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Abstract: Loneliness and social isolation are detrimental to mental health and may lead to cognitive
impairment and neurodegeneration. Although several molecular signatures of loneliness have been
identified, the molecular mechanisms by which loneliness impacts the brain remain elusive. Here,
we performed a bioinformatics approach to untangle the molecular underpinnings associated with
loneliness. Co-expression network analysis identified molecular ‘switches’ responsible for dramatic
transcriptional changes in the nucleus accumbens of individuals with known loneliness. Loneliness-
related switch genes were enriched in cell cycle, cancer, TGF-β, FOXO, and PI3K-AKT signaling
pathways. Analysis stratified by sex identified switch genes in males with chronic loneliness. Male-
specific switch genes were enriched in infection, innate immunity, and cancer-related pathways.
Correlation analysis revealed that loneliness-related switch genes significantly overlapped with
82% and 68% of human studies on Alzheimer’s (AD) and Parkinson’s diseases (PD), respectively,
in gene expression databases. Loneliness-related switch genes, BCAM, NECTIN2, NPAS3, RBM38,
PELI1, DPP10, and ASGR2, have been identified as genetic risk factors for AD. Likewise, switch
genes HLA-DRB5, ALDOA, and GPNMB are known genetic loci in PD. Similarly, loneliness-related
switch genes overlapped in 70% and 64% of human studies on major depressive disorder and
schizophrenia, respectively. Nine switch genes, HLA-DRB5, ARHGAP15, COL4A1, RBM38, DMD,
LGALS3BP, WSCD2, CYTH4, and CNTRL, overlapped with known genetic variants in depression.
Seven switch genes, NPAS3, ARHGAP15, LGALS3BP, DPP10, SMYD3, CPXCR1, and HLA-DRB5
were associated with known risk factors for schizophrenia. Collectively, we identified molecular
determinants of loneliness and dysregulated pathways in the brain of non-demented adults. The
association of switch genes with known risk factors for neuropsychiatric and neurodegenerative
diseases provides a molecular explanation for the observed prevalence of these diseases among
lonely individuals.

Keywords: loneliness; network analysis; neurodegenerative disease; neuropsychiatric diseases; social
isolation; Alzheimer’s disease; Parkinson’s disease; major depressive disorder; schizophrenia

1. Introduction

Physical distancing and social isolation measures implemented during the COVID-19
pandemic had detrimental consequences on the physical and mental health of individuals
of all ages. Lack of social interactions and support can directly impact someone’s ability to
cope successfully with stressful events and adapt to changes during difficult times. Loneli-
ness, defined as the subjective perception of social isolation, is associated with a decline in
physical and mental health [1]. Loneliness has been associated with numerous conditions,
including major depressive disorder, anxiety, suicidal ideation, cognitive impairment, and
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dementia [2,3]. With the emerging increase in disease outbreaks and consequent social lock-
downs, it is imperative to understand the biological and molecular mechanisms associated
with loneliness and social isolation.

Several investigations have explored the neurobiological mechanisms underlying
loneliness [4]. Loneliness is associated with altered structure and function in different
brain regions, including the prefrontal cortex, insula, amygdala, hippocampus, and ventral
striatum [4]. Transcriptomic studies in blood and brain regions have begun to unravel some
of the biological and molecular mechanisms involved in loneliness and social isolation.
For example, a blood transcriptomic analysis from subjects who experienced chronically
high levels of social isolation identified the upregulation of genes involved in immune
activation and downregulation of genes related to B lymphocyte function and type I
interferon response [5]. The same group of investigators found that loneliness-induced
gene expression in blood was derived primarily from antigen-presenting cells [6].

In contrast with blood, an analysis of genome-wide RNA expression in the nucleus
accumbens from donors with known loneliness identified differentially expressed genes
associated with behavioral processes, Alzheimer’s disease (AD), psychological disorders,
cancer, and skeletal and muscular disorders [7]. The nucleus accumbens is a brain region of
interest due to its involvement in reward processing and cooperative social behavior [8,9].
Likewise, loneliness-induced gene expression patterns in the dorsolateral prefrontal cortex
were associated with AD, psychiatric diseases, immune dysfunction, and cancer [1].

One successful approach to investigating phenotypic transitions between healthy and
disease states is the analysis of co-expression networks [10,11]. The two most common and
reliable methods for constructing gene expression networks are Weighted Gene Correlation
Network Analysis (WGCNA) and SWItchMiner (SWIM) [10,12]. While both approaches use
a correlation matrix to construct a gene–gene similarity network, WGCNA considers only
the positive correlation between gene pairs. In contrast, one strength of the SWIM method
is the consideration of the negative correlation of the correlation distribution. The emphasis
on the left tail allows the identification of genetic drivers called ‘switch genes,’ which
are anticorrelated with their neighbors in the correlation network. In other words, when
switch genes are induced, their interaction partners are repressed and vice versa. These
advantages have been explained in detail in ref. [13]. One limitation of this approach is that
it is based on correlations; thus, causal relationships cannot be conclusively established.

Switch genes are molecular drivers responsible for drastic transcriptional changes
involved in phenotypic transitions. This network method has been instrumental in the
identification of switch genes in AD, vascular dementia, frontotemporal dementia (FTD),
amyotrophic lateral sclerosis (ALS), physical activity, and cancer [14–20]. Here, we im-
plemented a bioinformatics approach including co-expression networks and comparative
transcriptomic analyses to characterize the molecular pathways involved in loneliness
and social isolation. We present evidence that molecular determinants of loneliness are
intimately related to neurodegenerative and neuropsychiatric diseases.

2. Results
2.1. Database Mining and Study Selection

We searched the Gene Expression Omnibus (GEO), BaseSpace Correlation Engine
(BSCE, Illumina, Inc, San Diego, CA, USA), and ArrayExpress databases to identify mi-
croarrays from subjects with known loneliness (See Section 4). The following arrays were
retrieved on 21 July 2022: GEO = 397, ArrayExpress = 6, BSCE = 6. One array, GSE80696,
which contained transcriptomic data from individuals with known loneliness, met our
inclusion/exclusion criteria and was analyzed further. This dataset can be accessed using
the GEO database link: https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE80696,
21 July 2022. The overall bioinformatics workflow is presented in Figure 1.

https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE80696


Int. J. Mol. Sci. 2023, 24, 5909 3 of 21

Int. J. Mol. Sci. 2023, 24, x FOR PEER REVIEW 3 of 25 
 

 

the GEO database link: https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE80696, 
21 July 2022. The overall bioinformatics workflow is presented in Figure 1. 

 
Figure 1. Overall bioinformatics workflow. We searched the GEO, ArrayExpress, and BaseSpace 
Correlation Engine to identify RNA expression studies on loneliness or social isolation. The arrays 
that met our inclusion/exclusion criteria were analyzed further using SWIM analysis, pathways, 
disease–gene networks, and transcription factors. Finally, we performed correlation analyses in 
BaseSpace between gene expression patterns induced by loneliness and neuropsychiatric and neu-
rodegenerative diseases. We identified shared genetic risk factors between loneliness and neuro-
psychiatric and neurodegenerative diseases. 
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The dataset GSE80696 was imported into SWItchMiner (SWIM) to identify switch 

genes. The SWIM analysis was performed using the following comparisons: all subjects 
(high vs. low loneliness), males (high vs. low loneliness), and females (high vs. low lone-
liness). 

The SWIM algorithm was performed as previously described [10,20,21]. First, genes 
were included (red bars) or discarded (gray bars) using a cut-off of 2.0 or higher (Figure 
2A). The gene matrix was imported into SWIM to build the loneliness gene correlation 
network based on the average Pearson correlation coefficient (APCC). Using the APCC, 
three hubs were defined; date hubs with low positive co-expression with their partners, 
party hubs with high positive co-expression, and fight-club hubs with negative APCC 

Figure 1. Overall bioinformatics workflow. We searched the GEO, ArrayExpress, and BaseSpace
Correlation Engine to identify RNA expression studies on loneliness or social isolation. The arrays that
met our inclusion/exclusion criteria were analyzed further using SWIM analysis, pathways, disease–
gene networks, and transcription factors. Finally, we performed correlation analyses in BaseSpace
between gene expression patterns induced by loneliness and neuropsychiatric and neurodegenerative
diseases. We identified shared genetic risk factors between loneliness and neuropsychiatric and
neurodegenerative diseases.

2.2. Identification of Switch Genes Associated with Loneliness

The dataset GSE80696 was imported into SWItchMiner (SWIM) to identify switch
genes. The SWIM analysis was performed using the following comparisons: all subjects (high
vs. low loneliness), males (high vs. low loneliness), and females (high vs. low loneliness).

The SWIM algorithm was performed as previously described [10,20,21]. First, genes
were included (red bars) or discarded (gray bars) using a cut-off of 2.0 or higher (Figure 2a).
The gene matrix was imported into SWIM to build the loneliness gene correlation network
based on the average Pearson correlation coefficient (APCC). Using the APCC, three
hubs were defined; date hubs with low positive co-expression with their partners, party
hubs with high positive co-expression, and fight-club hubs with negative APCC values
(Figure 2b). Two parameters identified the plane, Zg (within-module degree) and Kπ
(clusterphobic coefficient), which was divided into seven regions, each defining a specific
node role (R1-R7). High Zg values corresponded to hub nodes within their module (local
hubs), whereas low Zg values corresponded to nodes with few connections within their
module (non-hubs within their communities, but they could be hubs in the network).
Each node was colored according to its APCC value. Yellow nodes were party and date
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hubs, which were positively correlated in expression with their interaction partners. The
switch genes were characterized by low Zg and high Kπ values and were connected mainly
outside their module. The switch genes were the blue nodes in region R4 (Figure 2b).
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map with nodes colored by their average Pearson’s correlation coefficient. Blue nodes in region R4 
represent switch genes. (c) Dendrogram and heatmap for switch genes. The red markers indicate 
samples from subjects with chronic loneliness. (d) Robustness of the correlation network. 

SWIM analysis identified 48 switch genes in the nucleus accumbens from individuals 
with high vs. low loneliness. The same analysis was performed by stratifying the samples 
by sex and level of loneliness. This analysis yielded 27 switch genes in males with in-
creased loneliness compared to low loneliness (Supplementary Figure S1). Switch genes 
from males with high loneliness depicted with red bars were downregulated (shown in 
blue) compared to males with low loneliness (Supplementary Figure S1). An analysis of 
samples from females did not yield any switch genes. 

2.3. Biological and Functional Analysis of Switch Genes 
Functional associations were explored using the HUGO database. Gene ontology re-

vealed that some switch genes from individuals with high loneliness were associated with 
angiogenesis and hemostasis (SERPINA1, FN1, KLK3, COL4A1), innate immunity and in-
flammation (CD59, GPNMB, LILRA2, NECTIN2, UBE2V1), lipid metabolism (GPR3, 
SRD5A1, ACSL5, ACACB), and neuronal development and function (ARF1, FN1, DPP10, 

Figure 2. Identification of switch genes. SWIM analysis of postmortem nucleus accumbens of subjects
with chronic loneliness compared to those with low loneliness (GSE80696). (a) Distribution of log2
fold change values where the red bars were selected for further analysis. (b) Heat cartography
map with nodes colored by their average Pearson’s correlation coefficient. Blue nodes in region R4
represent switch genes. (c) Dendrogram and heatmap for switch genes. The red markers indicate
samples from subjects with chronic loneliness. (d) Robustness of the correlation network.

An expression heatmap of switch genes is presented in Figure 2c. The data were
clustered according to rows and columns representing switch genes and samples, respec-
tively. The samples depicted in red were from subjects with high loneliness. Most switch
genes identified in individuals with high loneliness were downregulated (shown in blue).
In contrast, those with low loneliness were upregulated (shown in yellow) (Figure 2c).
Fight-club hubs differed from the date and party hubs, and switch genes were significantly
different from random genes, confirming the analysis’s robustness (Figure 2d). The x-axis
represented the cumulative fraction of removed nodes. In contrast, the y-axis represented
the average shortest path. Each curve corresponded to the variation in the average shortest
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path of the correlation network as a function of removing nodes specified by the colors of
each line.

SWIM analysis identified 48 switch genes in the nucleus accumbens from individuals
with high vs. low loneliness. The same analysis was performed by stratifying the samples
by sex and level of loneliness. This analysis yielded 27 switch genes in males with increased
loneliness compared to low loneliness (Supplementary Figure S1). Switch genes from males
with high loneliness depicted with red bars were downregulated (shown in blue) compared
to males with low loneliness (Supplementary Figure S1). An analysis of samples from
females did not yield any switch genes.

2.3. Biological and Functional Analysis of Switch Genes

Functional associations were explored using the HUGO database. Gene ontology
revealed that some switch genes from individuals with high loneliness were associated
with angiogenesis and hemostasis (SERPINA1, FN1, KLK3, COL4A1), innate immunity
and inflammation (CD59, GPNMB, LILRA2, NECTIN2, UBE2V1), lipid metabolism (GPR3,
SRD5A1, ACSL5, ACACB), and neuronal development and function (ARF1, FN1, DPP10,
DMD, TH, SYT8, FOXN4). In males with high loneliness, switch genes were involved in
the inflammatory response (HAMP, ZFP36, PELI1, CXCL1, HLA-DRB5, S100A8, SPN) and
regulation of transcription (NPAS3, AGO2, FOS, TAF6). The list of switch genes and their
gene ontology annotations is provided in Supplementary Table S2.

Network analysis revealed 12 unique pathways associated with loneliness (Figure 3a,b,
Supplementary Table S3). The top pathways implicated in loneliness were adherens junc-
tions, TGF-β, FOXO, Hippo, PI3K-AKT, WNT, AGE-RAGE, acute myeloid leukemia, mi-
croRNAs in cancer, JAK-STAT, and endometrial cancer (Figure 3b). Network analysis
identified 18 unique pathways associated with loneliness in males (Figure 3c,d, Supplemen-
tary Table S3). The male pathways were predominantly associated with infection, innate
immunity, cancer-related pathways, and autoimmune diseases (Figure 3d). Venn diagram
analysis indicated that 15 pathways were shared between both groups. The complete list of
pathways is provided in Supplementary Table S3.

2.4. Gene–Disease Association Analysis

A gene–disease association network analysis was performed in NetworkAnalyst.
Switch genes obtained from lonely individuals were connected to 16 diseases, including
cancer, liver cirrhosis, HIV infection, bipolar disorder, depression, schizophrenia, and
mental retardation (Figure 4a, Supplementary Table S4). Male-specific switch genes were
connected to six diseases, including liver cirrhosis, cocaine-related disorders, alcoholic intox-
ication, mammary neoplasms, and hypersensitivity (Figure 4b, Supplementary Table S4).

2.5. Gene–Transcription Factor Network Analysis

Transcription factor analysis of loneliness-related switch genes identified 65 master
regulators. The most significant transcription factors according to degree and between-
ness centrality were IRF1 and TGIF2 (Supplementary Table S5). Analysis of loneliness
switch genes from males identified 41 transcriptional regulators. The most significant
transcription factors based on network topology measurements were KLF9 and ZFX
(Supplementary Table S5).
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Figure 3. Network and pathway analysis of switch genes. (a) Network analysis of loneliness switch
genes. Switch genes are depicted in orange and interacting proteins are in gray. (b) Unique pathways
dysregulated in individuals with chronic loneliness. (c) Network analysis of switch genes identified
in males with chronic loneliness. (d) Unique pathways dysregulated in males with chronic loneliness.
Network and pathway analysis was performed in NetworkAnalyst.
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The lists of transcription factors were analyzed further using the String database
(https://string-db.org/, accessed on 1 September 2022). Analysis of the list of transcription
factors from individuals with chronic loneliness compared to low loneliness identified
195 biological processes. The most significant processes were associated with the negative
regulation of transcription, RNA metabolic process, nucleobase-containing compound
metabolic process, and cellular macromolecule biosynthetic process. Transcription factors
were related to zinc finger protein domains C2H2 type. In contrast, transcription factors
from males with chronic loneliness were associated with the positive regulation of nucleic-
acid transcription, RNA metabolic process, cellular macromolecule biosynthetic process,
and cellular metabolic process. Venn diagram analysis showed that TFs from males with
chronic loneliness were enriched in 12 unique biological pathways, including positive
regulation of RNA metabolism, regulation of erythrocyte differentiation, lymphocyte
differentiation, response to alcohol, leukocyte activation, leukocyte differentiation, cellular
response to IL-6, positive regulation of pri miRNA transcription, cellular response to
IL-7, erythrocyte differentiation, cellular response to oxygen-containing compound, and
response to lipopolysaccharide (Supplementary Table S5).

2.6. Loneliness-Related Switch Genes Associated with Neuropsychiatric and
Neurodegenerative Diseases

We investigated whether loneliness-related switch genes were involved in neuropsy-
chiatric and neurodegenerative diseases. We compared the results from this study to our
previous analyses of switch genes in AD, FTD, ALS, and physical activity [14,15,19]. Several
loneliness-related switch genes were identified as switch genes in different neurodegen-
erative diseases. For instance, ACACB and DLEC1 were identified as switch genes in the
entorhinal cortex of AD patients [14]. Further, ACACB and GPNMB were identified as
switch genes in the frontal cortex of FTD patients [15].

We curated the literature to explore the associations between loneliness-related switch
genes and brain diseases. Specifically, we used the search terms “neurodegeneration”,
“dementia”, “Alzheimer’s disease”, “Parkinson’s disease”, “Frontotemporal dementia”,
“Amyotrophic lateral sclerosis”, “Lewy body dementia”, “neuropsychiatric disorders”,
“major depressive disorder”, and “schizophrenia” for each switch gene individually. This
search identified the association of 25 switch genes with neurodegenerative and neuropsy-
chiatric diseases. For instance, 13 switch genes, GPNMB, TH, CD59, COL4A1, ZBTB16,
TSPAN15, DMD, LEF1, GPR3, UBE2V1, DPP10, NECTIN2, LGALS3BP, CDKN1A, SER-
PINA1, and DMP1 were linked to AD, PD, FTD, PD dementia, Creutzfeldt Jakob disease,
and LBD (Table 1). Nine switch genes from the male dataset, AGO2, HLA-DRB5, ALDOA,
S100A8, CTSG, CXCL1, CYTH4, PELI1, and FPR1, were associated with AD, HD, PD, LBD,
and FTD. Five switch genes, HLA-DRB5, CYTH4, NPAS3, DMD, and DPP10, were related
to neuropsychiatric disorders (Table 1).

Table 1. Association of loneliness-related switch genes with neurodegenerative and neuropsychi-
atric diseases.

Switch Gene Name Dataset (High vs.
Low Loneliness)

Neurodegenerative
Diseases

Neuropsychiatric
Diseases References

AGO2 Argonaute 2 Males

Silencing of AGO2
enhances the expression of

APP-cleaving enzyme
(BACE1) in vitro.

AGO2 accumulation leads
to dysregulation of

miRNAs and impairment
of autophagy in

Huntington’s disease.

[22,23]

https://string-db.org/
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Table 1. Cont.

Switch Gene Name Dataset (High vs.
Low Loneliness)

Neurodegenerative
Diseases

Neuropsychiatric
Diseases References

HLA-DRB5

Major
histocompatibility

complex, class II, DR
beta 5

Males

HLA-DRB5 variants are
linked to

neuroinflammation
and AD.

HLA-DRB5 is
associated with

remission to
antidepressant
treatment and

epigenetic alterations
in schizophrenia.

[24–27]

ALDOA Aldolase, fructose-
bisphosphate A Males

Increased APOE4 copy
number is associated with

increased ALDOA levels in
CSF of AD patients.

[28]

S100A8 S100 calcium-binding
protein A8 Males

Myeloperoxidase is
accumulated in S100A8(+)

neutrophils in the AD
human brain.

S100A8 is increased in the
serum of FTD patients.
Aggregation of S100A8
precedes Aβ formation

in mice.

[29–31]

CTSG Cathepsin G Males
Dysregulated expression of

CTSG is associated with
Lewy body dementia.

[32]

CXCL1 C-X-C motif
chemokine ligand 1 Males

Upregulated CXCL1
mediates Aβ toxicity in the

human AD brain.
[33]

CYTH4 Cytohesin 4 Males
Expression levels of CYTH4

alleles are increased in
AD patients.

CYTH4 variants are
associated with
schizophrenia in

primates and bipolar
disorder in humans.

[34,35]

PELI1
Pellino E3

ubiquitin-protein
ligase 1

Males

PELI1 is involved in
microglial activation and
dopaminergic cell death

in PD.

[36]

FPR1 Formyl peptide
receptor 1 Males FPR1 is associated with

dementia risk. [37,38]

NPAS3 Males

NPAS3 variants are
implicated in

schizophrenia and
intellectual disability.

[39–44]

GPNMB
Glycoprotein
nonmetastatic

melanoma protein B
All

GPNMB confers risk for PD.
It is increased in the plasma

of PD patients and
associated with
disease severity.

GPNMB is a switch gene in
the frontal cortex of

FTD patients.

[15,45]

TH Tyrosine hydroxylase All
A deficiency of the TH

enzyme is a critical feature
in PD.

[46,47]

CD59 Complement defense
59 All

CD59 deficits are observed
in AD patients’ frontal

cortex, hippocampus, and
plasma.

[48,49]

COL4A1 Collagen type IV
alpha 1 chain All

COL4A1 mutation is
associated with

multi-infarct dementia.
[50]
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Table 1. Cont.

Switch Gene Name Dataset (High vs.
Low Loneliness)

Neurodegenerative
Diseases

Neuropsychiatric
Diseases References

ZBTB16
Zinc finger and BTB

domain-
containing 16

All

ZBTB16 is linked to
increased autophagy in
Huntington’s and AD

mice models.

[51–53]

TSPAN15 Tetraspanin 15 All
TSPAN15 is increased in

human and animal models
of AD.

[54]

DMD Dystrophin All
DMD is a crucial hub gene

associated with AD
risk variants.

There is a higher
prevalence of

neuropsychiatric
diseases among

patients with Duchene
and Becker

muscular dystrophies.

[55,56]

LEF1
Lymphoid

enhancer-binding
factor 1

All
LEF1 is involved in the

differentiation of midbrain
dopaminergic neurons.

[57]

GPR3 G protein-coupled
receptor 3 All

Loss of GPR3 reduced Aβ
formation and improved

memory in AD
mouse models.

Elevated GPR3 expression
is correlated with AD

progression in humans.

[58]

UBE2V1
Ubiquitin-

conjugating enzyme
E2 V1

All UBE2V1 is downregulated
in the blood of AD patients. [59]

DPP10 Dipeptidyl peptidase
like 10 All

DPP10 malfunctioning is
associated with AD

and FTD.

DPP10 variants are
associated with bipolar

disorder and
schizophrenia

[60–62]

NECTIN2 Nectin cell adhesion
molecule 2 All NECTIN2 variants are

associated with AD risk. [63]

LGALS3BP Galectin-3-binding
protein All

Increased secretion of
GAL3BP suppressed Aβ
production in a cellular

model of AD.

[64]

CDKN1A Cyclin-dependent
kinase inhibitor 1A All CDKN1A is increased in

the blood of AD patients. [64]

SERPINA1 Serpin family A
member 1 All

SERPINA1 is a risk marker
for PD dementia.

SERPINA1 is upregulated
in CSF of Creutzfeldt-Jakob
disease and FTD patients.
SERPINA1 isoforms were
differentially expressed in

CSF of AD and
LBD patients.

[65–67]

DMP1 Dentin matrix acidic
phosphoprotein 1 All

Silencing of DMP1
improved cognitive

impairment and enhanced
the proliferation of neural

progenitor cells in AD mice.

[68]

2.7. Comparative Gene Correlation Analysis between Loneliness and Neuropsychiatric and
Neurodegenerative Diseases

Given the associations between loneliness and brain diseases, we performed a cor-
relation analysis between the switch genes identified from chronically lonely subjects
(GSE80696) and the most common neuropsychiatric and neurodegenerative diseases using
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the BSCE database. We used the search terms “Alzheimer’s disease”, “dementia”, “Parkin-
son’s disease”, “major depressive disorder”, “depression”, and “schizophrenia” to identify
arrays. Studies were filtered only to include human studies.

The correlation analysis showed that loneliness-related switch genes overlapped in
82% (53/65) of human studies on AD deposited in the BSCE database (Table S6). The
most significant genetic overlap was observed in studies of entorhinal and frontal cortex
pyramidal neurons from early-stage AD patients. Specifically, 23 (p = 1.60 × 10−9) and
36 (6.10 × 10−7) switch genes overlapped in the entorhinal and frontal cortices, respectively.
Furthermore, several loneliness-related switch genes were associated with variants previously
identified as risk factors for AD in 30 different GWAS studies (Supplementary Table S7). For
instance, variants in BCAM and NECTIN2 have been related to the risk of AD in more
than 10 GWAS from diverse populations, including European, Caucasian, and Japanese
(Supplementary Table S7). NPAS3, RBM38, and PELI1 were associated with the risk of AD
in APOE4 (-) individuals and AD with psychosis in a European cohort. Finally, ASGR2
was associated with the response to cholinesterase inhibitors in discovery and replication
cohorts of AD individuals (Supplementary Table S7).

The same analysis was performed with PD studies. Loneliness-related switch genes
overlapped in 68% (40/59) of human studies on PD (Table S8). The most significant genetic
overlap was observed in the globus pallidus internal of PD patients with 12 overlapping
switch genes (p = 2.50 × 10−6). Several switch genes overlapped with known risk loci in
PD patients. For example, variants in NPAS3, HLADRB5, ALDOA, and GPNMB have been
linked to PD risk in several populations (Supplementary Table S9).

In the context of neuropsychiatric diseases, loneliness switch genes overlapped in
70% (16/23) of human studies on major depressive disorder (Supplementary Table S10).
Nine switch genes, HLA-DRB5, ARHGAP15, COL4A1, RBM38, DMD, LGALS3BP,
WSCD2, CYTH4, and CNTRL, overlapped with known genetic variants in depression
(Supplementary Table S11). Similarly, switch genes overlapped in 64% (16/25) of human
studies in schizophrenia (Supplementary Table S12). Seven switch genes, NPAS3, ARHGAP15,
LGALS3BP, DPP10, SMYD3, CPXCR1, and HLA-DRB5, were associated with known risk
factors for schizophrenia (Supplementary Table S13).

3. Discussion

We performed a bioinformatics approach to identify genes responsible for drastic
transcriptional changes occurring in the brain of individuals exposed to chronic levels
of loneliness. Co-expression network analysis using SWIM identified 48 switch genes
in the postmortem nucleus accumbens from individuals with high loneliness compared
to low loneliness. Analysis stratified by sex identified 27 switch genes in males with
chronic loneliness.

Network analysis of loneliness-related switch genes revealed enrichment in several
unique pathways, including adherens junction, TGF-β, Hippo, FOXO, PI3K-AKT, WNT,
JAK-STAT, AGE-RAGE signaling in diabetic complications, and cancers. Among these
pathways, TGF-β has been implicated in the pathogenesis of neuropsychiatric mood disor-
ders and neurodegeneration due to its central actions in regulating the stress response [69].
For example, deficient TGF-β signaling triggered neurodegeneration by promoting amy-
loid β accumulation and dendritic loss in a mouse model of AD [70]. Likewise, FOXO
and PI3K-AKT have been implicated in neurodegeneration. FOXO1 and genes under its
regulation have been implicated in the pathogenesis of PD [71]. FOXO and PI3K-AKT sig-
naling are involved in lipid metabolism and insulin signaling and may be shared pathways
between diabetes and AD [72–74]. Similarly, advanced glycation end products (AGE) and
their receptor RAGE may contribute to or protect against AD by regulating inflammatory
mechanisms [75].

Transcription factor analysis identified IRF1 and TGFI2 as the most significant regu-
lators of loneliness switch genes. IRF1 plays a role in immunity, anti-viral mechanisms,
macrophage polarization, and microglial activation [76–78]. Interestingly, IRF1 is regulated
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by BIN, the second most common risk factor for AD, and has essential roles in regulating
the brain inflammatory response and microglial function [79,80]. TGFI2 is associated with
neuronal apoptosis, neocortical development, neurogenesis, brain defects, and mental
retardation [81,82].

In contrast, switch genes from lonely males were enriched predominantly in infection,
autoimmune diseases, and antigen processing and presentation. These findings were
consistent with previous work in which antigen-presenting cells in blood were identified as
the primary targets and most transcriptionally sensitive immune cells to social isolation [6].
Genetic changes associated with loneliness were derived primarily from plasmacytoid
dendritic cells, monocytes, and B cells. Furthermore, several immune-related switch genes,
including HLA-DRB5, CXCL1, and PELI1, were exclusively identified in males exposed to
chronic isolation.

Network analysis of transcription factors identified KLF9 as the most significant
regulator of loneliness-related switch genes in males. KLF9 has been identified as an
important transcriptional regulator in the hippocampus of AD patients [14]. Furthermore,
KLF9 promotes the expression of PGC1α, a critical factor in hepatic gluconeogenesis [83],
mitochondrial function, and a potential therapeutic target in PD [84,85].

Biological and functional analyses revealed interesting differences in pathways regu-
lated by transcription factors identified from males with chronic loneliness and those from
all subjects. Transcription factors obtained from all subjects were enriched primarily in the
negative regulation of both transcription and RNA metabolism. In contrast, transcription
factors from males with chronic loneliness were involved in the positive regulation of
both transcription and RNA metabolism. In this regard, disrupted RNA metabolism and
processing has been recognized as a critical determinant in neurological diseases including
ALS, AD, FTD, and PD [86–88]. Moreover, transcription factors were enriched in chromatin
organization and C2H2 zinc finger protein, which are involved in chromatin closing [89].

Interestingly, transcription factors from males were uniquely enriched in pathways
related to the response to alcohol, leukocyte differentiation, and the cellular response to
IL-6, IL-7, and lipopolysaccharide. These findings reinforce the involvement of alcohol
addiction and innate immunity in males with chronic loneliness.

Together, these findings suggest that loneliness directs transcriptional changes that in-
fluence the dysregulation of pathways involved in lipid metabolism, insulin signaling, RNA
metabolism, and inflammatory processes. Given the evidence from blood and brain studies,
it is plausible to speculate that pathways related to innate immunity are predominantly
disrupted in males exposed to chronic loneliness.

We next investigated the linkage between loneliness-related switch genes and other
diseases. Disease–gene network analysis revealed that chronic loneliness switch genes
were associated with various cancers, liver cirrhosis, and neuropsychiatric conditions,
including mental retardation, depression, bipolar disorder, and schizophrenia. Switch
genes identified in males exposed to chronic loneliness were linked to cocaine addiction,
mammary neoplasms, hypersensitivity, and alcoholic intoxication. These findings suggest
that loneliness induces the transcription of genes associated with malignancies and neu-
ropsychiatric conditions. Males exposed to chronic loneliness may be more prone to alcohol
use, cocaine addiction, and infection. For example, depressed men reported higher rates of
anger attacks, aggression, substance abuse, and risk-taking than women [90]. Moreover,
male-specific transcriptional rewiring of genes involved in alcohol and cocaine addiction
has been recently identified in AD patients ([91]).

Loneliness has been documented to promote cognitive decline and neurodegenera-
tion, but the specific molecular determinants underlying this association are unclear. We
investigated how loneliness-related switch genes are associated with neurodegenerative
and neuropsychiatric diseases. Interestingly, manual curation of the literature revealed that
25 loneliness-related switch genes had been implicated in various neurodegenerative and
neuropsychiatric disorders, including AD, PD, HD, FTD, depression, and schizophrenia.
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Correlation analysis showed that loneliness-related switch genes overlapped with 82%
of human gene expression studies in AD deposited in the BSCE database. Notably, several
switch genes are associated with risk variants for AD. Loneliness-related switch genes
BCAM, NECTIN2, NPAS3, RBM38, PELI1, DPP10, and ASGR2 were previously identified as
risk factors for AD in several populations [92–100].

Furthermore, loneliness switch genes significantly overlapped with 68% of human
gene expression studies in PD. Similar to AD, several switch genes are associated with
known genetic loci in PD. Mutations in NPAS3, HLA-DRB5, ALDOA, and GPNMB have
been associated with PD risk in several GWAS [101–104]. These findings suggest that
loneliness induces drastic gene expression changes consistent with a neurodegeneration
phenotype. Individuals exposed to chronic loneliness may be more susceptible to AD or
PD, possibly through different pathways.

Several studies have indicated a linkage between loneliness and neuropsychiatric
diseases. A population-based study reported that higher loneliness scores were associated
with higher depression symptom severity [105]. In this study, loneliness-related switch
genes significantly overlapped with 70% and 64% of human gene expression studies
in major depressive disorder and schizophrenia, respectively. Several loneliness switch
genes have been reported as genetic risk factors for these diseases. For example, HLA-
DRB5, ARHGAP15, COL4A1, RBM38, DMD, LGALS3BP, WSCD2, CYTH4, and CNTRL
overlapped with known genetic variants in depression, reinforcing the idea that loneliness
may increase disease susceptibility [106–108]. Likewise, NPAS3, ARHGAP15, LGALS3BP,
DPP10, SMYD3, CPXCR1, and HLA-DRB5 were associated with known risk factors for
schizophrenia [97,109–112]. In this regard, social isolation during the pandemic correlated
with paranoid ideation [113]. A genetic variant near the switch gene CPXCR1 was associated
with schizophrenia risk in Japanese males in a replication cohort [114].

Sex-specific differences in symptoms and conditions have been noted among lonely
individuals. For example, loneliness was associated with major depressive disorder and
anxiety, especially in men, during the COVID-19 pandemic [115]. Specifically, men re-
ported higher rates of depressive symptoms and suicidal ideation than women during the
COVID-19 pandemic [116]. Symptoms of depression in males may be different from those
observed in females. In this regard, when male-type symptoms of depression are included
in depression rating scales, a higher proportion of males than females met the criteria for
depression [90]. Identifying loneliness-related switch genes in males but not females may
suggest that loneliness may have a more drastic transcriptional impact in the brain of males,
making them more susceptible to some neurodegenerative and neuropsychiatric disorders.
Future longitudinal and sex-stratified studies are needed to understand how loneliness
impacts the brain of males and females differently.

Lifestyle changes may be useful strategies to mitigate the negative effects of loneliness
in older adults. Physical activity, for example, has been shown to promote synaptic growth
and reduce inflammation, thus protecting the brain against oxidative stress and neurode-
generation [19]. Other lifestyle modifications, including diet, sleep hygiene, mindfulness,
and meditation, have been proposed to benefit the brain against depression, cognitive
decline, and neurodegeneration [117–120].

Several limitations are noteworthy. The findings presented herein are derived from
bioinformatics analyses. Further mechanistic studies are needed to confirm the functional
role of these switch genes. Validation of these results in an independent human gene
expression dataset will be critical to determine the reproducibility of these findings in
other patient populations. The study GSE80696 contained transcriptomic data from White,
non-Hispanic individuals; thus, the switch gene analysis is not representative of the overall
population. Notably, lonely individuals in this cohort showed poorer cognitive function
than non-lonely subjects; therefore, correlations between loneliness-related switch genes
and neurodegeneration are not unexpected. Nonetheless, the findings presented herein
provide evidence that loneliness, in combination with environmental and genetic factors,
induces gene expression changes in the brain that may lead to the development of several
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neuropsychiatric and neurodegenerative diseases (Figure 5). The association of switch
genes with known risk factors for neuropsychiatric and neurodegenerative diseases pro-
vides supporting molecular evidence for the observed prevalence of these diseases among
lonely individuals. Future longitudinal studies on loneliness will be crucial for a better
understanding of the impact of loneliness on brain health.
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Figure 5. The impact of loneliness on brain health. Loneliness, social isolation, environmental
stressors, and genetic factors can have detrimental effects on the brain and may lead to several
neuropsychiatric and neurodegenerative diseases. Several switch genes responsible for the dramatic
transcriptional changes in the brains of lonely individuals have been reported to play a role in the
pathogenesis of neuropsychiatric and neurodegenerative diseases.

4. Materials and Methods
4.1. Microarray Dataset Selection

We searched the GEO (https://www.ncbi.nlm.nih.gov/gds, accessed on 21 July 2022),
BSCE, and ArrayExpress databases in August 2022 for transcriptomic studies using the
search terms “homo sapiens”, “human”, “loneliness”, and “social isolation.” The inclusion
criteria were: (1) human microarrays from relevant tissues in loneliness or social isolation,
(2) 3 samples or more. The exclusion criteria were: (1) animal and cellular models. One
dataset met our criteria and was processed for SWIM and pathway analyses. The dataset
GSE80696 included postmortem transcriptomic data from the nucleus accumbens from
26 White, non-Hispanic subjects without known dementia and depression at enrollment
in the Rush Memory and Aging Project (MAP) [7]. These participants were selected from
a cohort of 247 MAP participants with reported loneliness scores. The clinical character-
istics of the study participants in GSE80696 are described in detail elsewhere [7] and in
Supplementary Table S1.

https://www.ncbi.nlm.nih.gov/gds
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4.2. Identification of Switch Genes

Raw data from GSE80696 were imported into SWIM to identify switch genes. The
SWIM algorithm has been described in detail in ref. [10,20,21]. We performed the following
comparisons: all individuals with high vs. low loneliness, and samples stratified by sex,
males and females with high vs. low loneliness. Genes with no or low expression were
removed in the preprocessing stage. SWIM analysis works best with a network size between
1000–2000 nodes. The fold change parameter was adjusted to optimize the network size. For
comparing all subjects with high vs. low loneliness, a fold change threshold of 2.0 was used.
For the sex-stratified analysis, a fold change threshold of 4 was used. These fold changes
were set for each array in the filtering step, and genes that were not significantly expressed
between cases compared to controls were removed. The False Discovery Rate method
(FDR) was used for multiple test corrections. Pearson’s correlation test was performed
to build a co-expression network of genes differentially expressed between individuals
with high vs. low loneliness. The k-means algorithm was used to identify communities
within the network. SWIM uses a Scree plot to determine the number of clusters, and
the clusters with the lowest number of sums of the square error (SSE) values among the
replicates are designated as the number of clusters. We built a heat cartography map using
the clusterphobic coefficient Kπ and the global-within module degree Zg. The coefficient
Kπ measures the external and internal node connections, whereas Zg measures the extent
to which each node is connected to others in its community. A node was considered a hub
when Zg > 5. The average Pearson’s correlation coefficient (APCC) between the expression
profile of each node and its nearest neighbors was used to build the heat cartography map.
Three hubs were defined; date hubs that showed low positive co-expression with their
partners (low APCC), party hubs that showed high positive co-expression (high APCC),
and nodes that had negative APCC values were called fight-club hubs. Switch genes
interact outside their community, are not in local hubs, and are mainly anticorrelated with
their interaction partners.

4.3. Functional Analysis of Switch Genes

Gene ontology associations were explored for each switch gene using the HUGO database
(https://www.genenames.org/, accessed on 1 September 2022). For pathway analysis, offi-
cial gene symbols were imported into NetworkAnalyst (https://www.networkanalyst.ca/,
accessed on 1 September 2022) [121]. Tissue-specific networks were built using the nucleus
accumbens protein-protein interaction database in NetworkAnalyst. The minimum con-
nected network was selected for further pathway analysis. Data derived from KEGG were
used for pathway selection. A gene–disease association network analysis was performed
in NetworkAnalyst. Nodes were ranked according to network topology measures, degree,
and betweenness centrality. A p-value and FDR of less than 0.05 were considered significant.

4.4. Transcription Factor Analysis

Transcription factor analysis was performed in NetworkAnalyst. The lists of switch
genes obtained from subjects exposed to chronic loneliness and those obtained from males
with high loneliness were analyzed separately. Transcription factor data were derived
from the Encyclopedia of DNA Elements (ENCODE). ENCODE uses the BETA Minus
Algorithm in which only peak intensity signal <500 and the predicted regulatory potential
score <1 are used. Transcription factors were ranked according to network topology mea-
surements, including degree and betweenness centrality. Biological and functional analysis
of transcription factors was performed using the String database (https://string-db.org/,
accessed on 1 September 2022). Pathways with FDR < 0.05 were denoted as significant.

4.5. Gene Expression and Correlation Analyses

Gene correlation analysis was performed using the curated BSCE database. The switch
genes identified in subjects with chronic loneliness were compared to gene expression
profiles from subjects with neuropsychiatric and neurodegenerative diseases using the cor-

https://www.genenames.org/
https://www.networkanalyst.ca/
https://string-db.org/
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relation tool. The genetic overlap between GSE80696 and the other datasets was analyzed
as previously described [19,74]. For the correlation analysis, the number of shared genes
was compared between any two datasets. BSCE uses a “Running Fisher” algorithm to
compute the overlapping p-values between different gene expression datasets [122]. Genes
below the 20th percentile of the combined normalized signal intensities were removed. The
scoring and ranking of a gene were calculated according to the activity of each gene in each
dataset and the number of datasets in which the gene is differentially expressed. Ranks were
normalized to eliminate bias owing to varying platform sizes. Only genes with a p-value of
0.05 or less and an absolute fold-change of 1.2 or greater were considered significant.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/ijms24065909/s1.
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