effect on the formation of atherosclerosis. In a knockout mouse
model of atherosclerosis apolipoprotein-E (ApoE), plasma H2S levels were significantly
reduced. Inhibition of CSE further reduced the level of H2S and increased the level of
intercellular adhesion molecule and plasma-1 (ICAM-1), leading to the progression of aortic
lesions. The use of NaHS increased the concentration of H2S in plasma, reduced the levels
of ICAM-1 in the aorta and plasma, and reduced the area of aortic lesions (Figure 6) [112].

The role of SO2 in the development of atherosclerosis was unclear until recently.
Plasma and aortic SO2 concentrations were reduced in combination with a decrease in
aortic aspartate aminotransferase (AAT) activity in atherosclerotic rats [113], indicating
a key role for SO2/AAT in the pathogenesis of atherosclerosis. The use of SO2 donors
reduced the size of atherosclerotic plaques in the coronary artery by increasing the level of
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H2S, NO, glutathione peroxidase (GSH-Px), and superoxide dismutase (SOD) in plasma
and decreasing the level of malondialdehyde (MDA). Suppression of the proliferation of
vascular smooth muscle cells via the cAMP/PKA-mediated Erk/MAPK signaling pathway
contributed to the anti-atherosclerotic effects of SO2 (Figure 6) [105].

Cardiovascular dysfunction leads to a decrease in NO production in the vessels.
During myocardial ischemia reperfusion, more severe cardiac dysfunctions have been
found in eNOS-deficient mice compared to wild-type mice [70]. NO is an important
modulator of left ventricular remodeling after myocardial infarction. Overexpression of
eNOS limits left ventricular dysfunction and remodeling after myocardial ischemia [114].
NO stimulated PKG activity and the opening of K+-ATP channels to induce ROS generation
in cardiomyocytes [115]. NO prevents the progression of hypertrophy and the development
of heart failure through cGMP/GS3Kβ signaling [116]. In the coronary arteries of rats
with heart failure, the level of NO was reduced. However, in MI rats, NO levels were
increased due to activation of the eNOS/nNOS/PI3K/Akt pathway and decreased ROS
formation [117].

Numerous studies have shown that H2S can counteract reperfusion myocardial is-
chemia. In a CSE−/− mouse model, it was shown that H2S restores eNOS activity and
NO levels in the myocardium, which contributes to the prevention of reperfusion myocar-
dial ischemia [118]. Preliminary use of H2S donors can significantly counteract ischemic
myocardial injury, reduce the area of myocardial infarction, and reduce troponin-I levels
and oxidative stress. It has been shown that H2S can increase Nrf2 nuclear translocation
and upregulate PKC and STAT-3 phosphorylation by upregulating the expression of HO-1,
thioredoxin 1, and heat shock protein 90 (Hsp90) and reducing the activity of proapoptotic
factors [84]. NaHS can also reduce caspase-9 activity in cardiomyocytes, increase Bcl-2
expression, reduce p38 MAPK and JNK phosphorylation, and reduce nuclear translocation
of p65 NF-κB subunits, which counteracts myocardial reperfusion ischemia [119].

In rat models, it was shown that under conditions of reperfusion MI, SO2 precon-
ditioning increased cardiac function and attenuated myocardial cell apoptosis [120]. Is-
chemic preconditioning-induced endoplasmic reticulum stress (ERS) plays a protective
role in ischemic injury. Glucose-regulated protein 78 (GRP78), C/EBP homologous protein
(CHOP), and phosphorylation of factor 2 α-subunit (p-eIF2 α) are markers of myocardial
ischemia/reperfusion. In addition, SO2 preconditioning significantly increased Akt and
phosphoinositide 3-kinase (PI3K) p85 phosphorylation and attenuated myocardial injury in
rats [95]. Simultaneous enhancement of PI3K/AKT signaling, downregulation of the ERK-
MAPK pathway, increase in ERS, enhancement of antioxidant capacity, and attenuation of
cardiomyocyte apoptosis may be involved in SO2 mediated cardiac defense mechanisms.
Apoptosis of cardiomyocytes is a key pathological change in myocardial injury. It should be
noted that the use of SO2 donors alleviated isoproterenol (ISO−)-induced myocardial injury
in part by reducing cardiomyocyte apoptosis [67]. The anti-apoptotic function of SO2 was
mediated by stimulation of Bcl-2 expression, downregulation of Bax expression, increased
mitochondrial membrane potential, inhibition of mitochondrial MPTP opening, decreased
release of cytochrome C from mitochondria into the cytoplasm, and decreased activation
of caspase-9 and caspase-3. SO2 can modulate Ca2+ current from L-type channels and
voltage-dependent K+ channels in rat cardiomyocytes. This indicates that ion channels may
also be involved in the action of SO2 when cardiomyocytes are damaged (Figure 6) [121].

4.2. Rheumatic Diseases

In the study of the pathogenesis of rheumatic diseases, the role of gasotransmitters
is of considerable interest at present. The most studied common and socially significant
diseases of the joints are osteoarthritis (OA) and rheumatoid arthritis (RA) [7].

Thus, it has been shown that NO regulates T-cell function under physiological con-
ditions, however, overproduction of NO can contribute to T-lymphocyte dysfunction.
NO-dependent tissue damage has been associated with various rheumatic diseases, most
commonly with rheumatoid arthritis [122]. In RA, the main source of NO are fibroblasts,
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osteoclasts, osteoblasts, endothelial cells, and immune cells such as macrophages and neu-
trophils. NO can cause dysregulation of the balance of osteoblasts and osteoclasts, and in
combination with O2

− can be formed into ONOO−, which contributes to the degradation
of articular cartilage and induces apoptosis. This leads to an imbalance in bone resorption
and formation and damage to the joints [123]. Pro-inflammatory cytokines such as IL-1
and TNF induce the activation of iNOS in bone cells, resulting in overproduction of NO,
causing bone loss (Figure 7). These actions of NO are relevant to the pathogenesis of osteo-
porosis in inflammatory joint diseases. Histomorphometric analysis of the bones of normal
animals with bone loss caused by inflammation showed a profound depression of bone
formation and signs of osteoblast apoptosis. These changes were not observed in iNOS
knockout animals, suggesting that iNOS activation may contribute to the development of
inflammatory osteoporosis as well as osteoblast apoptosis [124].
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In addition to rheumatoid arthritis, NO is also involved in the pathogenesis of au-
toinflammatory joint diseases such as psoriatic arthritis (PsA) and systemic lupus ery-
thematosus (SLE). In a mouse model of psoriasis and PsA induced by mannan, elevated
levels of NO in the skin and extremities were found before the clinical onset of the disease.
The generation of NO by local macrophages results in the release of IL-1α, which then
activates IL-C3 to produce IL-17A, leading to increased disease severity (Figure 7) [125].
NOS expression was also increased in SLE patients [126]. Another disease in which NO
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may be involved in the pathogenesis is fibromyalgia, the etiology of which has not yet been
fully established and is therefore of considerable interest. NO acts as a vascular smooth
muscle relaxant, neurotransmitter, and immune regulator that sensitizes the spinal pain
pathway. In fibromyalgia, there is an increase in ROS and a decrease in the antioxidant
defense system. As a result, oxidative stress develops, which causes neuropathic pain and
stimulates the development of chronic fatigue syndrome [127].

OA is a disease that has long been considered a primary metabolic disease, and
mechanical cartilage degeneration has been the main element of pathogenesis. To date,
the role of inflammation in the pathogenesis of OA is undoubted. NO also plays a role in
osteoarthritis [128]. Analysis of the NO content in the synovial fluid of patients with OA
has yielded conflicting results [129]. Unlike synoviocytes, chondrocytes have the ability to
self-produce NO, as evidenced by increased levels of iNOS and NO in articular cartilage
tissues. However, chondrocytes from patients without OA do not express iNOS, and
experimental OA does not develop in iNOS knockout mice [130]. Some experiments have
shown that NO by itself is not cytotoxic to cultured chondrocytes. However, excess NO can
be detrimental, causing cartilage degradation or inhibiting cartilage matrix synthesis and
causing mitochondrial dysfunction. There is a correlation between NO synthesis and the
prevalence of apoptotic cells in cartilage in experimentally induced OA in rabbits. NO plays
a role in mediating chondrocyte apoptosis, which is a common feature of progressive OA.
Moreover, NO also alters the function of mitochondria in chondrocytes in OA, which leads
to a decrease in cell survival by suppressing the activity of the mitochondrial respiratory
chain and ATP synthesis [131]. The concentration of NO is significantly elevated in the
synovial fluid in a model of OA in dogs [132] and humans [133]. However, there is evidence
that NO has a beneficial effect on some cell types, including osteoblasts.

To a greater extent, H2S has a protective effect. It has been established that H2S has
a cytoprotective effect through the modulation of antioxidant, anti-inflammatory, anti-
apoptotic, and pro-angiogenic effects under various conditions [7]. The beneficial effect of
H2S appears to be dose-dependent, as various studies have shown conflicting results [134].
In mouse macrophages, low concentration of H2S inhibited the activation and synthesis
of several pro-inflammatory mediators such as TNF-α, NF-κB, IL-6, and IL-1β. However,
at higher concentrations, H2S stimulated the production of pro-inflammatory molecules
by human macrophages [135]. In addition, other studies have confirmed that H2S inhibits
NF-κB-dependent expression of pro-inflammatory cytokines (e.g., IL-1β, IL-6, TNF-α) in
macrophages, chondrocyte cell lines, and myoblast cell lines [136]. Interestingly, synovial
fluid levels in RA were found to be higher than in patients with osteoarthritis, and the levels
were positively correlated with disease activity and inflammation (Figure 7) [137]. The role
of CSE in increased cartilage calcification has been revealed. Indeed, increased cartilage
calcification is observed when CSE activity is suppressed, for example, in mouse models
of age-related or surgically-induced OA. Calcification levels and histological severity of
OA in mice and humans were negatively correlated with CSE expression. In vitro results
have shown that CSE deficiency results in decreased cellular H2S levels and increased
calcification in chondrocytes. With a pharmacological increase in the level of H2S in
chondrocytes, a decrease in calcification was observed. These studies show that CSE
generated is a regulator of experimental and human cartilage calcification [138–140]. H2S
donors have shown significant anti-inflammatory effects in an osteoarthritis model and
in rheumatoid arthritis in vitro and in vivo [141]. Increasing chondrocyte H2S production
may represent a potential disease modifier for the treatment of OA. Over the past few years,
it has become increasingly clear that H2S affects bone regeneration by acting on several
levels, such as regulation of bone cell activity, reduction of oxidative stress, regulation of
calcium consumption by bone cells, and promotion of angiogenesis. CBS and CSE are
expressed in both multipotent stem cells and osteoblasts [142]. In particular, CSE is the
predominant source of H2S in osteoblasts [143]. H2S plays a cytoprotective role in bone
cells; it protects osteoblasts from homocysteine-induced mitochondrial toxicity [144] as
well as from H2O2-induced apoptosis [145].
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Only a few studies describe the molecular mechanism of H2S activity in healthy and
diseased skeletal muscle. Bitar et al. [146] focused on evaluating the effect of H2S treatment
on the development of sarcopenia. This loss of skeletal muscle mass and dysfunction has
been described as a complication in diabetic patients, so studies were conducted using
Goto Kakizaki rat models of diabetes with reduced systemic and muscle H2S bioavailability.
The use of H2S donors increased muscle mass and reduced myostatistis levels. In animals
with diabetes, the level of O2

− and H2O2 decreased [146]. In model organisms C. elegans
with Duchenne muscular dystrophy, the level of H2S and the expression of genes necessary
for sulfur metabolism are reduced. This decrease may be offset by an increase in the
bioavailability of sulfur-containing amino acids, which increases lifespan, primarily by
improving calcium regulation, mitochondrial structure, and slowing down muscle cell
death [147].

CO mediates many of the biological effects that are attributed to HO, the enzyme
responsible for CO production in mammals. The antioxidant and anti-inflammatory activity
of HO-1 has been demonstrated in various disease models, including control of immune
responses, production of inflammatory mediators, and mitigation of cartilage or bone de-
struction. Because HO-1 is highly expressed in the tissues of the joints of arthritic patients, it
has been suggested that this pathway may play a protective role against degenerative joint
diseases [148]. Low concentrations of CO are anti-inflammatory and may reduce bone ero-
sion in an arthritis model. CO reduced RANKL expression in the synovium of arthritis mice.
CO suppresses osteoclast differentiation by inhibiting RANKL-induced PPAR-γ activation
(Figure 7). Considering the role of the PPAR-γ/cFos (AP-1) pathway in the regulation of
the transcription factor NFATc1, a major regulator of osteoclastogenesis, further studies are
needed to explore SO in the treatment of inflammatory bone diseases [149]. Experimental
RA mice had elevated levels of anti-collagen antibodies, but decreased in the CO group.
Histological analysis revealed a reduction in inflammation, erosion, and osteoclast counts
only in CO-treated animals [150]. Ruthenium(II) tricarbonylchloro(glycinate) (CORM-3),
releasing CO, reduced macroscopic signs of inflammation in the hind legs of OA mice,
limited inflammatory cell migration and erosion of cartilage and bone, increased serum
osteocalcin levels, and reduced PGD2 levels. In synovial tissues, a significant decrease
in the expression of the genes of interleukin-1beta, receptor activator of nuclear factor
kappa B ligand (RANKL), matrix metalloproteinase (MMP) 9, and MMP-13 were also
revealed [151]. The study aimed to investigate the effect of carbon monoxide-releasing
molecule 3 on osteoclastogenic differentiation of RAW264.7 cells and to investigate the
possible mechanism underlying the regulatory effect. CORM-3 inhibits osteoclastogenic
differentiation of RAW264.7 cells via CO release. The inhibitory effect is partially mediated
by HO-1. The results suggest a potential application of CORM-3 in some bone defects [152].

4.3. Kidney Diseases

The prevalence of chronic kidney disease (CKD) in the population is increasing. Cur-
rently, the number of patients in the world suffering from CKD exceeds 850 million peo-
ple [153]. The study of molecular mechanisms of kidney damage and the search for potential
diagnostic markers as well as promising molecules with cytoprotective properties are of
research interest. Of particular interest are such gasotransmitters as H2S, NO, and CO [154].

In recent decades, special attention has been paid to the study of the molecular role of
H2S in kidney diseases. It has been established that CSE, CBS, and 3-3-MPST are localized
in the glomeruli of the kidneys, tubular epithelium, and tubulointerstitium [155]. H2S
regulates the excretory function, the release of renin from juxtaglomerular cells, thus
controlling the activity of the renin–angiotensin–aldosterone system and blood pressure.
H2S has a wide research potential. Despite the fact that its toxic properties were shown
in earlier works [156], more and more scientific data have recently appeared on the study
of its cytoprotective properties realized in various tissues, including the kidneys. The
described effect is achieved due to antioxidant, anti-inflammatory, and anti-apoptotic
actions [157,158].
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Acute kidney injury (AKI) is a rapidly progressive renal dysfunction characterized by a
rapid increase in creatinine and decreased urine output lasting from hours to days [159]. The
causes of AKI can be various factors, including sepsis, glomerulonephritis, medication (e.g.,
NSAIDs, cisplatin), liver failure, heart failure, ischemia and reperfusion syndrome, etc. [160].
The latter factor is one of the most frequent in the development of this pathological condition
and is associated with the development of fibrosis and inflammation in the kidneys and, as a
result, acute impairment of their function [161]. H2S plays an important role in this process
and performs various functions depending on the rate of its formation. So, at a high level,
it induces the synthesis of pro-inflammatory mediators (IL-1β, IL-6, TNF-α, prostaglandin
E2, and NO), whereas at low concentrations it exhibits cytoprotective properties and
inhibits their formation, acting as an antioxidant agent [162]. The anti-inflammatory
effect is also supported by the suppression of H2S activity of NF-κB [163]. At the same
time, endogenous H2S realizes its anti-inflammatory and anti-apoptotic potential through
inhibition of Toll-like receptors in the renal tubular epithelium [164]. In an experiment on
rats with lipopolysaccharide-induced AKI/sepsis-associated AKI, it was demonstrated
that H2S prevented the development of inflammation and oxidative stress by reducing
the expression of TNF-α, IL-1β, MDA, MPO, H2O2, and caspase-1, as well as through
inhibition of the TLR4/NLRP3 signaling pathway (Figure 8) [165].

In patients with chronic kidney disease (CKD), a decrease in H2S levels was found. In
experimental work on nephrectomized rats, NaHS exerted antioxidant, antiapoptotic, and
anti-inflammatory effects through Nfr2 activation and downregulation of the mammalian
target of rapamycin (mTOR), which generally had a positive effect on kidney function [166].
At the same time, NaHS realizes these effects through MAPK and NF-κB, suppressing
inflammation and apoptosis. In mice with adenine-induced CKD, NaHS suppressed the
production of TNF-α, IL-6, IL-10, NF-κB, MCP-1, MDA/SOD, GSH-Px, p-MAPK, Bax,
cleaved caspase-3, and Bcl-2 (Figure 8) [167]. Low levels of H2S negatively affect kidney
function and contribute to the acceleration of the progression of CKD due to increased
autophagy, apoptosis, development of oxidative stress, and inflammation. An increase in
H2S levels may have a nephroprotective effect and slow down the discussed processes [168].

The progression of CKD is associated with the development of fibrotic processes in
the kidneys. This is observed in diabetes mellitus, arterial hypertension, glomerulonephri-
tis, and other diseases [165]. The accumulation of extracellular matrix leads (ECM) to
impaired renal function. It has been demonstrated that administration of H2S to mice
with streptozotocin (SZT)-induced obesity reduced the accumulation of type II collagen,
tissue inhibitor of metalloproteinase 2, and hydroxyproline in the kidneys and suppressed
the activity of connexins and MMP 1/2 [169]. Administration of NaHS to diabetic mice
reduced serum levels of creatinine, urea nitrogen, and pro-inflammatory cytokines and
inhibited the activation of the TGF-β1/Smad 3 pathway. The anti-inflammatory effects of
H2S, described above, slow the rate of renal fibrosis and CKD progression [170].

H2S also plays an integrative role in other pathological conditions. Thus, in obstructive
nephropathy, there is a decrease in the expression of CSE, CBS, and 3-MPST, which increases
the risk of tubulointerstitial fibrosis [171,172]. In mice with induced hyperhomocysteine-
mia, there is a decrease in CSE and CBS levels, whereas H2S reduces the concentration
of homocysteine [173]. The latter in turn induces kidney damage. Hydrogen sulphide
also has a nephroprotective effect when using nephrotoxic drugs such as cisplatin, parac-
etamol, gentamicin, etc. [174–176]. The main defense mechanisms are the suppression of
inflammation, apoptosis, and oxidative stress.
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Figure 8. Possible gasotransmitter-dependent signaling mechanisms regulating apoptosis in kidney
diseases. NO, nitric oxide; CO, carbon monoxide; H2S, hydrogen sulfide; ROS, reactive oxygen
species; TNF-α and TNF-β, tumor necrosis factors; ECM, extracellular matrix; interleukins, IL-
1β, IL-18, IL-10, and IL-6; α-SMA, smooth muscle alpha-actin; COL1A1, type 1 collagen; Bax,
bcl-2-like protein 4; Nfr2, nuclear factor erythroid 2-related factor 2; mTOR, mammalian target
of rapamycin; CASP3, cysteine-aspartic acid protease 3; NF-κB, nuclear factor kappa-light-chain-
enhancer of activated B cells. Arrows with a sharp end—positive regulation; arrows with a blunt
end—negative regulation.

NO, which is considered one of the most studied gasotransmitters, plays a key role in
various physiological and pathological processes and implements its effects in the kidneys
as well [8]. With glomerulonephritis, immune inflammation develops and damage to the
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structures of the glomeruli of the kidneys, in particular, mesangial cells and podocytes,
occurs. In experimental work on rats during the cultivation of mesangial cells, the intro-
duction of NO donators (spermine, NOC-18, and SNAP) suppressed the expression of
profibrogenic genes at the transcriptional level, which confirmed the antifibrotic effect of
NO [177]. In another study, it was shown that the use of L-arginine in animals with ATS-
glomerulonephritis slows down the process of kidney fibrosis induced by the suppression
of TGF-β. At the same time, one of the causes of kidney fibrosis is the excessive formation of
ECM. In mesangial cells, NO regulates the production of its components (MMP-9, MMP-13,
PAI-1, TIMP-1), reducing renal failure [178,179].

At different concentrations, NO, like H2S, can exhibit different effects. Thus, an in-
crease in NO levels can inhibit mitochondrial respiration. On the other hand, AKI is
characterized by NO deficiency, which contributes to the progression of kidney damage
and supports the transformation of AKI into CKD and the development of arterial hyper-
tension [180]. It was found that the NO-donator EDV regulates oxidative stress and lipid
peroxidation in the kidney tissue and the inflammatory process by suppressing the activity
of IL-1β, IL-18, IL-6, and TNF-α (Figure 8) [181].

CO is one of the first gasotransmitters. It is involved in a number of physiological and
pathological processes. Thus, in AKI caused by obstructive causes, the use of CO in mice
reduced the phenomena of fibrosis and prevented kidney damage. This was associated
with a decrease in ECM and downregulation of α-SMA, type I collagen, and fibronectin
expression in the kidney [182]. At the same time, the MKK 3 signaling pathway is the main
one at the stage of implementation of these effects. CO has several important functions
that are indirectly related to the functioning of the kidneys. Among them: participation
in angiogenesis, the development of vasodilation, a decrease in platelet aggregation, the
induction of an inflammatory process, etc. [167,183]. Despite the known toxic effect of
CO at high levels, its low concentrations may have a cytoprotective effect. CO has an
anti-inflammatory effect by blocking TNF activity and potentiating the expression of the
anti-inflammatory cytokine IL-10 (Figure 8) [184,185]. The anti-inflammatory and anti-
apoptotic properties of CO are also used in transplantology. CO suppresses oxidative stress,
mRNA expression of pro-inflammatory cytokines, inhibits apoptosis of the epithelium
of the tubules of the kidney graft, and suppresses interstitial fibrosis. These effects are
achieved by the increased expression of phosphatidylinositol-3 kinase and phosphorylation
of Akt and mitogen-activated protein kinase p38 [156].

4.4. Neurodegenerative Diseases

Neurodegenerative diseases (ND) are a serious problem in the global health system.
They cause severe disability and death for millions of people around the world. The
most striking examples of neurodegenerative diseases (ND) are Alzheimer’s disease (AD),
Parkinson’s disease (PD), and amyotrophic lateral sclerosis (ALS) [186].

Potential molecular targets in NS can be gasotransmitters. Thus, it was shown that
NO can be a key molecular player in the pathogenesis of AD, characterized by the loss of
synapses and neurons, and as a result, memory impairment, cognitive decline, and a tragic
ending—death. Most often, NO was associated with neurotoxic damage in AD, however,
as it turned out later, its role is far from being so unambiguous in this pathology. Of course,
high concentrations of NO lead to nitrosyl stress, with the formation of an extremely
aggressive peroxynitrite radical (ONOO−), which has a pronounced cytotoxic effect. The
pathway of NO/O2

−/ONOO−-induced apoptosis of neurons has been demonstrated
in various experimental models of AD (Figure 9) [187]. However, it should be noted
that such a neurotoxic effect of NO most often develops when iNOS is overexpressed,
which generates high concentrations of NO. Constitutive forms of NOS, on the contrary,
can have cytoprotective effects, in particular, due to the induction of the cGMP pathway,
which causes an increase in cerebral blood supply, a decrease in oxidative stress, and Ca2+

excitotoxicity in AD (Figure 9) [1].



Int. J. Mol. Sci. 2023, 24, 6014 21 of 39

Int. J. Mol. Sci. 2023, 24, x FOR PEER REVIEW 21 of 41 
 

 

4.4. Neurodegenerative Diseases 
Neurodegenerative diseases (ND) are a serious problem in the global health system. 

They cause severe disability and death for millions of people around the world. The most 
striking examples of neurodegenerative diseases (ND) are Alzheimer’s disease (AD), 
Parkinson’s disease (PD), and amyotrophic lateral sclerosis (ALS) [186]. 

Potential molecular targets in NS can be gasotransmitters. Thus, it was shown that 
NO can be a key molecular player in the pathogenesis of AD, characterized by the loss of 
synapses and neurons, and as a result, memory impairment, cognitive decline, and a 
tragic ending—death. Most often, NO was associated with neurotoxic damage in AD, 
however, as it turned out later, its role is far from being so unambiguous in this pathology. 
Of course, high concentrations of NO lead to nitrosyl stress, with the formation of an 
extremely aggressive peroxynitrite radical (ONOO−), which has a pronounced cytotoxic 
effect. The pathway of NO/O2−/ONOO−-induced apoptosis of neurons has been 
demonstrated in various experimental models of AD (Figure 9) [187]. However, it should 
be noted that such a neurotoxic effect of NO most often develops when iNOS is 
overexpressed, which generates high concentrations of NO. Constitutive forms of NOS, 
on the contrary, can have cytoprotective effects, in particular, due to the induction of the 
cGMP pathway, which causes an increase in cerebral blood supply, a decrease in oxidative 
stress, and Ca2+ excitotoxicity in AD (Figure 9) [1]. 

 
Figure 9. Possible gasotransmitter-dependent signaling mechanisms regulating apoptosis in 
neurodegenerative diseases. NO, nitric oxide; CO, carbon monoxide; H2S, hydrogen sulfide; ROS, 
reactive oxygen species; O2−, superoxide anion radical; ONOO−, peroxynitrite; GC, guanylyl cyclase; 
cGMP, cyclic guanosine monophosphate; PKG, protein kinase G; Ca2+, calcium ions; APP, amyloid-
beta precursor protein; Aβ, amyloid beta; UP-system, ubiquitin-proteasome system; ER stress, 

Figure 9. Possible gasotransmitter-dependent signaling mechanisms regulating apoptosis in neurode-
generative diseases. NO, nitric oxide; CO, carbon monoxide; H2S, hydrogen sulfide; ROS, reactive
oxygen species; O2

−, superoxide anion radical; ONOO−, peroxynitrite; GC, guanylyl cyclase; cGMP,
cyclic guanosine monophosphate; PKG, protein kinase G; Ca2+, calcium ions; APP, amyloid-beta
precursor protein; Aβ, amyloid beta; UP-system, ubiquitin-proteasome system; ER stress, endoplas-
mic reticulum stress; Fe2+, iron ion; p38, p38 mitogen-activated protein kinases; GSK3β, glycogen
synthase kinase-3 beta; ALDH2, aldehyde dehydrogenase 2; PI3, phosphorus triiodide; Akt, protein
kinase B; LP, lipid peroxidation; JNK, c-Jun N-terminal kinases; Tau, microtubule-associated protein
tau; BACE1, beta-site APP cleaving enzyme-1; PS1, presenilin-1; Parkin, E3 ubiquitin ligase; DA,
dopamine; PDI, protein disulfide-isomerase; PRDX2, peroxiredoxin 2; aSyn, alpha-synuclein; Kv2.1,
voltage-gated potassium channel KV 2.1; AMPK, AMP activated protein kinase. Arrows with a sharp
end—positive regulation; arrows with a blunt end—negative regulation.

Of great interest is the NO-dependent regulation of the level of the key AD protein,
β-amyloid precursor protein (APP), which is responsible for the formation of amyloid
plaques and neuronal death. NO can modulate the level of APP through the amyloidogenic
pathway of processing depending on its concentration, leading to either its activation or
inhibition. The NO-mediated anti-amyloidogenic effect was due to signaling through
GC/cGMP/PKG, and the amyloidogenic activity of NO at high concentrations was me-
diated through mechanisms associated with ONOO− [188]. In addition, nitrosyl stress
has been shown to lead to β-amyloid (Aβ)-induced neurotoxicity, which underlies the
pathogenesis of AD (Figure 9) [189].

NO is involved in the pathophysiological processes associated with PD. High levels of
nNOS and iNOS expression were found in the substantia nigra (SN) of patients and animals
with PD [2]. It is indicated that nitrosyl stress is one of the main causes of degeneration of
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dopaminergic neurons in PD. In addition, NO can lead to abnormal dopamine metabolism
with the formation of toxic metabolites leading to nerve cell death [190]. Stress of the
endoplasmic reticulum and disruption of the ubiquitin-proteasome system is also one of
the effects of NO in this pathology [191]. Overproduction of NO leads to neuronal damage
by S-nitrosylation or nitration of several important proteins, including S-nitrosylation
of parkin, protein disulfide isomerase, mitochondrial complex I, peroxiredoxin-2, and
nitration of α-synuclein in PD (Figure 9) [192]. Additionally, NO disrupts iron homeostasis
in neurons, causing its accumulation through a decrease in APP expression in PD models,
which leads to the death of dopaminergic neurons [193].

There is an increase in NO and its metabolites in the cerebrospinal fluid of patients with
ALS. NO plays a key role in glutamate-induced neuronal death in ALS [194]. Degenerative
neurons of the anterior horns of the spinal cord in ALS showed a high expression of nNOS,
which may be associated with their subsequent death [195].

H2S is also involved in AD. H2S has been shown to bind to Tau proteins, the main
components of neurofibrillary glomeruli, and enhances their catalytic activity. H2S prevents
Tau hyperphosphorylation by sulfhydration of GSK3β (Figure 9). Administration of H2S
donors to AD mice improved motor and cognitive impairments in AD [196]. It should be
noted that the level of H2S was reduced in patients with AD compared with normal, and
there was a correlation of a decrease in the concentration of H2S with the progression of the
disease [197]. In addition, H2S induced the expression of aldehyde dehydrogenase 2 and
reduced the formation of lipid peroxidation products in the hippocampus of AD rats [198].
Additionally, H2S donors reduce the activity of JNK and p38 (Figure 9), which play a key
role not only in the phosphorylation of Tau, but also in inflammation and apoptosis [199].
This messenger reduces the level of homocysteine, a high level of which increases the risk
of developing AD, and is a negative concomitant factor of this pathology [200]. The H2S
donor decreased BACE1 and PS1 levels via the PI3/Akt pathway and also decreased Aβ in
APP/PS1 transgenic mice (Figure 9) [201].

An equally important role of H2S is in PD. Studies have shown that parkin sulfhy-
dration decreases in PD (Figure 9), leading to a decrease in its catalytic activity [202].
In a mouse model of PD, H2S demonstrated a reduction in the loss of dopaminergic
neurons and promoted adult neurogenesis by regulating the Akt/GSK-3β/β-catenin cas-
cade (Figure 9) [203]. On a cell culture treated with 1-Methyl-4-phenylpyridinium ion
(MPP+) used to model PD, it was shown that the use of an H2S donor led to a decrease in
the expression of pro-apoptotic proteins caspase 3, Bax, and products of lipid peroxida-
tion and the inhibition of the NO-ROS pathway (Figure 9) [4]. In a 6-hydroxydopamine
(6-OHDA)-induced PD rat model, administration of an H2S donor resulted in the inhi-
bition of microglial activation in the SN, accumulation of pro-inflammatory factors, and
a decrease in malondialdehyde [204]. In addition, inhaled H2S in 1-methyl-4-phenyl-
1,2,3,6-tetrahydropyridine (MPTP)-induced PD mice prevented neuronal apoptosis and
nigrostriatal gliosis [205].

ALS correlated with high levels of H2S in the cerebrospinal fluid of patients suffering
from this disease. It is known that a high concentration of H2S can lead to cytotoxic
effects. It is assumed that in ALS H2S is responsible for the death of neurons through the
activation of the mechanisms of Ca2+ excitotoxicity. Thus, the addition of H2S to a spinal
culture obtained from mice with ALS led to Ca2+ overload of cells and their death [206].
However, H2S can activate the mechanisms of antioxidant and anti-inflammatory protection
in ALS [82].

It is reported that CO can protect neurons from apoptosis in AD. HO-1 is known
to be highly expressed in patients with Alzheimer’s disease, exerting a neuroprotec-
tive effect. HO-1/CO has been shown to protect cells from the toxicity of protofibrillar
Aβ1-42 by inhibiting AMPK activation and possibly also by reducing K+ efflux through
Kv 2.1 K+ channels (Figure 9) [207]. CO can interfere with Aβ1-42-dependent astrocyte
death by reducing oxidative stress levels [208].
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It is worth noting the role of these gasotransmitters in one of the key mechanisms of
neurodegeneration—in the processes associated with axon degradation, followed by its
rupture, i.e., axotomy. Axotomy, i.e., the complete cutting of an axon, is one of the classic
models of neurodegeneration [209]. In our studies, we were able to show that the NO-donor
sodium nitroprusside causes pronounced nuclear deposition of p53 in neurons and glial
cells and their apoptotic death during axotomy in vertebrates. Use of a selective iNOS
inhibitor S-methylisothiourea hemisulfate led to the opposite effect. Using a simple model
of axotomy—the crayfish stretch receptor, which consists of two mechanoreceptor neurons
surrounded by a sheath of satellite glia and a pair of receptor muscles—we examined in
detail the intracellular processes associated with the generation of NO in photosensitized
cells [10]. These studies have shown the key role of NO in the regulation of survival and
death of neurons and glial cells in neurotrauma.

5. Molecular Mechanisms of Gasotransmitter-Dependent Apoptosis in
Neuropsychiatric Diseases
5.1. Schizophrenia

Schizophrenia (SCZ) affects approximately 24 million people, or 1 in 300 people
worldwide (Figure 10). SCZ is characterized by a variety of psychopathological symptoms:
productive (delusions, hallucinations, psychomotor agitation) and negative symptoms (loss
of motivation, desire and volitional drive) as well as cognitive impairment [210–214].
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For a long time, this pathology was considered from the perspective of impaired
development of the nervous system. However, the accumulated experimental experience
of subtle neurostructural changes after the onset of psychosis has led to the suggestion that
apoptosis may be one of the mechanisms of SCZ pathogenesis [215,216].
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It is known that activation of apoptosis can cause rapid and total death of neurons
and glial cells in the brain. In addition, proapoptotic signaling can cause non-lethal
changes in neurons, characterized by neurite degeneration and synapse elimination. For
example, caspase-dependent processes can be realized not only in the cell death program,
but also manifest themselves in local changes in cell architectonics [217,218]. To date,
a number of pathomorphological processes have been identified in SCZ, manifested in
cortical atrophy [219], decreased myelination, glial abnormalities [220], reduced synaptic
density, and degradation of dendrites and axons [221]. All these negative changes are
due to biochemical and molecular genetic changes in SCZ, including dysregulation of
signaling pathways that control apoptosis [215,216,220]. Unfortunately, so far there is no
single concept in this area; humanity has only slightly revealed the seeding of the secrets of
the molecular mechanisms underlying the pathogenesis of this disease.

At present, it is known that gasotransmitters are involved in the pathogenesis of
SCZ. So, for the first time, in the 1970s, Averbukh et al. as well as Bulba et al. suggested
that there is a relationship between NO and SCZ. However, this topic has been studied
most intensively in the last two decades. Post-mortem studies have shown an increase
in NO and nNOS in the brain of people with SCZ [5]. Other studies report that the
levels of Ca2+-dependent NOS did not differ from the control group, but their activity
was significantly reduced [222]. In addition, there are data indicating a deficiency of NO
production in patients with SCZ [223]. The role of NO in this pathology is often considered
as an inducer of oxidative stress, which is an important negative mechanism in SCZ. In
patients with SCZ, there is a violation of the antioxidant defense system, regulation of redox
transcription factors, and an increase in lipid peroxidation products [224]. It is assumed
that NO hyperproduction can enhance these processes, acting as a negative regulator of
the survival of neurons and oligodendrocytes in SCZ [5]. However, recent research has
shown that the NO donor, sodium nitroprusside, reduced psychotic symptoms in animal
models of SCZ, possibly through the activation of the NMDA-nNOS-cGMP pathway with
improved cerebral blood flow [223]. In addition, NO can activate NMDA receptors, the
activity of which is significantly reduced in SCZ, which leads to a mismatch of intra- and
intercellular signaling communications (Figure 11) [225].

Disrupted-in-Schizophrenia 1 (DISC1) is one of the key proteins associated with
the development of schizophrenia and other psychiatric disorders. It is a conserved
93.6 kDa protein with globular N-terminal, helical C-terminal, and several helical–helical
domains. These architectonics allow DISC1 to interact with various proteins, including
signal proteins responsible for various biological effects, incl. cell death (Figure 11) [226]. It
has been shown that NO can influence the interaction of DISC1 with NDEL1 by controlling
the growth of neurites in the prefrontal cortex [227]. Schizophrenia is characterized by
impaired functioning of various neurotransmitters, for example, dopamine (DA), glutamate,
acetylcholine, serotonin, and GABA, which leads to disorganization of the functioning
of neural networks, neuroglial interaction, and as a result, the death of neurons and glial
cells. It is known that NO and its active metabolites can modify various molecular targets,
including neurotransmitters [223,228]. For example, the chemical interaction of NO with
dopamine is a source of neurotoxins that promote neurodegeneration [190]. NO can
interact with serotonin to form 4-nitroso-serotonin and 4-nitro-serotonin, which do not
have a neuromodulatory effect. Changes in the serotonin–dopamine balance in the brain is
one of the key mechanisms in the pathogenesis of SD. In addition, serotonin can modulate
dopamine levels, as well as reduce free radical-induced neuronal death [228].

NO-induced apoptosis of neurons and glial cells in schizophrenia may be due to the
development of mitochondrial dysfunction, which leads to the release of proapoptotic
factors from mitochondria into the cytoplasm [229]. It is noted that in schizophrenia the
level of the proapoptotic protein Bax increases and the expression of the antiapoptotic
protein Bcl-2 decreases in the temporal cortex. An increase in the expression of proapoptotic
proteins JNK, caspase-2, Rip, and Bid in the hippocampus was also observed [230]. NO can
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modulate the expression of these proteins by both direct binding to them at specific sites
and through activation or inhibition of various signaling pathways [34,36].
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Figure 11. Possible gasotransmitter-dependent signaling mechanisms regulating apoptosis in mental
disorders. NO, nitric oxide; CO, carbon monoxide; H2S, hydrogen sulfide; ROS, reactive oxygen
species; CASP2, cysteine-aspartic acid protease 2; Bax, bcl-2-like protein 4; DA, dopamine; 5-HT,
serotonin; sGC, soluble guanylyl cyclase; cGMP, cyclic guanosine monophosphate; p38, mitogen-
activated protein kinase p38; JNK, c-Jun N-terminal kinases; Bid, BH3 interacting-domain death
agonist; Rip, ribosome-inactivating protein; Akt, protein kinase B; ERK, extracellular signal-regulated
kinase; PI3K, phosphoinositide 3-kinases; Sirt1, NAD-dependent deacetylase sirtuin-1; Bcl-2, B-
cell lymphoma 2; NMDAR, N-methyl-D-aspartate receptor; DISC1, disrupted in schizophrenia 1.
Arrows with a sharp end—positive regulation; arrows with a blunt end—negative regulation; dashed
arrows—modification/adjustment.

Equally interesting, but not as numerous, are studies on the role of H2S in SCZ. It is
believed that excess production of H2S may underlie the pathogenesis of schizophrenia.
It was shown that in post-mortem brain samples of patients with SCZ, the level of MPST
and CBS was increased due to the coordinated activation of several genes that regulate the
processes associated with the formation of H2S. The level of MPST positively correlates
with the severity of symptoms in SCZ. Activation of MPST and CBS and their concomitant
accumulation of sulfides in the brain can induce schizophrenic behavior. Under conditions
of sulfide stress, the psychotic symptoms characteristic of SCZ may be exacerbated. It was
also demonstrated that in neuronal cells obtained from patients with SCZ, CBS mRNA
was significantly increased relative to control samples. This indicates that systemic H2S
production may be elevated early in CNS development in SCZ. Excessive synthesis of
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H2S reduces the expression of energy metabolism genes, disrupting the mitochondrial
processes of bioenergetics. In addition, C3H mice, which exhibit a greater propensity
for schizophrenic behavior, were found to have elevated MPST levels and greater sulfide
deposition relative to controls [231].

However, the role of H2S in this pathological condition is not so clear. Studies have
shown that a decrease in the level of H2S in blood plasma in patients with SCZ correlated
with psychopathological and cognitive impairments [232]. Along with this, H2S can affect
the release of glucose, lactate, and glutamate in the hippocampus, acting as an activator
of the metabolism of neurons and glial cells in SCZ. It is also known that in SCZ there
are significant changes in the activity of the hypothalamic–pituitary–adrenal system in
relation to the secretion of cortisol. The use of CBS and CSE inhibitors led to a decrease in
corticosterone secretion in response to adrenocorticotropic hormone of the adrenal gland,
which may be associated with an intensification of mitochondrial oxidative stress [233].

5.2. Depression

In 2019, 280 million people were affected by depression, including 23 million children
and adolescents (Figure 10). Depression is characterized by a decrease in mood or a loss of
interest in any activity [234,235].

For a long time, depression was studied by traditional descriptive methods of psy-
chiatry. However, recent advances in modern science have made the neuroimaging of the
subtle molecular mechanisms that occur in this disorder possible. Evidence was obtained
that various pathomorphological changes occur in the brain in depression, associated
with a violation of biochemical and molecular genetic processes in neurons and glial cells.
Depression may be based on such pathological processes as oxidative stress, damage to
proteins, lipids, nucleic acids, as well as cell death, including apoptosis [236,237]. Recently,
more and more information has appeared on the role of various gasotransmitters in the
pathogenesis of depression.

It is known that NO is involved in various pathological processes, including mental
disorders. This messenger has been proposed as an important signaling agent in the
pathogenesis of depression. The first evidence for this hypothesis came in 1980, when the
NOS inhibitor methylene blue was shown to have an antidepressant effect. Ten years later,
it was proved that NO plays one of the key roles in the pathogenesis of depression [238].
This concept is based on studies that have documented the activity of nNOS and eNOS
in the prefrontal cortex [222], the total number of NOS-immunoreactive paraventricular
neurons [3], as well as the level of NO and its metabolites in plasma [239,240] in patients
with depression. However, there are enough studies reporting high levels of NO and its
metabolites in depression [241–243].

nNOS is known to be localized in areas of the brain associated with stress responses
and depression. The limbic–hypothalamic–pituitary–adrenal (LHPA) is one major sys-
tem involved in depression. NO can regulate LHPA [244]. Thus, NO can modulate
norepinephrine, serotonin, and dopamine [245]. Disruption of the levels of these neuro-
transmitters can lead to cell death [246].

High levels of NO can cause oxidative stress, which is the main cause of neurodegen-
erative changes in the pathogenesis of most depression [247]. Studies indicate that against
the background of elevated NO levels, a significant weakening of the enzymatic links of the
antioxidant defense system occurs in patients suffering from depression [248]. It was also
found that the level of Bax in the olfactory bulb (OL) increased against the background of a
decrease in the expression of the Bcl-2 protein in rats with depression (Figure 11). Olfactory
impairment and decreased OL volume are often observed in patients with depression [249].
Studies report that NO can control neurogenesis and cell death in this part of the brain [250].
An increase in proapoptotic factors is characteristic of depression [251]. However, the role
of NO is still unclear in the development of cell death in depression.

In turn, H2S is also an important molecular player in depression. H2S has been found
to have antidepressant and anxiolytic effects. One of the mechanisms of these effects may be
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H2S-dependent modulation of the level of activity of NMDA receptors, the functioning of
which is impaired in depression. Treatment with H2S donors increased synaptic plasticity
and cognitive function. A decrease in the level of H2S in blood plasma correlated with
the severity of depression [252]. In addition, H2S can regulate the expression of Sirt1,
an enzyme that deacetylates transcription factors and one of the main proteins of mood
disorders. Sirt1 has anti-apoptotic activity through deacetylation of p53. Inhibition of Sirt1
reduced the protective effects of H2S against sleep deprivation-induced depressive and
anxious behavior [253]. An increase in the expression of p-P38, p-ERK 1/2, PI3K, and p-Akt
in the prefrontal cortex of mice with depression caused by chronic pain was also noted.
The use of an H2S donor led to a decrease in the level of these proteins (Figure 11) [254].
H2S has also been reported to inhibit inflammation and ferroptosis in depression [255].

The role of another gasotransmitter, CO, has also been found in the pathogenesis of
depression. The use of the HO-1 activator resulted in a decrease in the level of p-P38, p-ERK
1/2, PI3K, and p-Akt in a mouse model of depression [254]. It has also been reported that
CO may reduce negative symptoms in depression. The decrease in these symptoms may be
due to CO effects implemented in the corticolimbic system. So, it is known that CO/HO-1
can affect the level of trophic factors in the amygdala, hippocampus, and also in the frontal
cortex, which can help improve the emotional state [256]. It has been shown that CO can
induce dopamine release from presynaptic terminals [257].

5.3. Bipolar Disorder

Bipolar disorder (BD) is a chronic mental illness characterized by a phasic change in
mood: a “swing” between mania and depression. In 2019, 40 million people suffered from
bipolar affective disorder (BAD). People with bipolar disorder have alternating depressive
and manic symptoms [258,259].

Despite global studies conducted over the past decades, the molecular–cellular mech-
anisms underlying this pathology still remain unclear. One of the mechanisms of BD
pathogenesis may be a decrease in the density of neurons and glial cells in the frontal and
subcortical areas of the brain as a result of increased apoptosis and oxidative stress. There
is also a pronounced tendency for a decrease in the morphometric characteristics of these
cells in BD [260]. Using electron microscopy, signs of apoptosis of oligodendrocytes in BD
have been detected [261]. A number of studies have reported activation of proapoptotic
signaling in neurons characterized by an increase in the expression of Bax, caspase-9, and
caspase-3 [262] and a decrease in the levels of Bcl-2 and BDNF (Figure 11) [263].

A number of studies point to the role of NO in the pathogenesis of BD. A high level of
NO against the background of a violation of the antioxidant defense system is characteristic
of this disease [264]. However, studies have shown that the number of neurons expressing
nNOS is markedly reduced in BR in the locus coeruleus containing a large population of
noradrenergic neurons. In turn, disruption of the norepinephrine system is involved in
the pathophysiology of affective disorders. It is known that a disturbance in the synthesis
of NO can lead to a decrease in the synthesis of noradrenaline [265]. In addition, NO
can modulate the level of proapoptotic proteins in BD. There is also a violation of the
H2S-synthesizing system in BD [252].

5.4. Anxiety Disorders

Anxiety disorders are a group of disorders characterized by irrational, uncontrollable
fear and persistent feelings of anxiety. This group of anxiety disorders includes obsessive–
compulsive disorder, panic disorder, generalized anxiety disorder, post-traumatic stress
disorder (PTSD), etc. [266].

To date, it is known that an increase in apoptosis in the nervous tissue can be observed
in anxiety states [267,268]. Thus, in particular in PTSD, an increase in apoptosis was
observed in the hippocampus, amygdala, and other areas of the brain. It is indicated
that PTSD enhances neuronal apoptosis due to the activation of caspases, disruption of
myelination processes, and axon growth [267,269]. In the PTSD model in rats, an increase
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in the expression of caspase-9, caspase-3, and cytochrome c and a decrease in the Bcl-2/Bax
ratio were observed (Figure 11). Using the TUNEL method, it was shown that PTSD
induces neuronal apoptosis [268]. Gasotransmitters, including NO, CO, and H2S, may be
involved in intracellular processes in anxiety disorders [270,271].

NO can induce neuronal apoptosis during stress-induced anxiety through increased
levels of c-Fos, microglial activation, and oxidative stress [272]. It is believed that an
increase in the level of c-Fos is observed during stress reactions in various areas of the brain
responsible for fear and anxiety [273]. This protein causes prolonged excitation of neurons,
which can lead them to apoptosis [274]. In addition, mental stress is accompanied by an
increased release of corticosterone, norepinephrine, and adrenaline, which lead to massive
activation of microglia and cell death [275]. NO has been shown to regulate catecholamine
levels [276]. At the same time, activated microglia itself is a source of NO [277]. Inhibition
of iNOS in a rat model of anxiety reduced inflammation and oxidative stress [278].

CO has been reported to exert an anxiolytic effect in rats via a cGMP-dependent
heme oxygenase pathway at the locus coeruleus (LC), which is one of the most important
noradrenergic centers in the brain [279]. It is worth noting that a high level of HO-2/HO-1
is observed in LC neurons. This points to an important CO-dependent mechanism in the
regulation of LC nerve cells [280].

H2S also plays an important role in anxiety disorders. H2S donors have been shown
to reduce oxidative stress in anxiety-induced rats [281,282]. In addition, H2S can maintain
the level of glutathione in the nervous system, facilitate neuroplasticity in the amygdala,
and regulate the level of intracellular Ca2+ in neurons and glial cells in anxiety states [283].

6. Conclusions

Gasotransmitters have a wide range of biological effects in normal and pathological
conditions, including internal diseases and mental disorders. Their role is rather contro-
versial in these diseases, and the molecular mechanisms of the regulation of apoptotic
signaling are not well understood. However, gasotransmitters are already promising molec-
ular targets for the treatment and prevention of the discussed diseases. The molecular
mechanisms of the interaction of these messengers and feedbacks are of research interest
and still hold many hidden possibilities for studying the regulation of signaling pathways
associated with them.

Currently available scientific data point to the direct role of gasotransmitters in the
regulation of expression and localization of anti- and pro-apoptotic proteins, ion channel
activity, intracellular homeostasis, energy metabolism, lipid peroxidation, and antioxidant
protection in internal diseases and mental disorders. Further study of gasotransmitter-
dependent signaling mechanisms will allow a better understanding of the fundamen-
tal mechanisms of cell survival and death under conditions of stress reactions and may
also form the basis for the development of clinically effective cytoprotective drugs of a
new generation.
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