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Abstract: Parkinson’s disease is the second most common neurodegenerative disease. Unfortunately,
there is still no definitive disease-modifying therapy. In our work, the antiparkinsonian potential
of trans-epoxide (1S,2S,3R,4S,6R)-1-methyl-4-(prop-1-en-2-yl)-7-oxabicyclo [4.1.0]heptan-2,3-diol (E-
diol) was analyzed in a rotenone-induced neurotoxicity model using in vitro, in vivo and ex vivo
approaches. It was conducted as part of the study of the mitoprotective properties of the compound.
E-diol has been shown to have cytoprotective properties in the SH-SY5Y cell line exposed to rotenone,
which is associated with its ability to prevent the loss of mitochondrial membrane potential and
restore the oxygen consumption rate after inhibition of the complex I function. Under the conditions
of rotenone modeling of Parkinson’s disease in vivo, treatment with E-diol led to the leveling of both
motor and non-motor disorders. The post-mortem analysis of brain samples from these animals
demonstrated the ability of E-diol to prevent the loss of dopaminergic neurons. Moreover, that
substance restored functioning of the mitochondrial respiratory chain complexes and significantly
reduced the production of reactive oxygen species, preventing oxidative damage. Thus, E-diol can be
considered as a new potential agent for the treatment of Parkinson’s disease.

Keywords: epoxidiol; Parkinson’s disease; neurodegenerative diseases; rotenone; ROS; mitochondrial
dysfunction; disease-modifying therapy

1. Introduction

Parkinson’s disease is the second most common disease among neurodegenerative dis-
orders [1,2] after Alzheimer’s disease [3] and is characterized primarily by motor disorders
caused by the loss of dopaminergic neurons in the compact part of the substantia nigra [4,5].
In patients with advanced stages of this disease, up to 95% of these neurons die [6]. A large
number of papers describing the possible mechanisms of dopaminergic neurons loss are
devoted to the study of the mitochondrial complex I (NADH-dehydrogenase complex)
activity, a decrease in the activity of which is shown in the brain of patients with parkinson-
ism [7–9]. This complex is the main entry point of electrons into the respiratory chain, by
which initiates oxidative phosphorylation and the ATP production by mitochondria [10].
Given that an impairment in the functioning of mitochondria currently plays a key role
in the pathogenesis of Parkinson’s disease [11,12], a promising direction in the search for
potential drugs is to focus on their ability to level mitochondrial dysfunction.

A promising class of compounds on the basis of which highly effective neuropro-
tective drugs for the treatment of Parkinson’s disease can be developed are monoter-
penoids [13–16]. Previously, the antiparkinsonian potential of (1R,2R,6S)-3-methyl-6-
(prop-1-en-2-yl)cyclohex-3-en-1,2-diol (diol (Prottremin), Figure 1) [17,18], which is cur-
rently in the first stage of clinical trials, was discovered. The active metabolite epoxide
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(1S,2S,3R,4S,6R)-1-methyl-4-(prop-1-en-2-yl)-7-oxabicyclo[4.1.0]heptane-2,3-diol (E-diol,
shown in Figure 1) was also found to produce a similar effect as the compound mentioned
earlier. E-diol has a high antiparkinsonian activity. In addition, epoxidiol has demonstrated
the ability to repair dopaminergic neurons damaged by the neurotoxin MPTP, triggering a
signaling cascade of mitogen-activated protein kinase (MAPK) [19]. It gives hope for an
effective treatment of the disease. In order to bring more insight into possible mechanisms
of the antiparkinsonian action of epoxidiol, in this work, we conducted for the first time a
study of its biological activity as part of a consecutive study of mitoprotective properties at
in vitro, in vivo and ex vivo testing stages.
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Figure 1. Structures of Diol and E-diol.

To simulate the pathogenesis of Parkinson’s disease, rotenone was used, which is
a widely used neurotoxin in a large number of studies. It is used both to elucidate the
mechanisms underlying the death of dopaminergic cells and to study new potential neuro-
protective agents [20–23]. This is due to its involvement in many pathological pathways
that mediate the death of dopaminergic neurons [24–26], the ability to reproduce both
motor [27,28] and non-motor symptoms of parkinsonism [29–31], as well as an extremely
high lipophilicity [32], which allows it to penetrate easily the blood–brain barrier. Figure 2
shows the mechanisms of rotenone action that cause neuropathological signs, as well as
motor and non-motor symptoms. It has been proven that rotenone reproduces the most
common symptoms of Parkinson’s disease due to direct inhibition of the mitochondrial
respiratory chain complex I [33,34].
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balance of which is maintained due to the functioning of the vesicular monoamine transporter
(VMAT). VMAT promotes the active deposition of the neurotransmitter in vesicles. Dopaminec in
neurons undergoes oxidative deamination, catalyzed by monoamine oxidase A, to form DOPAL.
DOPAL is a cytotoxic catecholaldehyde and promotes the formation of alpha-synuclein oligomeric
forms, pathogenic in Parkinson’s disease. However, under normal conditions, DOPAL metabolism
is regulated by enzymes, mainly aldehyde dehydrogenase, resulting in the formation of a non-
toxic metabolite DOPAC, which helps to reduce the level of inflammatory cytokines. The rotenone
introduction leads to an increase in the content of endogenous DOPAL, which correlates with the
increased death of neuronal cells and neurobehavioral abnormalities similar to those in Parkinson’s
disease. This can happen for two reasons. (1) Rotenone, acting on VMAT, blocks it, and as a result,
dopamine redistribution occurs only in one direction—from vesicles to the cytoplasm. Such a shift
of Dopaminec > Dopaminev leads to the increased availability of dopamine as a precursor for the
production of DOPAL in abnormal amounts. (2) Rotenone, by blocking the mitochondrial complex
and, as a consequence, the generation of NAD+, can reduce the intracellular activity of aldehyde
dehydrogenase, since NAD+ is a necessary cofactor for the functioning of this enzyme. This leads to
an increase in the DOPAL level, as now its metabolism is regulated using only an alternative pathway
through aldoreductase.

In our work, we tried to reproduce a rotenone-induced model of Parkinson’s disease
using in vitro, in vivo and ex vivo approaches. It was investigated whether treatment
with epoxidol by modulating mitochondrial functions could restore the behavioral and
neurochemical profile of mice with the phenotype of this disease.

2. Results
2.1. Rotenone-Induced Neurotoxicity on the SH-SY5Y Cell Line

To assess the effect of diol (initial compound) and epoxidiol on the viability of SH-SY5Y
cells, an MTT analysis was performed based on the ability of mitochondrial dehydrogenases
of living metabolically active cells to cleave the membrane-permeable yellow tetrazolium
salt (3-[4,5-dimethylthiazole-2-yl]-2,5-diphenyltetrazolium bromide, MTT), restoring it to
purple intracellular formazan crystals. Initially, to assess the possible intrinsic toxic effects
of the compounds under study, their effect on cell survival was tested at the maximum used
concentration of 100 µM in absence of rotenone. It was found that diol leads to suppression
of cell survival by 18.13 ± 0.63% (p < 0.0001), but its epoxide did not cause any decrease
in cell viability (Figure 3a) (97.48 ± 0.93, p = 0.43). In turn, the selected concentrations
of rotenone (100 nM and 400 nM) led to a decrease in cell survival by 26.13 ± 1.75% and
37.40 ± 1.34% (p < 0.0001) (Figure 3b) compared with control samples, which is consistent
with the already known data obtained for this toxin in similar experiments [35,36].

In experiments with the combined use of the studied compounds and rotenone, it was
found that epoxidiol showed a protective effect on the SH-SY5Y cell line exposed to rotenone
(Figure 3c,d). This effect was concentration-dependent, reaching a maximum at 100 µM
and increasing the number of viable cells from 73.87 ± 1.75% (rotenone concentration—
100 nM) and 62.60 ± 1.34% (rotenone concentration—400 nM) up to 91.74 ± 2.54% and
90.53 ± 3.18% (p < 0.0001), respectively. At the same time, diol had no effect on the viability
of cells treated with rotenone (Figure 3e,f).
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Figure 3. Viability of SH-SY5Y cells assessed by MTT analysis. Analysis of the viability of SH-SY5Y
cells (10,000 cells per well) in the presence of (a) the studied compounds and (b) rotenone. The effect
of diol and epoxidiol in the concentration range from 1 µM to 100 µM on the survival of SH-SY5Y cells
in the rotenone presence at concentrations of 100 nM (c, e) and 400 nM (d, f). The data are presented
as an average ± SEM. ****, p ≤ 0.0001, ***, p ≤ 0.001 and *, p ≤ 0.05 versus control; ####, p ≤ 0.0001,
###, p ≤ 0.001 and ##, p ≤ 0.01 (one-way ANOVA and Dunnett’s multiple comparison tests).

2.2. Rotenone-Mediated Depolarization of Isolated Rat Liver Mitochondria

To analyze the process of depolarization of the mitochondrial membrane under the
action of rotenone, the transmembrane potential of organelles pretreated with the studied
compounds in the concentration range from 10 to 100 µM was measured. A potential-
dependent safranin O label was used, the fluorescence of which is quenched in the mito-
chondrial matrix of polarized organelles [37]. The value of the transmembrane potential is
inversely proportional to the values of the safranin O fluorescence. The kinetic curves of
changes in the mitochondrial membrane potential in samples by the action of modulators
are shown in Figure 4b,c. Energization of organelles by substrates of the respiratory chain
complex I—glutamate and malate led to a decrease in fluorescence, which corresponds
to an increase in the transmembrane potential and reflects the use of a proton gradient
to stimulate ATP synthesis. As expected, the sequential addition of rotenone led to a
significant decrease in the transmembrane potential, which indicates the depolarization of
the mitochondrial membrane. In turn, for the studied compounds, the ability to reduce
the response of organelles to the rotenone pulses was observed. Epoxidiol most effectively
normalized the impairment of the mitochondrial membrane potential caused by the toxin.
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This compound in the maximum studied concentration prevented the amplification of
the fluorescence signal by 47% (after the first ROT injection), 37% (after the second ROT
injection) and 26% (after the third ROT injection).
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Figure 4. Schematic representation of the rotenone effect on the mitochondrial transmembrane
potential, leading to the death of neuronal cells (a). Evaluation of the mitochondrial membrane
potential using the fluorescent lipophilic cation safranin O. The effect of diol (b) and epoxidiol
(c) in the concentration range from 10 µM to 100 µM on the transmembrane potential of rat liver
mitochondria (0.5 mg/mL) in the rotenone presence at a concentration of 10 nM. Energization of
organelles was carried out by substrates of the electron transport chain I complex—glutamate/malate
(5 mM). The achievement of complete depolarization was stimulated by Ca2+ ions (25 µM). The data
are presented as kinetic curves of changes in the mitochondrial membrane potential (mean ± SEM).

2.3. Bioenergetic Profile of the SH-SY5Y Cell Line under Conditions of Reduced Mitochondrial
Function Caused by Rotenone

To study the bioenergetics of mitochondria, a Seahorse/Agilent Mito Stress Test was
used on Seahorse XFe96 Extracellular Flux Analyzer [38] with some modifications. Before
starting the analysis according to the standard protocol, neuroblastoma cells were subjected
to 24 h treatment with the test compounds at a 100 µM concentration. Interestingly, the oxy-
gen consumption rate (OCR) in the analysis of basal respiration was the same for all groups
with the exception of diol, which significantly reduced it (Figure 5b). After the first injec-
tion, a significant decrease in the oxygen consumption rate from 28.22 ± 0.65 pmol/min
to 14.68 ± 2.11 pmol/min was observed in cells treated with a non-toxic 10 nM rotenone
concentration compared to control cells receiving solvent injection (on average by 48%,
p = 0.01, Figure 5b,e). It was also confirmed by analyzing the quantitative indicator of the
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acute response parameter (Figure 5c). However, pretreatment of neuroblastoma cells with
epoxidol was able to neutralize the effects caused by the toxin (Figure 5b,e). The OCR of the
ROT + E-diol group was at the level of control samples (26.63 ± 5.11 pmol/min) and had
a strong tendency to increase compared to the ROT group (p = 0.07). A similar situation
was observed in the OCR indicator associated with ATP production (Figure 5f). Rotenone
significantly reduced this parameter from 18.43 ± 1.53 pmol/min to 5.33 ± 1.11 pmol/min
(by 71% when compared with the control group, p = 0.04). Finally, the use of epoxidiol kept
the OCR associated with ATP production at the level of 18.87 ± 4.93 pmol/min, which is
significantly higher than in the samples with rotenone (by 72% when compared with ROT,
p = 0.04). In the case of samples pretreated with diol at a 100 µM concentration, the OCR
was already at a much lower level from the first measurement, and the subsequent addition
of modulators to the medium did not cause any pronounced responses. This is most likely
due to some cytotoxic activity detected above for this substance, where 18.13 ± 0.63% of
cells died at this concentration (Figure 3a).
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of the mitochondrial respiratory chain complexes work and the impact of the Seahorse/Agilent Mito
Stress Test modulators (a). Kinetic curves of changes in the oxygen consumption rate of the SH-SY5Y
neuroblastoma cell culture (30,000 cells per well) pretreated within 24 h by the studied compounds
over time under the modulators action (b). The concentrations of diol and epoxidiol were 100 µM,
rotenone—10 nM, oligomycin—2 µM, FCCP—2 µM and antimycin A—1 µM. Data are shown as
mean ± SEM. Bioenergetic parameters of mitochondria, such as acute response to the first injection
of rotenone (c); basal respiration, which is the oxygen consumption rate before the introduction of
modulators into the system (d); respiration after blocking the NADH-dehydrogenase complex of the
electron transfer chain by rotenone (e); as well as ATP production, which is the difference between the
last OCR measurement before the oligomycin injection and the minimum OCR after the oligomycin
injection (f). The data are presented as graphs in which each column represents the average value of
an independent cell population (mean ± SEM, n = 6). To assess the statistical significance, one-way
ANOVA and Dunnett’s multiple comparison tests were used, where * p ≤ 0.05 and ** p ≤ 0.01 versus
control; # p ≤ 0.05 and ## p ≤ 0.01 versus ROT; $ p ≤ 0.05 versus ROT + E-diol.

2.4. In Vivo Study of Motor Activity and Endurance of Mice Simulating Parkinson’s Disease

To simulate the pathological phenotype of Parkinson’s disease with the in vivo studies,
male mice of the C57BL/6J line were injected with rotenone at a 1 mg/kg dose daily for
21 days by intraperitoneal injection (Figure 6). In order to compare possible differences in
the neuroprotective effects of epoxidiol, the compound at a 15 mg/kg dose was admin-
istered according to two schemes: (1) daily, starting from the 8th day of the experiment
in already formed pathology conditions, and (2) daily throughout the entire period of
the experiment. As a control group, animals of the same age were used, which received
injections of equivalent volumes of solvents.
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Figure 6. An in vivo scheme of the series of experiments aimed at investigating the neuroprotective
potential of epoxidiol (E-diol, 15 mg/kg) with intraperitoneal administration (i. p.) under conditions
of rotenone-induced model (ROT, 1 mg/kg, i. p.) neurotoxicity.

The motor characteristics of the animals were evaluated in the Open Field test by the
average speed and distance traveled during a 5-min experiment. As shown in Figure 7a,b,
in the ROT group there was a statistically significant decrease in the average movement
speed of animals compared to the control group from 8.83 ± 0.71 m/s to 3.23 ± 0.89 m/s
(p = 0.008 vs. Control). A similar pattern was shown in the distance traveled, which was
reduced from 2645.41 ± 213.47 cm to 969.46 ± 265.69 cm (p = 0.008 vs. Control). Animal
groups treated with epoxidiol in addition to the toxin demonstrated the ability to restore
motor activity indicators. This was expressed in the tendency of mice from the ROT + E-
diol (I) group to increase the average speed and distance traveled (p = 0.080 vs. ROT). In
the ROT + E-diol (II) group, there was a significant improvement in these indicators to
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9.43 ± 1.58 m/sec and 2827.26 ± 472.78, which corresponds to the level of control animals
(p = 0.002 vs. ROT and p > 0.999 vs. Control).
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Figure 7. In vivo study of the motor function of C57BL/6J mice aged 3 months (n = 10) in the Open
Field test: average speed (a) and distance traveled (b). The data are presented as graphs in which
each column represents the average value of an independent mice group (mean ± SEM). Evaluation
of the E-diol effect on motor coordination disorders of mice in the accelerating speed Rotarod test (c).
The data are presented as latency to fall from rolling rod (mean ± SEM of time intervals from the
beginning of the test to the fall of the animal from rolling rod for each experimental group). To assess
the statistical significance, one-way ANOVA and Bonferroni’s multiple comparison tests were used,
where ** p ≤ 0.01 versus control; ## p ≤ 0.01 versus ROT.

Mice motor coordination and endurance were evaluated using an accelerating speed
Rotarod test. Interestingly, most of the animals from the control group successfully passed
the 5-min test during the testing phase, demonstrating almost 100% stay on the rolling rod
(Figure 7d). In turn, mice simulating Parkinson’s disease spent significantly less time on
rotarode than intact animals, reducing this indicator from 94.73 ± 3.52% to 68.87 ± 7.12%
(p = 0.002 vs. Control). This indicates that the mice motor function from the ROT group
was significantly impaired, which was expressed in their inability to stay on the rolling
rod. Treatment with epoxidiol significantly improved the ability of animals to stay on the
rotarode, while, as in the Open Field test, when using the first administration scheme, there
was a tendency to improve endurance and coordination (86.13 ± 3.98%, p = 0.076 vs. ROT).
Combination therapy with epoxidiol during the entire period of the in vivo experiment led
to a significant increase in the time spent on rotarode—94.03 ± 2.78% (p = 0.002 vs. ROT)
up to the level of control mice (p > 0.999 vs. Control).

2.5. In Vivo Study of Hippocampus-Dependent Spatial Memory of Mice Simulating
Parkinson’s Disease

Hippocampus-dependent spatial working memory was evaluated by measuring the
time mice spent in the target arm of the maze (Figure 8). It was found that mice receiv-
ing rotenone injections spent less time in the target arm of the maze during the testing
phase compared to C57BL/6J control animals (39.38 ± 9.46 s for the ROT group and
70.13 ± 12.60 s, p = 0.043 vs. Control). In turn, for the ROT + E-diol (II) group, which
received epoxidiol starting from the first day of the in vivo experiment, the ability to sig-
nificantly increase this indicator up to 108.63 ± 16.80 s (p = 0.005 vs. ROT) was observed,
exceeding that of the control group.
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Figure 8. In vivo study of the epoxidiol (E-diol) effect on the formation of short-term spatial memory
in C57BL/6J mice aged 3 months under conditions of rotenone-induced (ROT) neurotoxicity. The data
are presented as graphs in which each column represents the average time spent by an independent
mice group in the correct arm of the maze (mean ± SEM). To assess the statistical significance,
one-way ANOVA and Bonferroni’s multiple comparison tests were used, where * p ≤ 0.05 versus
control; ## p ≤ 0.01 versus ROT.

2.6. The Level of Dopaminergic Neurons in Brain Samples of Mice Modeling Parkinson’s Disease

To determine the number of dopaminergic neurons, brain slices were stained with
an anti-tyrosine hydroxylase antibody (TH), an enzyme that limits the dopamine synthe-
sis rate [39], and stereological counting of TH-positive neurons in substantia nigra pars
compacta (SNpc) and ventral tegmental area (VTA) was performed.

In mice from the ROT group, there was a significant decrease in the number of TH-
positive dopaminergic neurons in both studied areas (Figure 9b,e) by 27.8% (p = 0.050 vs.
Control) and 32.4% (p = 0.023 vs. Control, Figure 9a), respectively. On the contrary, the
number of neurons was significantly increased in animals treated with epoxidiol during 14
(Figure 9c,e) and 21 (Figure 9d,e) days of administration. In mice from the ROT + E-diol
(I) group, this value was significantly higher by 36.6% (in SNpc; p = 0.050 vs. ROT) and
41.7% (in VTA; p = 0.028 vs. ROT). In turn, for the ROT + E-diol (II) group, the number of
TH-positive dopaminergic neurons exceeded that for ROT by 45.7% (in SNpc; p = 0.010 vs.
ROT) and 45.9% (in VTA; p = 0.017 vs. ROT).
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Figure 9. Post mortem analysis of the number of dopaminergic neurons in the mice brain regions.
Representative images of brain sections of Control (a), ROT (b), ROT + E-diol (I) (c) and ROT + E-diol
(II) (d) through substantia nigra pars compacta (SNpc) and ventral tegmental area (VTA) regions
immunostained with an anti-tyrosine hydroxylase antibody (TH, mouse monoclonal antibody, clone
TH-2, Sigma diluted 1:1000). The scale bar represents 400 µM. Histograms showing the number of
TH-positive neurons in individual brain regions (e). The data are presented as mean ± SEM, n = 8.
To assess the statistical significance, one-way ANOVA and Kruskal–Wallis’ multiple comparison tests
were used, where * p ≤ 0.05 versus control; # p ≤ 0.05 and ## p ≤ 0.01 versus ROT.
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2.7. Dynamics of Mitochondrial Respiration and Oxidative Stress in Brain Samples of Mice
Modeling Parkinson’s Disease

To confirm that the symptoms of parkinsonism observed in the rotenone-induced
model are due not to systemic toxicity, but to the targeted effect of the toxin on the electron
transport chain, and the ability of epoxidiol to exert antiparkinsonian effects in the in vivo
model of the disease is associated with the mitoprotective properties of the compound,
a functional assessment of the mitochondrial complex's activity was carried out. The
Seahorse XF96 cellular metabolism analyzer was used to measure the oxygen consumption
rate by the mitochondrial p2 fraction obtained from the animal brain after injections of
various substrates and inhibitors of electron transport chain complexes.

The first three cycles of measuring the oxygen consumption rate by mitochondria
pretreated with glutamate and malate substrates of complex I confirmed the hypothesis
of the inhibitory effect of rotenone on NADH dehydrogenase (Figure 10a,b). This was
evidenced by a decrease in this indicator from 74.78 ± 2.34 pmol/min (for control samples)
to 45.73 ± 1.95 pmol/min (p = 0.0003 vs. Control). This effect was reduced in brain samples
of animals from groups treated with epoxidiol, where exposure to the compound led to
an increase in the oxygen consumption rate by 28.7% (in the case of ROT + E-diol (I);
p = 0.037 vs. ROT) and 29.4% (for ROT + E-diol (II); p = 0.033 vs. ROT). After inhibition
of the NADH-dehydrogenase complex by rotenone, its substrate, succinate, was added to
stimulate complex II respiration. Enhanced respiration was shown for all groups; however,
in the mitochondrial p2 fraction obtained in ROT mice, the activity of this complex was
reduced by more than 50% (p = 0.0002 vs. Control). In turn, mice treated with epoxidiol for
21 days had an increase in OCR from 195.04 ± 7.336 pmol/min to 360.49 ± 26.46 (p = 0.008
vs. ROT). As expected, the subsequent addition of an inhibitor of complex III, antimycin A,
reduced OCR, which was eliminated by the introduction of electron donors of complex IV—
ascorbate/N,N,N, N-tetramethyl-p-phenylenediamine (TMPD), delivering them directly to
cytochrome C oxidase. A similar situation was found in the ROT samples with a decrease
in the oxygen consumption rate observed in the case of complex II. It indicates that the
blocking of complex I by rotenone entails a further cascade of events that prevents the
transport of electrons throughout the subsequent chain. And in this case, epoxidiol had the
ability to improve mitochondrial function.

To analyze the effect of epoxidiol on the formation of free radicals in the brains of
experimental animals, the lipid peroxidation level in mouse brain homogenates was studied.
It was found that treatment with rotenone significantly increased the malondialdehyde
content, a marker of the oxidative stress intensity in the body (Figure 11). At the same
time, this indicator was 0.453 nmol/mg protein compared to 0.410 nmol/mg protein
in control samples (p = 0.003 vs. Control). In turn, in the brain samples of animals
treated with epoxidiol, there was a significant decrease in the lipid peroxidation level up
to 0.342 nmol/mg protein in the case of a 21-day treatment regimen of the compound. It
should be noted that in addition to significant differences compared to the ROT group
(p < 0.0001), the epoxidiol injection significantly reduced the malondialdehyde content
and when compared with the control (p = 0.0005 for ROT + E-diol (I) and p < 0.0001 for
ROT + E-diol (II) vs. Control), which suggests the presence of antioxidant properties for
the studied compound.
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of the OCR by the organelles of the experimental groups (mean ± SEM, n = 8) (b). To assess the 
statistical significance, one-way ANOVA and Dunnett’s multiple comparison tests were used, where 
*** p ≤ 0.001 versus Control; # p ≤ 0.05 versus ROT. 

Figure 10. Analysis of oxygen consumption rate by mitochondrial p2 fraction using Seahorse XF96
Extracellular Flux Analyzer. Kinetic curves of changes in the oxygen consumption rate by organelles
(10 micrograms per well) pretreated with glutamate and malate (10 mM) substrates of the respiratory
chain I complex over time under the action of modulators (a). The concentration of rotenone was
2 µM, succinate—2 µM, antimycin A—1 µM and ascorbate/TMPD—0.5 µM. Data are shown as
mean ± SEM. The data presented as histograms, in which each column represents the average value
of the OCR by the organelles of the experimental groups (mean ± SEM, n = 8) (b). To assess the
statistical significance, one-way ANOVA and Dunnett’s multiple comparison tests were used, where
*** p ≤ 0.001 versus Control; # p ≤ 0.05 versus ROT.
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Figure 11. Measurement of the malondialdehyde (MDA) concentration in mouse brain homogenates
(4 mg/mL). The data are presented as histograms showing the malondialdehyde amount as
mean ± SEM, n = 8. To assess the statistical significance, one-way ANOVA and Dunnett’s multiple
comparison tests were used, where ** p ≤ 0.01 and **** p ≤ 0.0001 versus Control; #### p ≤ 0.0001
versus ROT.

3. Discussion

Mitochondria, which control energy metabolism, generation of reactive oxygen species
and release of apoptotic factors, play a key role in the processes of survival and apoptotic cell
death. Disruption of the functioning of these organelles is an early manifestation of almost
all neurodegenerative diseases [40,41], including Parkinson’s disease [42–44]. For more than
30 years, mitochondrial dysfunction has been considered a key factor leading to the loss of
dopaminergic neurons in the substantia nigra of the brain of patients with both sporadic
and familial forms of Parkinson’s disease [45,46]. This is evidenced by a large amount of
experimental data, as well as the results of clinical and preclinical studies [47–52]. In this
regard, a promising direction with high potential in the development of pharmacological
approaches for the prevention and treatment of Parkinson’s disease is the development of
therapeutic strategies aimed at maintaining the function of mitochondria [53,54].

To date, there are several experimental models used to reproduce Parkinson’s disease.
These methods are based on the introduction of toxic chemical compounds, the purpose of
which is to simulate the pathological conditions observed in this disease. Such substances
primarily include 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP), the use of which,
however, has some limitations precisely in the context of considering mitochondrial dys-
function as the main mechanism underlying Parkinson’s disease. In this regard, in our
work, another neurotoxic compound, rotenone, which is a classic inhibitor of mitochondrial
complex I, was used to investigate the possibility of using the monoterpenoid epoxidiol
as a potential antiparkinsonian agent. So, in the work of Zhang et al. [55], it was shown
that the mitochondrial-dependent oxygen consumption and the activity of the NADH
dehydrogenase enzyme in the substantia nigra were at a significantly lower level in the
rotenone group compared to MPTP. This indicates that rotenone makes it possible to more
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accurately reproduce the pathological sign associated with mitochondrial dysfunction,
without loss of effectiveness in relation to neurobehavioral reactions.

A number of studies have shown that rotenone induces cell death along the path of
mitochondrial-dependent apoptosis, increasing the number of apoptotic cells [25,56,57].
In the present study, the effect of diol and its epoxidized form on the survival of the
neuroblastoma cell line SH-SY5Y exposed to rotenone was studied. Neuronal-like SH-
SY5Y cells are one of the most frequently used models for the study of neurotoxic and
neuroprotective effects of compounds [58,59]. Our results confirmed the ability of rotenone
to induce toxicity in SH-SY5Y cells. Treatment with rotenone for 24 h resulted in the death
of SH-SY5Y in a dose-dependent manner, and at a toxin concentration of 400 nM, ~ 60%
cell viability was observed. Such conditions simulate the situation observed in the early
stages of Parkinson’s disease, when the death of about 50% of neurons in the substantia
nigra is recorded, but most of them are subject to subcellular stress [60]. In our work, the
preliminary 24 h incubation of epoxidiol led to a significant increase in the number of living
cells in a dose-dependent manner. At the maximum studied concentration of 100 µM, this
compound was able to protect SH-SY5Y cells from damage caused by rotenone, increasing
viability to the values of control samples.

The toxicity shown for rotenone can be induced by apoptosis using various mecha-
nisms, among which the key is its ability to lead to the dissipation of the mitochondrial
transmembrane potential. This correlates with the pathological condition in Parkinson’s
disease, when, due to a deficiency of PTEN-induced kinase 1 (PINK1), there is a decrease in
the basement membrane potential and an impairment of calcium homeostasis [61], leading
to the vulnerability of neurons to the opening of a transitional permeability pore, followed
by the death of nerve cells [62]. When monitoring representative tracks showing the dy-
namic reaction of the transmembrane potential in response to the sequential addition of
subthreshold nontoxic concentrations of rotenone, we detected a step-by-step increase in
the fluorescence signal. This indicated a time-increasing depolarization process in response
to rotenone pulses, which is consistent with the data known for this toxin [63]. On the
contrary, for epoxidiol, there was a pronounced ability to retain an electric gradient on the
membrane of mitochondria exposed to the toxin. Obviously, this may explain its protective
role in neurotoxicity conditions on the neuroblastoma cell model due to the modulation of
events in the apoptotic cascade following the loss of mitochondrial membrane potential.

As mentioned above, rotenone is a potent inhibitor of the mitochondrial electron
transfer chain complex I, blocking the subsequent use of oxygen during oxidative phos-
phorylation and reducing the ATP production [64,65]. Such modulation of metabolism and
respiratory capacity of organelles has a pronounced correlation with cell death, which is
important for the formation of pathology in Parkinson’s disease [66–69]. This is due to
the fact that the NADH-dehydrogenase complex is higher in the mitochondrial electron
transfer chain, due to which electrons are transferred from nicotinamide adenine dinu-
cleotide to lower molecules [70]. A number of studies show that the mitochondrial complex
I dysfunction occupies a central place in the pathogenesis of Parkinson’s disease. In our
work, it was found that the treatment of neuroblastoma cells with a non-toxic concentration
of rotenone leads to a decrease in the oxygen consumption of the SH-SY5Y culture as a
result of the function of complex I inhibition. It is not surprising that with the further
addition of modulators to the system, no pronounced responses were observed in samples
with rotenone, as shown in the control. This confirms the statement about the key role of
blocking the NADH-dehydrogenase complex in the subsequent cascade of mitochondrial
respiration events [71–73]. More importantly, epoxidiol significantly weakened the effect of
rotenone, which indicates the ability of this compound to protect the respiratory function
of organelles from the toxin action.

Thus, the results obtained as part of a phased in vitro screening using biological
objects of different organization levels, demonstrated for epoxidiol the ability to inhibit
the rotenone toxicity, due to alleviating mitochondrial dysfunction. Next, the effect of the
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compound on the parameters of mice motor function and spatial memory was investigated
in a rotenone-induced model of Parkinson’s disease in vivo.

Due to the fact that the observed differences in the pharmacological effects of rotenone
when using different doses require an accurate choice of the protocol for the use of the
toxin, an analysis of the experimental data available to date was initially carried out. It
was found that excessively high doses of rotenone lead to the development of obvious
systemic toxicity affecting internal organs and causing death of the body, and do not induce
the phenotype of parkinsonism [22,74]. In turn, when using low doses of the toxin with
repeated administration a clear time dependence of the development of Parkinsonian
pathology is observed [75–77], which led to the selection of the rotenone administration
scheme in an in vivo experiment.

In our study, intraperitoneal administration of rotenone at a 1 mg/kg dose per day
for 21 days significantly worsened the motor functions and endurance of mice. This was
manifested in a decrease in motor activity in the Open Field test and motor coordination
and endurance in the Accelerating Rotarod test, which, as can be assumed, mimic hypoki-
nesia, rigidity and violation of postural reflexes observed in patients with Parkinson’s
disease [78,79]. It is noteworthy that when epoxidiol was administered according to the
first scheme (starting from the 8th day of the experiment, when the formation of pathology
had already begun), there was a tendency to alleviate motor disorders and coordination
in mice with Parkinsonism. In turn, 21-day treatment with this compound reduced motor
dysfunction, which obviously implies the most pronounced success of the use of epoxi-
diol as a preventive therapeutic approach, as well as at the earliest stages of the disease
development.

In addition to the symptoms associated with motor disorders, so-called non-motor
disorders are observed in patients with parkinsonism, among which cognitive dysfunctions
are the most common [80–82]. In particular, a large number of papers describing the
pathological phenotype of Parkinson’s disease in both humans and animal models indicate
an impairment of hippocampus-dependent spatial memory [83–85]. As part of our study in
the Y-shaped maze test, mice receiving rotenone spent significantly less time in the correct
maze arm, which indicates their impaired ability to learn and form memory. Interestingly,
epoxidiol leveled this non-motor sign of Parkinsonism, which is an important indicator of
the Parkinson’s disease progression [86].

Summarizing the results of an in vivo study of the epoxidiol effects on the neurobe-
havioral characteristics of mice simulating Parkinson’s disease, the combined use of the
compound from the first day of rotenone administration significantly improved the behav-
ioral status in animals, which may be due to its neuroprotective effect due to mitoprotective
properties.

At the end of in vivo testing, in order to form a full understanding of the mechanisms
of the antiparkinsonian action of epoxidiol, we analyzed brain samples from mice of
experimental groups.

Despite the fact that various types of neuronal cells are affected in Parkinson’s disease,
the role of dopamine neurons has been best studied up to date [87]. Pathophysiological
studies of patients with this disease indicate that the cardinal signs, manifested primarily
in the progressive development of motor symptoms, are caused by a decrease in dopamine
levels and the loss of dopaminergic neurons in the nigrostriatal system [88,89]. To study the
protective effect of epoxidiol on dopaminergic neurons, we performed tyrosine hydroxylase
immuno-staining. The results showed that compared with the control group, mice treated
with rotenone had a serious loss of TH-positive neurons. These data are completely
consistent with the results of a large number of similar studies, where rotenone selectively
damaged neurons in dopamine-rich brain areas. In turn, treatment with epoxidiol facilitated
this situation due to the protective effect on neuronal cells in the areas most affected by
Parkinson’s disease—the compact substantia nigra and the ventral tegmental area of
animals with Parkinsonism. Thus, there is a direct correlation of the results obtained with
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the data of in vivo series of experiments, where the administration of epoxidiol significantly
improved the neurobehavioral profile of mice with parkinsonism caused by rotenone.

Due to the fact that Parkinson’s disease is associated with disorders in the mito-
chondrial respiratory chain, which is the main source of reactive oxygen species (ROS)
formation, post mortem analysis of brain samples of patients with Parkinsonism proves
that dopaminergic neurons are in a condition of permanent oxidative stress and undergo
radical oxidation with the ROS formation [90–92]. In turn, reactive oxygen species convert
dopamine into reactive dopamine-quinone, which is highly toxic, and which, apparently,
may be the cause of pronounced death of dopaminergic neurons [93]. A similar pattern is
observed with the action of rotenone. Blocking of the complex I of the respiratory chain
and, as a consequence, the transfer of electrons to oxygen leads to the formation of reactive
oxygen species, especially superoxide radicals [94]. This was confirmed in our work, which
shows that the administration of low rotenone doses for 3 weeks led to the disruption of
the mitochondrial respiratory chain complexes and, as a consequence, an imbalance of
redox homeostasis in the brain of mice, which was expressed in an increase in the level of
malondialdehyde, a marker of lipid peroxidation. In turn, epoxidiol markedly reduced the
generation of reactive oxygen species induced by rotenone, which suggests the presence of
a protective antiparkinsonian mechanism of epoxidiol associated with the ability to reduce
oxidative stress.

4. Materials and Methods
4.1. Agents

Diol and E-diol were synthesized from (-)-verbenone (Sigma-Aldrich, St. Louis, MO,
USA) according to earlier published methods [17,18] with the purity > 98%.

4.2. Preparation of Working Solutions

To obtain initial solutions of the studied compounds in a 10 mM working concentration,
diol and epoxidiol were dissolved in sterile bidistilled water. Rotenone solution (400 µM,
Sigma-Aldrich, St. Louis, MO, USA) it was prepared in dimethyl sulfoxide (DMSO, Sigma-
Aldrich, St. Louis, MO, USA). The obtained solutions were stored at a temperature of +2
to +4 ◦C. Methods of processing cells or organelles with compounds are indicated in the
relevant subsections of this section and the captions to the figures.

4.3. Cell Lines and Cultivation

The human neuroblastoma cell line SH-SY5Y provided by the Institute of Cytology
of the Russian Academy of Sciences was cultured in a humidified atmosphere with 5%
CO2 at +37 ◦C. Cells were grown in Dulbecco’s Modified Eagle Medium (DMEM) (Gibco,
Scotland, UK) containing 10% fetal bovine serum (ThermoFisher Scientific, Paisley, UK),
L-glutamine (2 mM) (Gibco, Scotland, UK), and penicillin-streptomycin (1% by volume)
(PanEco, Moscow, Russia). The nutrient medium was changed every 2–3 days after reaching
85–90% of cell growth.

4.4. Cell Viability Assay

The human neuroblastoma cell line SH-SY5Y (provided by the Institute of Cytology of
the Russian Academy of Sciences) was seeded into 96-well plates (1 × 104 cells/200 µL,
Corning Inc., New York, NY, USA) in a growth medium (composition described above)
and cultured for 24 h at +37 ◦C, 5% CO2. A day later, diol and epoxidiol were added (1,
10, 50 and 1.0 and 100 µM). Rotenone (100 nM and 400 nM) was introduced into the wells
of the plate 24 h after the addition of the studied compounds and incubated for another
24 h. The negative control was treated with appropriate volumes of solvents used to obtain
working solutions of diol and epoxidiol (bidistilled H2O) and rotenone (DMSO), and the
positive control was bidistilled H2O and rotenone. Cell viability was assessed by MTT
analysis, as described in [95]. To do this, MTT (bromide 3-(4,5-dimethylthiazole-2-yl)-2,5-
diphenyltetrazolium, 5 mg/mL, Dia-m, Moscow, Russia) was introduced into each well
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and additionally incubated for 2 h (until a characteristic color appears). Using a flatbed
analyzer (Cytation3, Biotech Instruments Inc., Winooski, VT, USA), the optical density of
the formed formazan granules was determined at λ = 530 nm.

4.5. Mitochondrial Membrane Potential Measurements

The mitochondrial transmembrane potential was measured by recording the fluores-
cence of the potential-dependent marker Safranin O [96] in a 96-well plate. The well of
the tablet contained mitochondria (0.5 mg/mL) previously diluted in a buffer (225 mM
mannitol (Dia-m, Moscow, Russia), 75 mM sucrose (Dia-m, Moscow, Russia), 10 mM HEPES
(Dia-m, Moscow, Russia), 1 mM KH2PO4, 20 µM EGTA (Cabiochem, San Diego, CA, USA),
pH = 7.4) mixed with 5 µM safranin O. According to the experimental scheme, the studied
substances were added to the mitochondria in a concentration of 10 up to 100 µM and
incubated for 5 min. After the incubation time, the initial measurement was carried out
for 10 cycles. After that, substrates of the mitochondrial respiratory chain complex I were
added to each well—a solution of sodium glutamate and sodium malate (5 mM). The mea-
surement continued for the next 30 cycles until a stable signal indicating the polarization
of the mitochondrial membrane appeared. Next, the rotenone was titrated with pulses in
all wells (three times in 10 nM) with 20 measurement cycles after each addition. Finally,
25 µM of Ca(II) was added to achieve maximum fluorescence due to the opening of the
mitochondrial pore and measured for 20 cycles. Fluorescence measurements were carried
out on a Victor 3 plate analyzer (Perkin Elmer, Rodgau, Germany) at λex = 485 nm and
emission λem = 590 nm.

4.6. Automatic Measurement of Energy Metabolism in Real Time by Registering Oxygen
Consumption Rate

The oxygen consumption rate (OCR) of the SH-SY5Y neuroblastoma cell line was
measured in real time using the Seahorse XFe96 cellular metabolism analyzer (Agilent
Technologies, Santa Clara, CA, USA) and the Seahorse/Agilent Mito Stress Test [38] with
some modifications.

SH-SY5Y cells in the exponential growth phase were seeded into a 96-well Seahorse
cell culture microplate. The planting density of the cell culture was 3 × 104/well. After
24 h, solutions of diol and epoxidiol (100 µM) were added to the cells, and an equivalent
volume of solvent was added to the remaining wells and left to incubate at +37 ◦C, 5%
CO2 per day. The next day, according to the protocol, the sensor cartridge with injection
ports was filled with reagents to assess changes in OCR by modulating cellular metabolism.
Next, the analyzer was calibrated, after which the plate was replaced with a research plate
with cells and the oxygen consumption rate was recorded.

Initially, three measurements of the basic OCR rate of the SH-SY5Y cell line were
carried out. Then, from port A, rotenone was injected into the medium at a non-toxic
concentration of 10 nM or a medium containing the appropriate solvent (as a control)
and the oxygen consumption rate was measured for five cycles. Further, oligomycin
(2 µM, Sigma-Aldrich, St. Louis, MO, USA), FCCP (carbonyl cyanide-4 (trifluoromethoxy)
phenylhydrazone, 2 µM, Sigma-Aldrich, St. Louis, MO, USA) and antimycin A (1 µM,
Sigma-Aldrich, St. Louis, MO, USA) were sequentially injected through ports B, C and D
and three measurements were carried out.

The use of such a protocol made it possible to evaluate a number of parameters,
including acute reaction, basal respiration, respiration after blocking the I complex of
the respiratory chain of electron transfer by rotenone, respiration associated with ATP
production, proton leakage, maximum respiration, etc. The acute reaction was calculated
as the last OCR measurement before injection of rotenone minus the last measurement after
injection into port A. The addition of oligomycin, which blocks ATP synthase and leads
to the suppression of oxidative phosphorylation, made it possible to calculate the OCR
associated with ATP production by subtracting the last measurement before injection of
oligomycin and measuring the minimum rate after injection of oligomycin. Cells treatment
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of FCCP that dissociate electron transport and ATP synthesis made it possible to evaluate
the maximum OCR associated with respiration and spare respiratory capacity. Antimycin
A, which is an inhibitor of cellular respiration by blocking the III complex of the respiratory
chain, allowed us to calculate OCR that is not associated with mitochondrial respiration.

The results were analyzed using Wave Desktop software version 2.6 (Agilent Tech-
nologies, Santa Clara, CA, USA).

4.7. Experimental Animals

Forty adult male mice of the C57BL/6J line (The Jackson Laboratory, Bar Harbor, ME,
USA), crossing in an animal facility for several years on identical genetic background (age
14 weeks; weight 24 ± 2 g), were used for the study. The animals were kept in conditions
with controlled temperature (23 ± 1 ◦C), humidity (50 ± 5%) and lighting cycle (12 h/12 h
light/dark). Water and food were given ad libitum. All behavioral tests were conducted in
the test room at the same time of day. On the day of testing, one hour before the start of the
experiment, the mice were moved to the experimental room, and the animals were allowed
to adapt to the environment.

By simple aleatorization, four groups of mice were formed (n = 10 per group):

(1) Control—a group of mice that were intraperitoneally injected with bidistilled water
and a solution of NaCl + 10% DMSO—1 µL/g/day (for 21 days);

(2) ROT—a group of mice receiving intraperitoneal injections of bidistilled water and
rotenone (1 mg/kg)—1 µL/g/day (for 21 days);

(3) ROT + E-diol (I)—a group of mice treated intraperitoneally with epoxidiol (15 mg/kg)
and NaCl + 10% DMSO solution—1 µL/g/day (for 14 days (starting from the 8th day
of the experiment);

(4) ROT + E-diol (II)—a group of mice treated intraperitoneally with epoxidiol (15 mg/kg)
and NaCl + 10% DMSO solution—1 µL/g/day (for 21 days (starting from day 1 of
the experiment).

Epoxidiol was dissolved in sterile bidistilled water immediately before the experiment.
The rotenone solution was prepared in DMSO and additionally dissolved in NaCl (up to
10% DMSO).

4.8. Analysis of the Motor Activity of Mice in the Open Field Test

An Open Field test was used to assess the motor activity of mice. The installation was
a square gray box with a floor size of 40 × 40 cm and walls 40 cm high (the lighting intensity
was 50 lux). The animal was placed in the center of the arena to study the installation
for 5 min, after which the mouse was returned to the holding cage. After each test, the
open-field arena was cleaned with 70% ethanol in order to remove any odors from the
previous animal and thoroughly dried. Each test was recorded using a camera connected to
a computer, which subsequently allowed the results to be processed using the EthoVision
XT system software (Noldus, Wageningen, The Netherlands). The parameters of motor
function were evaluated, such as average speed and distance traveled.

4.9. Assessment of the Motor Function and Endurance of Animals in the Accelerating Speed
Rotarod Test

The motor function of animals was assessed on a rolling rod in the accelerating speed
Rotarod test. The Rotarod hardware and software complex (Ugo Basile 7650, Biological
Research Apparatus, Italy) is a cylinder divided by circular partitions into individual
compartments and rotates cylindrical rods (3 cm in diameter) at a given speed. The
installation makes it possible to assess motor and coordination disorders by the ability of
animals to stay on a rotating cylinder.

For training, on the first day of the experiment, mice were placed on a rolling rod for
5 min at a constant speed (4 rpm), after which they were returned to the holding cell. After
24 h, each animal was tested four times in accelerating mode (from 4 to 40 rpm) with 30 min
intervals between trials, giving the mouse a maximum of 5 min to try. Latency to fall in
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each trial was recorded. The average latency to fall value for all four trials was included
in the final statistics. After each animal, the apparatus was cleaned with 70% ethanol and
air-dried.

4.10. Analysis of Hippocampus-Dependent Spatial Memory of Mice in the Y-Maze Test

The analysis of hippocampus-dependent spatial memory of animals was carried out
in the Y-maze test. The installation of the Y-maze test is made of acrylic with three arms
(arm size 32.5 × 8.5 × 15 cm) located at a distance of 120◦ from each other. During the
training phase, the mouse was placed at the beginning of one maze arm (the starting arm)
and allowed to move freely through two open arms of the maze for 5 min. After 30 min, a
testing phase was carried out, during which the animal was placed in the same starting
position but allowed to examine all three arms of the installation. After each animal, all the
arms of the maze were thoroughly cleaned with 70% ethanol and dried. All attempts were
recorded on video for subsequent processing using the EthoVision XT system (Noldus,
Wageningen, the Netherlands). The duration of the stay of the animals during the testing
phase in the maze arms was analyzed. As a criterion for the effectiveness of the spatial
memory formation, the animals’ presence in a new arm of the maze was considered.

4.11. Preparation of Histological Sections, Immunohistochemistry and Counting of Neuronal Cells

Four-month-old male mice were terminated, and their brains were dissected. Fixation,
preparation of histological sections, staining with anti-tyrosine hydroxylase antibody (TH,
mouse monoclonal antibody, clone TH-2, Sigma diluted 1:1000) and stereological counting
of TH-positive neurons in the SNpc and ventral tegmental area (VTA) were performed as
described [97,98].

Briefly, the margins of SNpc and VTA on stained sections were outlined using distri-
bution atlas of TH-positive cells [99]. The first section for counting was randomly chosen
from the first ten sections that included the SN/VTA region. Starting from this section, on
every fifth section, TH-positive cells with a clearly visible nucleus were counted through
the whole region. ZEN Microscopy Software (Carl Zeiss) was employed to measure diame-
ters of 30 nuclei of dopaminergic neurons in each of these regions of every mouse brain
included in this study. The nuclei were chosen randomly, and the distance measured as the
horizontal length as they appeared on the screen. A mean was calculated for each animal
and used for Abercrombie’s correction [100] to obtain an actual number of TH positive cells
in the structure.

4.12. Evaluation of Bioenergetic Parameters of the Mitochondrial p2 Fraction

The study of the electron transport chain complexes was carried out on a preparation
of the brain mitochondrial p2 fraction obtained by differential centrifugation. The Agilent
Seahorse XF96e analyzer (Seahorse Bioscience, North Billerica, MA, USA) was used to
measure the rate of oxygen uptake by organelles under the action of modulators. A
total of 10 micrograms of mitochondria were loaded into the well of the tablet and a
cold analysis buffer was added (1xMAS: 220 mM D-mannitol, 70 mM sucrose, 10 mM
KH2PO4, 5 mM MgCl2, 2 mM HEPES, 1 mM EGTA, 0.2% bovine serum albumin, free of
fatty acids, pH = 7.2). The tablet was centrifuged at 2000× g for 20 min at 4 ◦C. Then, a
warm 1xMAS buffer containing 10 mM of sodium malate and 10 mM of sodium glutamate
was added to each well. Mitochondrial electron flow was evaluated by sequentially adding
an inhibitor of the complex I—rotenone (2 µM), a substrate of the comp—lex II—sodium
succinate (2 µM), an inhibitor of the complex III—antimycin A (1 µM) and substrates of
the complex IV—ascorbate/N,N,N’,N’-tetramethyl-p-phenylenediamine dihydrochloride
(TMPD) (0.5 µM).

4.13. Study of the Intensity of Lipid Peroxidation in Mouse Brain Homogenates

The study of the intensity of lipid peroxidation (LPO) was carried out using a modified
version of the TBA test. This technique is based on the reaction of 2-thiobarbituric acid with
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intermediate LPO products, as a result of which a colored trimethine complex is formed,
the main role in the formation of which belongs to malonic dialdehyde.

The intensity of LPO was determined in mouse brain homogenates. To do this, mice
were sacrificed using the method of cervical dislocation and the brain was extracted, half of
which was homogenized in a buffer containing 120 mM KCl, 20 mM HEPES pH = 7.4, at
4 ◦C, centrifuged at 1500 rpm and the supernatant was selected. The resulting homogenate
(4 mg/mL) was introduced into the wells of a deep-well plate and a reagent for TBA-
reactive products was added to each sample, after which it was incubated for 90 min at
90 ◦C. After the incubation time, the samples were centrifuged at 6000 rpm for 20 min
and the optical density of the selected supernatant was measured on a flatbed analyzer
(Cytation3, Biotech Instruments Inc., Winooski, VT, USA) λ = 540 nm.

5. Conclusions

Parkinson’s disease is a multifactorial disease and is characterized by heterogeneous
symptoms, including classical motor disorders and non-motor features caused by the loss
of dopaminergic neurons in the brain substantia nigra. One of the key roles in the patho-
genesis of this disease belongs to disorders in the functioning of the NADH-dehydrogenase
complex, which is a trigger in starting the process of oxidative phosphorylation and ATP
production by mitochondria. And due to the fact that currently there are no treatment
methods that would slow down or stop the neurodegenerative process in Parkinson’s
disease, the urgent task of modern biomedicine is to search for new drugs, in particu-
lar, due to the ability to modulate mitochondrial dysfunction. In this study, the analysis
of the antiparkinsonian properties of trans-epoxide (1S,2S,3R,4S,6R)-1-methyl-4-(prop-1-
en-2-yl)-7-oxabicyclo [4.1.0]heptane-2,3-diol (epoxidiol) on a model of rotenone-induced
neurotoxicity using in vitro, in vivo and ex vivo approaches in the context of studying
the mitoprotective properties of the compound. Our results showed that epoxidiol had
cytoprotective properties on the SH-SY5Y cell line exposed to rotenone. This may be due to
the ability of the compound to prevent the loss of mitochondrial membrane potential and,
as a consequence, to modulate events in the subsequent apoptotic cascade. The analysis of
the bioenergetic profile of neuroblastoma cells showed for epoxidiol the ability to restore
the rate of oxygen consumption after inhibiting the complex I function and, as a conse-
quence, weaken the effect of rotenone. In the conditions of modeling Parkinson’s disease
in vivo, treatment with epoxidiol led to the leveling of both motor disorders and a non-
motor symptom—cognitive dysfunction. In conclusion, the post mortem analysis of animal
brain samples demonstrated the ability of epoxidiol to prevent the loss of dopaminergic
neurons, which may be due to its properties to restore the functioning of mitochondrial
respiratory chain complexes and significantly reduce the production of reactive oxygen
species. Thus, the results obtained indicate that epoxidiol can be considered as a new agent
for the treatment of Parkinson’s disease and allow us to hope for their further translation
into the practical plane of the development of promising pharmacological substances for
the treatment of this disease.
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