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Abstract: Chlorophyll drives plant photosynthesis. Under stress conditions, leaf chlorophyll content
changes dramatically, which could provide insight into plant photosynthesis and drought resistance.
Compared to traditional methods of evaluating chlorophyll content, hyperspectral imaging is more
efficient and accurate and benefits from being a nondestructive technique. However, the relationships
between chlorophyll content and hyperspectral characteristics of wheat leaves with wide genetic
diversity and different treatments have rarely been reported. In this study, using 335 wheat varieties,
we analyzed the hyperspectral characteristics of flag leaves and the relationships thereof with SPAD
values at the grain-filling stage under control and drought stress. The hyperspectral information
of wheat flag leaves significantly differed between control and drought stress conditions in the
550–700 nm region. Hyperspectral reflectance at 549 nm (r = −0.64) and the first derivative at 735 nm
(r = 0.68) exhibited the strongest correlations with SPAD values. Hyperspectral reflectance at 536,
596, and 674 nm, and the first derivatives bands at 756 and 778 nm, were useful for estimating
SPAD values. The combination of spectrum and image characteristics (L*, a*, and b*) can improve
the estimation accuracy of SPAD values (optimal performance of RFR, relative error, 7.35%; root
mean square error, 4.439; R2, 0.61). The models established in this study are efficient for evaluating
chlorophyll content and provide insight into photosynthesis and drought resistance. This study can
provide a reference for high-throughput phenotypic analysis and genetic breeding of wheat and
other crops.

Keywords: wheat leaves chlorophyll; drought stress; machine learning; regression model; high-
resolution spectral imaging; high-throughput phenotypic identification

1. Introduction

Wheat (Triticum aestivum L.) is a staple food crop crucial for global food security.
However, wheat crops experience many abiotic stresses, including low temperatures,
drought, high temperatures, and dry and hot winds, which can strongly affect growth,
development, and productivity [1,2]. Drought is one of the most severe abiotic stresses
worldwide and can significantly reduce the number of tillers, grains per spike, and 1000-
grain weight of wheat [3,4]. In 2021, both the United States and Brazil suffered historic
severe droughts, which increased global food prices to the highest cost in a recent decade.
Therefore, effective monitoring of the impact of drought stress during wheat growth is
essential for improving yields, varieties, and food security.

Drought stress decreases crop chlorophyll content, destroys photosynthetic machinery,
inhibits growth, and ultimately reduces yield [5,6]. In addition, flag leaf chlorophyll content
can reflect the growth status of plants [7,8]. Chlorophyll is involved in capturing light
energy and converting it into chemical energy during photosynthesis. It is fundamental
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for plant photosynthesis and directly determines capacity, net primary productivity, and
carbon budget (Figure S1A) [9–11]. The synthesis of chlorophyll in plants is affected by a
variety of factors, including temperature, water, disease, and other stresses. Water short-
age of plant leaves will affect the synthesis of chlorophyll, accelerate the decomposition
of chlorophyll, reduce the absorption capacity of light energy, and inhibit photosynthe-
sis [12,13]. Meanwhile, plants also regulate carotenoid synthesis in response to stress and
play a role in light energy capture and light protection during photosynthesis [14,15]. Crop
chlorophyll content may be increased or decreased under drought stress [16–18], and the
degree of change is closely related to drought resistance [19–22]. Therefore, monitoring
flag leaf chlorophyll content can provide key information regarding wheat photosynthesis
and drought resistance. Traditional methods for determining chlorophyll content include
spectrophotometry and the use of hand-held chlorophyll content meters [23]. However,
such methods have several disadvantages, such as leaf destruction and low-throughput,
which are not conducive to the measurement of wheat chlorophyll content on a large scale.
Compared to traditional methods, hyperspectral imaging (HSI) can determine plant chloro-
phyll content rapidly, nondestructively, and efficiently [24,25]. In addition, hyperspectral
images contain rich spectral information that can be used for precision agriculture research
and the establishment of complex mathematical models [26,27]. In recent years, the ap-
plication of (HSI) technology to plant monitoring has developed rapidly. Such methods
are based on the principle that different substances exhibit different absorption and reflec-
tion characteristics in distinct spectral bands [28]. The optical characteristics of the leaves
include light reflected from the leaf’s external surface and internal leaf structures, light
absorbed by internal leaf chemicals (e.g., various leaf pigments), and light transmission
(Figure S1B) [29]. The visible band (400–750 nm) reflects the synthesis and decomposition
of chemical pigments critical for plant photosynthetic activity [30]; the near-infrared band
(750–1000 nm) characteristics depend on leaf internal structures, absorption by water, and
scattering processes [31]. Stress changes the pigments, water, and structures of plant leaves,
and shows different spectral characteristics [32]. Certain hyperspectral curve characteristics,
such as chlorophyll absorption troughs at 450 and 650 nm, a reflection peak near 540 nm,
and typical red-edge effects in the range of 700–760 nm, reflect plant chlorophyll content
and growth status [33–36]. Furthermore, drought stress causes leaf spectral reflectance to
increase in the visible region, while chlorophyll content tends to decrease [37,38]. These
aspects of HSI make it a feasible approach for estimating plant chlorophyll content. Exten-
sive research has focused on developing models based on the spectral index for estimating
chlorophyll content [24,39–43]. However, several problems have been identified in terms of
general applicability and stability, which limits the application of the estimation models to
other systems [44–46]. Compared to the spectral index, full-band hyperspectral information
represents various aspects of physiology more comprehensively; combined with machine
learning methods, such information can substantially improve model accuracy [47–49].
Several studies have monitored the physiological characteristics of plants based on in-
formation from sensitive bands [50,51]. However, the small number of sensitive bands
does not adequately represent all hyperspectral information. Moreover, most studies used
few wheat varieties and ignored the heterogeneous inter-multiple variety. Therefore, the
applicability of previous models to other systems is limited [44], and the models would be
ineffective for large-scale chlorophyll content and drought resistance assessments.

In the present study, we collected 335 wheat varieties (total 2010 leaf samples) un-
der drought stress and control conditions at the filling stage to explore the relationship
between hyperspectral image characteristics and chlorophyll content. A machine learning
method was used to construct models to establish a rapid, nondestructive, accurate, and
widely applicable method for assessing wheat chlorophyll content, photosynthesis, and
drought resistance.
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2. Results
2.1. Chlorophyll Changes in Wheat Leaves under Different Soil Moisture Conditions

SPAD values reflect changes in crop chlorophyll content and can thus be used to
closely track photosynthesis. In this study, the median and upper quartile (Q3) SPAD
values indicated that the chlorophyll content of several varieties tended to increase under
drought stress, while lower quartile (Q1), lower whisker, and small outlier values suggested
that the chlorophyll content of other varieties significantly declined after drought stress
(Figure 1). These results indicate that the chlorophyll content of wheat changed significantly
during drought stress and that the extent of the change varied among wheat varieties. Thus,
we can infer that different wheat varieties exhibit differences in photosynthetic capacity
under drought stress, which is closely related to drought resistance.
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Figure 1. SPAD values of 335 varieties of wheat leaves under different soil moisture conditions. CK,
control; DS, drought stress; whisker, 5–95%; ns, no statistically significant difference in SPAD values
between the CK and DS treatments (p > 0.05).

2.2. Hyperspectral Characteristics of Wheat Leaves under Different Soil Moisture Conditions
2.2.1. Spectral Reflectance Characteristics under Different Soil Moisture Conditions

The leaf is the most important organ for photosynthesis in wheat, and the spectral reflec-
tion curves of leaves reflect their growth status. After drought stress, the spectral reflectance of
several wheat varieties increased significantly in the visible region (400–700 nm) (Figure 2A).
The mean spectral reflectance of wheat leaves markedly increased between 600–700 nm, which
represents an absorption trough for chlorophyll (Figure 2C).

Int. J. Mol. Sci. 2023, 24, x FOR PEER REVIEW 3 of 15 
 

 

widely applicable method for assessing wheat chlorophyll content, photosynthesis, and 
drought resistance. 

2. Results 
2.1. Chlorophyll Changes in Wheat Leaves under Different Soil Moisture Conditions 

SPAD values reflect changes in crop chlorophyll content and can thus be used to 
closely track photosynthesis. In this study, the median and upper quartile (Q3) SPAD val-
ues indicated that the chlorophyll content of several varieties tended to increase under 
drought stress, while lower quartile (Q1), lower whisker, and small outlier values sug-
gested that the chlorophyll content of other varieties significantly declined after drought 
stress (Figure 1). These results indicate that the chlorophyll content of wheat changed sig-
nificantly during drought stress and that the extent of the change varied among wheat 
varieties. Thus, we can infer that different wheat varieties exhibit differences in photosyn-
thetic capacity under drought stress, which is closely related to drought resistance. 

 
Figure 1. SPAD values of 335 varieties of wheat leaves under different soil moisture conditions. CK, 
control; DS, drought stress; whisker, 5–95%; ns, no statistically significant difference in SPAD values 
between the CK and DS treatments (p > 0.05). 

2.2. Hyperspectral Characteristics of Wheat Leaves under Different Soil Moisture Conditions 
2.2.1. Spectral Reflectance Characteristics under Different Soil Moisture Conditions 

The leaf is the most important organ for photosynthesis in wheat, and the spectral 
reflection curves of leaves reflect their growth status. After drought stress, the spectral 
reflectance of several wheat varieties increased significantly in the visible region (400–700 
nm) (Figure 2A). The mean spectral reflectance of wheat leaves markedly increased be-
tween 600–700 nm, which represents an absorption trough for chlorophyll (Figure 2C). 

 
Figure 2. Hyperspectral curves and single-band hyperspectral images of wheat leaves under differ-
ent soil moisture conditions. Hyperspectral reflectance and first derivative curves of leaves from 335 
Figure 2. Hyperspectral curves and single-band hyperspectral images of wheat leaves under differ-
ent soil moisture conditions. Hyperspectral reflectance and first derivative curves of leaves from
335 wheat varieties under control (CK) and drought stress (DS) conditions; (A,B) hyperspectral
reflectance curves of leaves and first derivative values; (C,D) mean hyperspectral reflectance curves
of leaves and first derivative values; (E) single-band hyperspectral images; hyperspectral band region
(400–1000 nm); hyperspectral images obtained using the Pika L hyperspectral imaging system; RGB
images (red = 640 nm, green = 550 nm, blue = 460 nm).
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2.2.2. Spectral First Derivative Values under Different Soil Moisture Conditions

The first derivative can reduce the influence of noise in hyperspectral information.
In the present study, spectral first derivative values of wheat leaves significantly differed
between control and drought stress conditions, with increases and decreases seen in the
regions between 550–650 and 700–750 nm, respectively, under drought stress (Figure 2B,D).
Thus, we can infer that differences in the first derivative values were related to differences
in the chlorophyll content and growth status of wheat leaves.

2.2.3. Spectral Images under Different Soil Moisture Conditions

Single-band hyperspectral images are often used to observe sensitive areas of the plant
spectral response. Single-band hyperspectral images corresponding to the characteristics of
the leaf hyperspectral curve were collected (Figure 2E). The hyperspectral images obtained
under drought stress conditions at 450 and 500 nm (in the blue band), and at 970 nm
(water absorption zone), did not significantly differ from the images of the controls. In
contrast, significant differences were observed for the green and red bands (550, 600, 650,
and 700 nm). These results indicate that the green and red bands represent sensitive areas
for monitoring wheat chlorophyll content and growth status under drought stress.

2.3. Correlation Analysis between Hyperspectral Characteristics and SPAD Values

Correlation analysis revealed strong negative correlations between spectral reflectance
and SPAD values in the visible region (400–735 nm), particularly at 549 and 708 nm (corre-
lation coefficients of −0.64 and −0.61, respectively). However, no significant correlations
were detected in the near-infrared region (750–1000 nm) (Figure 3A). The correlation coeffi-
cient between the first derivative of the spectrum and SPAD values was −0.61 at 541 nm,
0.68 at 735 nm, and −0.44 near 946 nm. Meanwhile, the first derivative and SPAD val-
ues were positively correlated near 600 nm under control conditions but were negatively
correlated under drought stress (Figure 3B). These results indicate that the chlorophyll
content was strongly correlated with hyperspectral features in the visible region but only
weakly correlated in the near-infrared region. In addition, the spectral first derivative had
a stronger correlation with SPAD values compared to reflectance.
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Figure 3. Correlation analysis and fitting results between leaf hyperspectral and SPAD values.
(A,B) Correlations of spectral reflectance and the first derivative with SPAD values; (C,D) simple
linear regression (SLR) analysis based on spectral reflectance at 549 nm and the spectral first derivative
at 735 nm; (E,F) fitting results of predicted and measured values of SPAD based on reflectance at
549 nm and the first derivative at 735 nm. The gray dotted line is the 1:1 fit line between the predicted
and measured values. Pearson correlation analysis of hyperspectral reflectance and first derivatives
with SPAD values in CK, DS, and combined data sets was performed using Prism 9. Python 3.6 was
used for SLR analysis of the data. CK, control; DS, drought stress; combined, all data.
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2.4. The Characteristic Bands Identified with the Successive Projections Algorithm for Estimating
SPAD Values

The successive projections algorithm (SPA) can eliminate redundant hyperspectral
information and improve modeling speed and efficiency, and it is widely used for extract-
ing characteristic bands. The hyperspectral reflectance bands at 536, 596, and 674 nm
(Figure 4A), and the first derivative bands at 756 and 778 nm (Figure 4B), were the optimal
bands for estimating SPAD values. These results indicate that hyperspectral information
at the green, red, and red-edge bands is closely related to wheat SPAD values, which can
therefore be used to monitor wheat leaf chlorophyll content.
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Figure 4. SPA feature band selection and PCA dimension reduction. (A,B) Spectral reflectance and
first derivative bands extracted by SPA; (C,D) 3D spatial distribution of the first three principal
components of spectral reflectance and the first derivative; (E,F) the first three principal components’
loadings of spectral reflectance and the first derivative. Python 3.6 was used to extract SPAD
characteristic bands. Prism 9 was used to calculate PCA loadings. The percentage is the proportion
of the variance explained by each principal component. SPA, successive projections algorithm; PCA,
principal component analysis. Obj, first calibration object; Var, selected variables. CK, control; DS,
drought stress.

2.5. Principal Component Analysis of Hyperspectral Information

Principal component analysis (PCA) is a dimensionality reduction technique widely
used for hyperspectral data analysis that can reduce dimensionality with minimal infor-
mation loss. Principal component loading represents the correlation coefficient between
a principal component and the original variable. In the present study, PCA was used to
reduce the dimensionality of the hyperspectral reflectance data and first derivatives, and
the loadings of the first three principal components were calculated. Figure 4C,D present
the 3D spatial distribution of leaf spectral reflectance and the first derivative, respectively.
The first three principal components were dispersed under drought stress but more aggre-
gated under control conditions (Figure 4C,D). The variance explained by the first principal
component of spectral reflectance (68.92%) was higher than that explained by the first
derivative (33.05%). These results indicate that drought stress significantly affected leaf
blade hyperspectral reflectance, and the collinearity of the hyperspectral first derivative
was lower than that of reflectance. Together, the first two principal components of spectral
reflectance explained more than 94% of the variance in the data; principal component 1 had
high loadings at 446 and 695 nm, while principal component 2 had high loadings at 624,
695, and 770 nm (Figure 4E). The first three principal components of the first derivative
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of the spectrum explained nearly 70% of the variance; principal component 1 had high
loadings at 494, 684, and 722 nm; principal component 2 had high loadings at 523, 616,
and 703 nm; and principal component 3 had a high loading at 852 nm (Figure 4F). These
results indicate that the drought stress spectra were strongly correlated with the principal
components at these wavebands.

2.6. Estimation of SPAD Values Based on Regression Analysis
2.6.1. Estimation of SPAD Values Based on Spectral Characteristics

Henceforth, CA-R and CA-FD are used to denote the highest correlations of spectral
reflectance and the first derivative, with SPAD values, while (SPA-R) and (SPA-FD) are
used to indicate characteristic band reflectance and the first derivative, as extracted by
SPA. Full-R and Full-FD are used to denote full-band reflectance and the first derivative,
respectively, whereas PCA-R and PCA-FD are used to indicate spectral reflectance and the
first derivative principal components, respectively, derived from the PCA.

The regression model results indicated that the RFR model using Full-R as the inde-
pendent variable had the best optimal fit (R2 = 0.60, RMSE = 4.495, RE = 7.35%) among all
models. The SLR model based on the CA-R had the worst fit (training set, R2 = 0.401, RMSE
= 5.549, RE = 9.17%) due to the underfitting of the data (Table 1). The models based on
Full-R were better than those based on Full-FD (Table 1, Figure 5E,F); although, the models
built with CA-FD and SPA-FD provided better fits than CA-R and SPA-R (Figure 5A–D).
The models built with SPA-R, SPA-FD, PCA-R, and PCA-FD were superior to the SLR
models but inferior to the Full-R and Full-FD models (Table 1). The LASSO and RR models
based on SPA-R, SPA-FD, PCA-R, and PCA-FD exhibited underfitting (Table 1).

Table 1. The different models fitting results between SPAD and various spectral characteristics.

Data Set Model
Training Set (n = 536) Testing Set (n = 134)

R2 RMSE RE R2 RMSE RE

CA-R (549 nm) SLR 0.401 5.549 9.17% 0.424 5.390 8.81%
CA-FD (735 nm) SLR 0.426 5.434 9.01% 0.529 4.876 8.27%

SPA-R
LASSO 0.405 5.532 9.12% 0.417 5.430 8.86%

RR 0.405 5.532 9.12% 0.417 5.426 8.85%
RFR 0.478 5.183 8.60% 0.478 5.134 8.40%

SPA-FD
LASSO 0.407 5.523 9.25% 0.518 4.934 8.49%

RR 0.407 5.523 9.26% 0.517 4.939 8.51%
RFR 0.510 5.023 8.57% 0.510 4.974 8.47%

PCA-R
LASSO 0.484 5.150 8.39% 0.571 4.655 7.64%

RR 0.488 5.130 8.20% 0.580 4.607 7.47%
RFR 0.555 4.788 7.87% 0.555 4.739 7.89%

PCA-FD
LASSO 0.454 5.298 8.62% 0.496 5.045 7.90%

RR 0.454 5.298 8.64% 0.497 5.039 7.99%
RFR 0.560 4.755 7.74% 0.560 4.714 7.62%

Full-R
LASSO 0.587 4.609 7.43% 0.585 4.578 7.51%

RR 0.586 4.617 7.45% 0.585 4.575 7.46%
RFR 0.600 4.535 7.40% 0.600 4.495 7.35%

Full-FD
LASSO 0.528 4.929 8.12% 0.528 4.880 7.96%

RR 0.548 4.824 7.81% 0.547 4.784 7.71%
RFR 0.579 4.653 7.63% 0.577 4.623 7.64%

n, number of samples; R2, coefficient of determination; RMSE, root mean square error; RE, relative error (percent-
age); SLR, simple linear regression; LASSO, least absolute shrinkage and selection operator; RR, ridge regression;
RFR, random forest regression. CA-R/FD, reflectance/first derivative with the highest correlation with SPAD
values; SPA-R/FD, reflectance/first derivative of a characteristic band extracted through SPA; PCA-R/FD, princi-
pal components of reflectance/first derivative; Full-R/FD, full-band reflectance/first derivative; SPA, successive
projections algorithm; PCA, principal component analysis.
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Figure 5. Comparison of predicted and measured values SPAD based on different data sets and
models. (A,B) Simple linear regression (SLR) model based on CA-R and CA-FD; (C,D) random forest
regression (RFR) model based on SPA-R and SPA-FD; (E,F) RFR model based on Full-R and Full-FD.
CA-R/FD, reflectance/first derivative with the highest correlation with SPAD values; SPA-R/FD,
reflectance/first derivative of a characteristic band extracted through SPA; Full-R/FD, full-band
reflectance/first derivative. CK, control; DS, drought stress.

The fit of the SLR model established with the first derivative at 735 nm (CA-FD) was
better than that of the model based on spectral reflectance at 549 nm (CA-R), the data in the
former case exhibited a stronger linear relationship with the SPAD values (Figure 3C–F).
The dotted lines in Figure 3E,F, Figure 6, and Figure 7 are the 1:1 fit line between the
predicted and measured SPAD values, which indicate that the RFR model based on Full-R
provided the best fit (Figure 6C). The deviation between the actual and 1:1 fit lines of the
models based on Full-R (Figure 6A–C) was smaller compared with the models based on
Full-FD (Figure 6D–F). These results indicate that the first derivative transformation can
enhance the signal-to-noise ratio of the characteristic bands and improve model accuracy,
which may result in the loss of some full-band hyperspectral information. At the same
time, the feature band spectrum did not adequately represent whole-leaf hyperspectral
information, while the full-band hyperspectral image appears to have more potential for
chlorophyll content evaluation.
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band hyperspectral reflectance and first derivative model. (A–C) Least absolute shrinkage and
selection operator (LASSO) regression, ridge regression (RR), and random forest regression (RFR)
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predicted and measured SPAD values, and the blue solid line is the actual fit between predicted and
measured values.
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Figure 7. Fitting results of predicted and measured SPAD values of wheat leaves based on a full-
band hyperspectral reflectance model under different soil moisture conditions. (A–C) Least absolute
shrinkage and selection operator (LASSO) regression, ridge regression (RR), and random forest
regression (RFR) models under the control condition; (D–F) LASSO regression, RR, and RFR models
under the drought stress condition. The blue and yellow solid lines are the actual fit between
predicted and measured values, and the gray dotted line is the 1:1 fit between the predicted and
measured SPAD values. CK, control; DS, drought stress.

The LASSO, RR, and RFR models built with the Full-R demonstrate outstanding sta-
bility and accuracy in predicting the SPAD values under different soil moisture conditions
(RFR models R2 > 0.5; Figure 7). The LASSO model prediction performance of SPAD values
under drought stress is the best with R2 0.569, RMSE 5.159, and RE 9.28%. As a result, the
hyperspectral reflectance in predicting the SPAD values of the wheat leaves under drought
stress can provide a robust result and has the potential to be used in drought resistance
identification in the future.

To further verify the reliability of models, the SLR models constructed by 549 nm
reflectance and 735 nm first derivative were used for SPAD visual mapping (Figure 8).
These results are consistent with leaf RGB images (Figure 2E), which indicates that the HSI
monitoring SPAD values and drought stress are reliable.
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derivative. (A,B) SPAD values map at the leaf level estimated by the 549 nm reflectance and 735 nm
first derivative. CK, control; DS, drought stress. ENVI 5.3 (ITT, Visual Information Solutions, Boulder,
CO, USA) was used to obtain the SPAD values map.

2.6.2. Estimation of SPAD Values Based on Spectral and Image Characteristics

CIEL*a*b* is a visually consistent color model in which the color difference is closer to
the actual perceived color difference and is the best way to express the range of perceived
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colors by the human eye. The L*, a*, and b* values have significant correlations with SPAD
values (r =−0.591,−0.164,−0.600; Table 2). Furthermore, we combined L*a*b* features and
spectral characteristics to construct RFR models, which indicates that the Full-R combined
with L*, a*, and b* has the optimal SPAD values prediction effect (R2 = 0.61, RMSE =
4.439, RE = 7.35%). Overall, the combination of spectral characteristics and L*a*b* features
improve the estimation accuracy for SPAD values (Table 3).

Table 2. Relationships among SPAD, L*, a*, and b* of wheat leaves.

Variable SPAD L* a* b*

SPAD 1
L* −0.591 **
a* −0.164 ** 0.438 **
b* −0.600 ** 0.912 ** 0.378 ** 1

** Significant at the 0.01 probability level.

Table 3. Results of the RFR models based on spectrum and L*a*b* characteristics data set.

Data Set
Training Set (n = 536) Testing Set (n = 134)

R2 RMSE RE R2 RMSE RE

(CA-R) + L*a*b* 0.486 5.14 8.52% 0.486 5.095 8.23%
(CA-FD) + L*a*b* 0.519 4.973 8.19% 0.519 4.925 8.18%
(SPA-R) + L*a*b* 0.502 5.061 8.38% 0.501 5.021 8.27%

(SPA-FD) + L*a*b* 0.51 5.019 8.37% 0.51 4.972 8.13%
(PCA-R) + L*a*b* 0.46 5.271 8.76% 0.46 5.218 8.29%

(PCA-FD) + L*a*b* 0.584 4.626 7.47% 0.584 4.579 7.48%
(Full-R) + L*a*b* 0.61 4.478 7.30% 0.61 4.439 7.35%

(Full-FD) + L*a*b* 0.578 4.661 7.64% 0.578 4.617 7.58%
L*a*b* 0.435 5.39 9.06% 0.434 5.346 8.38%

L*a*b* represent L*, a*, and b* color component values.

3. Discussion
3.1. Feasibility of Estimating Chlorophyll Content of Wheat Leaves Using Hyperspectral
Information

Previous studies have demonstrated that plant leaf hyperspectral curves exhibit signifi-
cant differences in the visible region under stress conditions. For example, Gang et al. (2010)
reported a significant correlation between chlorophyll content and spectral characteristics
in the visible region (400–680 nm) in castor bean seedlings under salt stress [52]. In the
present study, the hyperspectral reflectance curves of wheat leaves under different soil
moisture conditions varied remarkably in the visible region (500–700 nm; Figure 2A,C) and
were strongly correlated with SPAD values (Figure 3A). These findings indicate that the hy-
perspectral reflectance curves of wheat leaves under stress conditions were closely related
to the chlorophyll content in the visible region (400–700 nm), and, therefore, adequately
represent leaf chlorophyll content.

Studies of tea leaves have shown that the hyperspectral reflectance between 552–
555 nm and 707–735 nm is strongly correlated with the chlorophyll content [53]. Under
drought stress, the spectral first derivative of apple leaves in the visible region (513–539, 564–
585, 694, and 699 nm) was also closely related to the chlorophyll content [54]. In the present
study, leaf spectral reflectance between 512–603 and 700–723 nm, and the spectral first
derivative between 485–542 and 719–760 nm, were strongly correlated with SPAD values
(Figure 3A,B). These results highlight the feasibility of using hyperspectral characteristics
to estimate chlorophyll content accurately and efficiently under drought stress.

3.2. Models for Estimating SPAD Values in Wheat Leaves

Our SPAD values estimation model based on full-band hyperspectral information
exhibited good performance. In a previous study using characteristic bands and full-band
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hyperspectral reflectance to estimate wheat yield under low-temperature stress, a full-
band principal component regression (PCR) model (R2 = 0.854, root mean square error of
prediction 625.7) had the best stability [55]. In the present study, the LASSO, RR, and RFR
models based on Full-R were superior to all other models and had R2 and RMSE values of
0.585 and 4.578, 0.585 and 4.575, and 0.60 and 4.495, respectively (Figure 6A–C, Table 1).
These findings demonstrate that models based on Full-R had better stability and accuracy.

The first derivative can reduce the influence of noise and improve the signal-to-noise
ratio of the data. Previous chlorophyll content evaluations of pitaya stems revealed that
first derivative transformation can enhance the sensitivity of feature bands to chlorophyll
content, and a model based on the first derivative of characteristic bands was optimal
(R2 = 0.625, RMSE = 0.048) [56]. A study estimating maize yield found that full-band RR
(R2 = 0.54, RMSE = 2.58) and support vector regression (SVR; R2 = 0.53, RMSE = 2.69)
models performed better than a full-band first derivative model (R2 = 0.41, RMSE = 3.51
and R2 = 0.49, RMSE = 2.95, respectively); however, RFR models showed the opposite
result [57].

The present study demonstrated that the combining of spectral characteristics with im-
age features (L* a* b*) can improve the estimation accuracy of SPAD values (Tables 1 and 3).
These results showed that the fit for diverse data sets varied among the models. Thus, it is
necessary to determine which models are most suitable for particular data sets to achieve
the best prediction performance. In future studies, we can utilize multiplicative scatter
correction (MSC), standard normal variate transformation (SNV), and other algorithms to
preprocess hyperspectral data and apply deep learning to enhance stability and accuracy.

3.3. Utility of Hyperspectral Reflectance for Monitoring Wheat Growth and Evaluating Drought
Resistance under Drought Stress

The hyperspectral characteristics of wheat leaves were closely related to wheat growth
status under different soil moisture conditions. The hyperspectral information of soybean
leaves can achieve the accurate estimation for chlorophyll content (R2 = 0.94, RMSE =
0.201) [49]. Similarly, previous research showed that 617, 675, and 818 nm are the optimal
bands for estimating the chlorophyll content of diseased peach fruit [58]. Using the con-
tinuous wavelet transform (CWT) to estimate wheat SPAD values under low-temperature
stress, a previous study found that 553, 727, 728, 729, and 734 nm are SPAD-sensitive bands,
and that spectral reflectance at 553 nm can accurately estimate SPAD values (R2 = 0.7444,
RMSE = 7.359) [59]. One study using multiple feature selection methods to determine SPAD
values in pepper leaves reported that the characteristic bands were concentrated within the
regions of 415.4–431.5, 526.7–676.2, and 839.3–979.2 nm [60]. Furthermore, 548, 718, and
727 nm were the best wave bands for estimating chlorophyll content in grafted cucumber
seedling leaves [61]. Taken together, these studies clearly indicate that hyperspectral infor-
mation is closely related to chlorophyll content; however, it was still necessary to establish
a stable, reliable, and universally applicable model for evaluating diverse species, and for
within-species analyses, under different growth conditions. In the present study, full-band
hyperspectral reflectance of combined L*, a*, and b* accurately estimated SPAD values
(R2 = 0.61, RMSE = 4.439, RE = 7.35%; Table 3). The spectral reflectance bands at 536, 549,
596, 674, and 708 nm, and the first derivative bands at 735, 756, and 778 nm, were SPAD
characteristic bands (Figure 3A,B and Figure 4A,B). Nonetheless, many bands within the
446–770 nm region were closely related to drought stress (Figure 4E,F). Using SLR based on
549 nm reflectance and 735 nm first derivative to assess SPAD values in the leaf level found
that the HSI can monitor leaf chlorophyll content and drought stress reliably (Figure 8).
In conclusion, plant HSI has great potential for evaluating leaf chlorophyll content under
stress conditions; however, studies including large-scale varieties experiencing different
stress conditions are necessary to establish stable and reliable models.

In most cases, drought stress reduces leaf chlorophyll content, although several stud-
ies have shown that some plants exhibit increased chlorophyll content under drought
stress [62,63]. We found that the leaf SPAD values of several wheat varieties increased
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under drought stress (Table S2), which may be related to the variation in drought resistance
seen among different wheat varieties. The characteristics of the hyperspectral curves of dif-
ferent wheat varieties under drought stress also reflected differences in drought resistance
among varieties. Therefore, future evaluation models of wheat drought resistance could be
applied to aid genetic breeding of crop resistance.

4. Materials and Methods
4.1. Plant Material and Growth Conditions

The study area was located in the National Dryland Plant Variety Rights Trading
Center in Yang Ling District (108◦4′E, 34◦16′N), China, in which new crop varieties are
tested. In total, 335 wheat varieties (Table S1) were planted in a steel frame shed on
21 October 2021. The shed had good ventilation and fine sandy loam soils, to which we
applied a compound fertilizer (N-P2O5-K2O) at 750 kg/hm2 prior to sowing. The soil
drilling method was used to measure soil water content at a depth of 0.5 m. Beginning
at the jointing stage of wheat growth, the relative soil water contents of the control and
drought stress treatments were maintained at 75 ± 5% and 50 ± 5%, respectively. The
calculation method of relative soil water content is consistent with previous research [64],
and uses the formula below:

Soil water content (%) =
weight of moist soil − weight of dried soil

weight of dried soil × 100

Soil water holding capacity (%) =
weight of water in saturated soil

weight of dried soil × 100
Relative soil water content (%) = soil water content

soil water holding capacity × 100

The filling stage is the most rapid stage of wheat grain development, and photosyn-
thetic capacity during this period strongly affects yield. Meanwhile, drought stress at
the wheat filling stage has a significant impact on photosynthesis and wheat yield [65,66].
Therefore, it is important to estimate the chlorophyll content of wheat under drought stress
in the filling stage for screening the drought-resistant wheat varieties. The experimental
data were collected after flowering for 14 days during April and May 2022.

4.2. Hyperspectral Image Acquisition

Leaf hyperspectral images were acquired using the Pika L system (Resonon Inc.,
Bozeman, MT, USA), which provides 281 spectral bands (2.1-nm spectral resolution) in
the visible near-infrared region (400–1000 nm) and has 900 spatial channels. We collected
six flag leaves samples from each variety, which were kept fresh [67] and transported to
the laboratory for hyperspectral image collection under controlled lighting conditions.
Before image acquisition, the dark current was removed and whiteboard calibration was
conducted. During the collection stage, the leaf blades were wiped clean and kept flat.
The average of three biological replicates was used as the hyperspectral data for subse-
quent analysis.

4.3. SPAD Values Measurement

A SPAD-502 Plus chlorophyll meter (Minolta, Tokyo, Japan) was used to obtain soil
plant analysis development (SPAD; i.e., chlorophyll) values for wheat flag leaves, and this
meter has been shown to correlate well with actual chlorophyll levels and to be a reliable
method for nondestructive chlorophyll detection [68–70]. SPAD values of the tip, middle,
and base of the leaf were obtained (five replicates each), and the average values were used
in the analysis.

4.4. Hyperspectral Image Preprocessing

Hyperspectral images were obtained at the same time as SPAD values acquisition,
which was preprocessed using the Spectronon Pro software (version 2.116)bundled with
the Resonon Pika L acquisition system. A Savitzky–Golay filter was used to smooth the
hyperspectral images. The first derivative was calculated using Spectronon Pro. In this
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study, Spectronon Pro was used to acquire CIEL*a*b* color space images and calculate L*,
a*, and b* values.

4.5. Data Processing

Prism 9 (GraphPad Software, San Diego, CA, USA) and Python 3.6 (Python Software
Foundation, Beaverton, OR, USA) were used for correlation and regression analyses. The
training and testing sets included 80% and 20% of the data (n = 670), respectively. Values
were calculated for model evaluation, coefficient of determination (R2), root mean square
error (RMSE), and relative error (RE). Four regression models were tested: simple linear re-
gression (SLR) [71], least absolute shrinkage and selection operator (LASSO) regression [72],
ridge regression (RR) [73], and random forest regression (RFR) models [74].

5. Conclusions

In this study, the HSI of large-scale wheat varieties under different soil moisture
conditions was used to determine the accuracy of rapid leaf chlorophyll content estimation
models. The most sensitive bands with respect to chlorophyll content estimation were in the
visible band (400–780 nm), and correlation analysis revealed that the optimal bands were
located near 541, 549, 708, and 735 nm. The SPA indicated that the reflectance bands at 536,
596, and 674 nm were the optimal bands for estimating SPAD values. The first derivative
bands at 756 and 778 nm were the most useful for estimating the relative chlorophyll
content. Combining spectral characteristics and L*a*b* features can improve the accuracy
of estimating the SPAD values of drought-stressed wheat (RFR model optimal performance:
R2 = 0.61, RMSE = 4.439, RE = 7.35%). The technical method established in this study has
great potential for evaluating chlorophyll content and stress resistance.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/ijms24065825/s1.
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