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Abstract: Psidium guajava L. (guava) leaves have demonstrated their in vitro and in vivo effect against
diabetes mellitus (DM). However, there is a lack of literature concerning the effect of the individual
phenolic compounds present in the leaves in DM disease. The aim of the present work was to identify
the individual compounds in Spanish guava leaves and their potential contribution to the observed
anti-diabetic effect. Seventy-three phenolic compounds were identified from an 80% ethanol extract
of guava leaves by high performance liquid chromatography coupled to electrospray ionization and
quadrupole time-of-flight mass spectrometry. The potential anti-diabetic activity of each compound
was evaluated with the DIA-DB web server that uses a docking and molecular shape similarity
approach. The DIA-DB web server revealed that aldose reductase was the target protein with
heterogeneous affinity for compounds naringenin, avicularin, guaijaverin, quercetin, ellagic acid,
morin, catechin and guavinoside C. Naringenin exhibited the highest number of interactions with
target proteins dipeptidyl peptidase-4, hydroxysteroid 11-beta dehydrogenase 1, aldose reductase
and peroxisome proliferator-activated receptor. Compounds catechin, quercetin and naringenin
displayed similarities with the known antidiabetic drug tolrestat. In conclusion, the computational
workflow showed that guava leaves contain several compounds acting in the DM mechanism by
interacting with specific DM protein targets.

Keywords: diabetes mellitus; guava; in silico; leaves; phenolic compounds; Psidium guajava L.

1. Introduction

Diabetes mellitus (DM) is one of the most serious and increasing health disorders in
the world. Today, this disease affects 382 million people, and it is expected that the number
of affected could rise to 592 million people by 2035 [1]. The cause of clinical diabetes is
due to a deficiency of the effect of insulin at the tissue level and it is usually accompanied
by an increase in oxidative stress. This deficiency is caused by an autoimmune destruc-
tion or by the dysregulation of insulin release from the pancreatic B-cells (type 1 and 2,
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respectively) [2]. Therefore, treatment of DM is based on the use of clinical drugs which
reduce blood glucose levels.

Furthermore, there is evidence that herbal medicines possess diabetic inhibitory
properties through different mechanisms such as α-glucosidase, α-amylase, dipeptidyl
peptidase IV (DPP-4), and protein tyrosine phosphatase 1B (PTP-1B) inhibition, as well
as the activation of peroxisome proliferator-activated receptor γ (PPARG) [3]. In many
plants, these effects have been associated with the presence of bioactive compounds which
could be effective as adjuvant in diabetes therapy [4]. Regarding the plant drugs used
in traditional medicine, the leaves of Psidium guajava L. have been widely employed as
hypoglycaemic agents [2].

Guava tree (P. guajava L.) is originally from Mexico, although it can grow in tropical
and subtropical conditions. Apart from the anti-diabetic effect, different parts of this crop
have exhibited in vitro and in vivo properties against several diseases such as diarrhoea and
dysentery, and these activities have been related mainly to its phenolic composition, which
is greater in the leaves than in the other parts of the tree [5]. Recent studies have revealed
the phenolic profile of Spanish guava leaves and the relation of some of the compounds
tentatively identified with their anti-diabetic properties [6,7]. Despite the comprehensive
study, and the in vitro and in vivo assays conducted, it is still not clear which compounds
from the extract are responsible for its anti-diabetic effect. Therefore, we propose in this
work to carry out in silico anti-diabetic activity studies to identify the responsible bioactive
compounds. We will use two approaches, (a) prediction of the interaction of potentially
bioactive molecules with relevant DM targets, providing the characterization of binding
modes [8], and (b) prediction of similarity of extract compounds against already known
anti-diabetic agents, following the principle “similar compounds bind to similar targets” [9].
Based on these premises, the purpose of this work was to evaluate in silico the potential of
every phenolic compound present in Spanish guava leaves against the principal targets
related to DM.

2. Results
2.1. Identification of the Phenolic Compositions

Tentative identification of phenolic compounds present in guava leaves via high
performance liquid chromatography coupled to electrospray ionization and quadrupole
time-of-flight mass spectrometry (HPLC-ESI-QTOF-MS) was accomplished due to a previ-
ous work performed by our research group [7] and data are summed up in Table 1. Due
to the nature of the phenolic compounds present in the leaf extracts, both negative and
positive ionization modes are employed in Table 1 for identification [10]. Despite being
detectable by both ionization modes, most phenolic subclasses are detected in negative
mode because the sensitivity is better and they mainly produce the ion [M-H]− [10,11]. In
contrast, positive mode is used for anthocyanins subclass since [M]+ is the predominant
ion specie generated due to its structure [11].

Table 1. Identification of phenolic compounds in Psidium guajava L. leaves by HPLC-DAD-ESI-QTOF-MS.

No. Compound rt (min) m/z Exp m/z Calc Molecular
Formula Score Error

(ppm)

Negative mode

1 Galloyl-Hexahydroxydiphenoyl (HHDP)
glucose isomer 1 1.93 481.06 481.34 C20H18O14 96.51 −2.55

2 HHDP glucose isomer 2 2.14 481.06 481.34 C20H18O14 99.09 −0.19
3 HHDP glucose isomer 3 2.52 481.06 481.34 C20H18O14 97.21 −2.24
4 Prodelphinidin B isomer 3.85 609.13 609.51 C30H26O14 97.84 −1.7
5 Gallic acid 4.02 169.01 169.11 C7H6O5 99.27 0.37
6 Pedunculagin/Casuariin isomer 1 5.87 783.07 783.53 C34H24O22 98.57 −1.29
7 Prodelphinidin Dimer isomer 1 7.27 593.13 593.51 C30H26O13 96.51 −2.35
8 (epi)-gallocatechin isomer 1 7.81 305.07 305.26 C15H14O7 95.55 −3.32
9 Vescalagin/castalagin isomer 7.95 933.07 933.62 C41H26O26 99.19 −0.79
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Table 1. Cont.

No. Compound rt (min) m/z Exp m/z Calc Molecular
Formula Score Error

(ppm)

10 Prodelphinidin Dimer isomer 2 8.12 593.13 593.51 C30H26O13 96.51 −2.35
11 Uralenneoside 9.39 285.06 285.23 C12H14O8 97.80 −2.69
12 Geraniin isomer 1 9.50 951.08 951.64 C41H28O27 99.56 −0.20
13 Pedunculagin/Casuariin isomer 2 9.54 783.07 783.53 C34H24O22 98.39 −1.36
14 Geraniin isomer 2 9.65 951.08 951.64 C41H28O27 99.56 −0.20
15 Procyanidin B isomer 1 10.02 577.14 577.51 C30H26O12 95.68 −2.55
16 Galloyl(epi)catechin-(epi)gallocatechin 10.35 745.14 745.62 C37H30O17 96.90 −0.62
17 Procyanidin B isomer 2 10.36 577.14 577.51 C30H26O13 99.41 −0.61
18 Tellimagrandin I isomer 10.74 785.09 785.55 C34H26O22 99.13 −0.96
19 Pterocarinin A isomer 1 11.00 1067.12 1067.75 C46H36O30 99.82 −0.11
20 Pterocarinin A isomer 2 11.21 1067.12 1067.75 C46H36O30 98.39 −1.26
21 Stenophyllanin A 11.25 1207.15 1207.89 C56H40O31 98.64 −1.08
22 Procyanidin trimer isomer 1 11.25 865.20 865.77 C45H38O18 97.53 −1.59
23 (epi)-catechin 11.26 289.07 289.26 C15H14O6 96.76 −3.18
24 Procyanidin tetramer 11.34 1153.26 1153.03 C60H50O24 99.60 −0.50
25 Procyanidin trimer isomer 2 11.41 865.20 865.77 C45H38O18 97.53 −1.59
26 Guavin A 11.50 1223.14 1223.89 C56H40O32 99.05 0.85
27 Casuarinin/Casuarictin isomer 11.90 935.08 935.64 C41H28O26 97.67 −1.43
28 Galloyl(epi)catechin-(epi)gallocatechin 12.10 745.14 745.62 C37H30O17 96.90 −0.62
29 Procyanidin pentamer 12.14 1441.32 1441.27 C75H62O30 95.66 1.97
30 Galloyl-(epi)catechin trimer isomer 1 12.17 1017.21 1017.87 C52H42O22 99.72 −0.01
31 (epi)-gallocatechin isomer 2 12.33 305.07 305.26 C15H14O7 95.55 −3.32
32 Tellimagrandin I isomer 12.50 785.09 785.55 C34H26O22 98.44 −1.38
33 Vescalagin 12.76 933.07 933.62 C41H26O26 96.33 −0.80
34 Stenophyllanin A isomer 12.93 1207.15 1207.89 C56H40O31 98.37 0.89
35 Galloyl-(epi)catechin trimer isomer 2 12.99 1017.21 1017.87 C52H42O22 98.17 −1.35
36 Myricetin hexoside isomer 1 13.28 479.08 479.37 C21H20O13 98.36 −0.92
37 Stachyuranin A 13.41 1225.16 1225.91 C56H42O32 95.54 1.35
38 Procyanidin gallate isomer 13.52 729.15 729.62 C37H30O16 96.89 −1.91
39 Myricetin hexoside isomer 2 13.68 479.08 479.37 C21H20O13 97.89 −0.08
40 Vescalagin/castalagin isomer 13.84 933.07 933.62 C41H26O26 88.32 −1.57
41 Myricetin-arabinoside/xylopyranoside isomer 1 13.99 449.07 449.34 C20H18O12 98.39 −1.65
42 Myricetin-arabinoside/xylopyranoside isomer 2 14.21 449.07 449.34 C20H18O12 98.02 −1.65
43 Procyanidin gallate isomer 14.56 729.64 577.51 C30H26O12 98.17 −1.73
44 Myricetin-arabinoside/xylopyranoside isomer 3 14.99 449.07 449.34 C20H18O12 98.66 −1.65
45 Myricetin hexoside isomer 3 15.03 479.08 479.37 C21H20O13 97.08 −1.92
46 Myricetin hexoside isomer 4 15.22 479.08 479.37 C21H20O13 97.08 −1.92
47 Myricetin-arabinoside/xylopyranoside Isomer 4 15.60 449.07 449.34 C20H18O12 98.39 −1.65
48 Quercetin-galloylhexoside isomer 15.63 615.10 615.47 C28H24O16 99.16 −0.98
49 Ellagic acid deoxyhexoside 15.84 447.06 447.33 C20H16O12 91.25 −3.19
50 Quercetin-galloylhexoside isomer 16.04 615.10 615.47 C28H24O16 99.16 −0.98
51 Myricetin-arabinoside/xylopyranoside isomer 5 16.19 449.07 449.34 C20H18O12 98.39 −1.65
52 Morin 16.28 301.04 301.23 C15H10O7 97.46 −2.50
53 Myricetin-arabinoside/xylopyranoside isomer 6 16.46 449.07 449.34 C20H18O12 98.39 −1.65
54 Ellagic acid 16.51 301.00 301.19 C14H6O8 98.88 −1.71
55 Hyperin 16.62 463.09 463.37 C21H20O12 96.41 −2.65
56 Quercetin glucoronide 16.72 477.07 477.35 C21H18O13 98.10 −1.83
57 Isoquercitrin 16.95 463.09 463.37 C21H20O12 97.04 −2.33
58 Procyanidin gallate isomer 17.04 729.15 729.62 C37H30O16 96.89 −1.91
59 Reynoutrin 17.50 433.08 433.34 C20H18O11 95.94 −2.90
60 Guajaverin 17.80 433.08 433.34 C20H18O11 97.99 −1.91
61 Guavinoside A isomer 1 17.96 543.12 544.46 C26H24O13 98.10 −1.77
62 Avicularin 18.21 433.08 433.34 C20H18O11 96.70 −2.20
63 Quercitrin 19.19 447.10 447.37 C21H20O11 95.23 −3.02
64 Myrciaphenone B 19.21 481.10 481.38 C21H22O13 97.20 −2.23
65 Guavinoside C 19.77 585.09 585.45 C27H22O15 97.19 −1.92
66 Guavinoside B isomer 1 20.77 571.15 571.51 C28H28O13 97.26 −2.05
67 Guavinoside A isomer 2 20.70 543.12 543.45 C26H24O13 98.10 −1.77
68 Guavinoside B isomer 2 21.67 571.15 571.51 C28H28O13 97.26 −2.05

69 2,6-dihydroxy-3-methyl-4-O-(6′ ′-O-galloyl-β-D-
glucopyranosyl)-benzophenone 21.97 557.13 557.48 C27H26O13 96.93 −2.12

70 Guavin B 22.24 693.11 693.54 C33H26O17 97.82 −1.67
71 Quercetin 22.31 301.04 301.23 C15H10O7 98.90 −1.34
72 Naringenin isomer 26.74 271.06 271.25 C15H12O5 96.09 −3.67

Positive mode

73 Cyanidin-3-O-glucoside 3.66 449.11 449.39 C21H21O11 96.97 −2.34
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Furthermore, the identification of the compounds was achieved according to its reten-
tion time, mass spectra and literature. According to Table 1, the retention time, calculated
and experimental m/z, molecular formula, the score, and the error (ppm) are data obtained
from HPLC-ESI-QTOF-MS for each compound. Briefly, the MassHunter Workstation Soft-
ware (version B.06.00 Qualitative Analysis, Agilent Technologies (Santa Clara, CA, USA))
reports the score, which means the feasibility between de mass spectra of the measured com-
pound and the molecular formula that is reporting (in terms of accurate mass, isotope abun-
dance pattern and spacing), and the error (ppm) term, which reveals the difference amongst
experimental and calculated mass/charge (m/z). It is noteworthy that the exact mass of the
parent ion is characteristic of each compound as well as its fragmentation pattern.

In agreement with our previous study [6], the phenolic families identified in the guava
leaves were flavonols, flavan-3-ols, gallic and ellagic acid derivates, and flavanones. In
addition, an anthocyanin was identified (cyanidin-3-O-glucoside).

2.2. In Silico Results and Bibliography Searches

Compounds from Table 1 were processed with the DIA-DB server using ligand-
similarity-based virtual screening (LBVS) and structure-based virtual screening (SBVS)
approaches. The results obtained after docking and molecular shape similarity analyses
are shown in Figures 1 and 2, respectively. Based on these results and, to confirm or
refute them, a bibliographic review of existing experimental studies for the different
compounds present in P. guajava leaves was carried out, considering the targets involved in
the regulation of glycemia.
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Figure 1. Heat map with the docking results of compounds from guava leaves extract against DM
targets. Color scale denotes docking score from blue (no interaction) to red (highest interaction).
Each column represents the DM protein target, and each row is assigned to each compound from
the extract.
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Figure 2. Heat map with the molecular shape similarity results of compounds from P. guajava
extract against already known anti-diabetic compounds from DIA-DB database. Color scale denotes
normalized similarity score from blue (no similarity) to red (highest similarity value). Each column
represents each anti-diabetic compound from DIA-DB database (Pubchem ID), while each row is
related to each compound from the extract.

The results of the docking analysis showed that aldose reductase (AKR1B1) (protein
data bank (PDB) [12]: 3G5E) was the target that presented a more heterogeneous affinity,
interacting with: avicularin, (epi)-catechin, ellagic acid, (epi)-gallocatechin isomers 1 and 2,
guaijaverin, isoquercitrin, morin, naringenin isomer, quercetin and quercitrin (Figure 3).
Compounds morin, naringenin, catechin and quercetin were also observed to have high sim-
ilarity scores with tolrestat, a known AKR1B1 inhibitor. AKR1B1 is an enzyme of the polyol
pathway that has been implicated in diabetic complications. In a study by Anand et al. [13],
a P. guajava leaf extract was found to inhibit rat lens aldose reductase in vitro.

Likewise, of all the compounds evaluated, naringenin was the one that presented in-
teraction on the highest number of targets: dipeptidyl peptidase-4 (DPP-4) (PDB:4A5S), hy-
droxysteroid 11-beta dehydrogenase 1 (HSD11B1) (PDB:4K1L), AKR1B1 (PDB:3G5E), and
PPARG (PDB:2FVJ) and peroxisome proliferator-activated receptor delta (PPARD) (PDB:3PEQ).
There is some evidence in literature supporting the interactions of naringenin with some of
these targets identified here. The binding of naringenin to HSD11B1 (PDB:4K1L) stands out
with a score value of−8.5 kcal/mol. This result is in line with those obtained in the trials of
Ortiz-Andrade et al. [14] in which an IC50 of 1000 nM was obtained for this molecule.

In a recent study by Khan et al. [15], naringenin was found to inhibit aldose reductase
in an uncompetitive manner with an IC50 of 2.6 µM. Fan et al. [16] demonstrated the ability
of naringenin to inhibit DPP4 enzyme in porcine kidney (88% sequence homology with
human counterpart) with an IC50 of 0.24 µM. Goldwasser et al. [17] showed that naringenin
could bind to the ligand–binding domain of PPARG in Hela reporter cell line HG5LN
GAL4-PPARG and activate PPARG up to 57% at 80 µM.
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The heterogeneity of interaction shown by naringenin in the docking analysis agrees
with the heterogeneity of the analysis of similarity. This indicates that naringenin is similar
to other already known anti-diabetic flavonoid compounds such as luteolin or myricetin, as
well as to different antidiabetics such as carbutamide and chlorpropamide (sulfonylureas),
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compound MB07803 (fructose 1,6-bisphosphatase inhibitor), tolrestat (AKR1B1 inhibitor) or
picolinate of chromium (III), a drug capable of improving the fluidity of the cell membrane
and increasing the rate of internalization of insulin (Figure 4).
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known/experimental anti-diabetic drugs.

The docking analysis showed that quercetin binds to AKR1B1 (PDB:3G5E) with a score
value of −8.6 kcal/mol and to HSD11B1 (PDB:4K1L) with a score value of −9.5 kcal/mol,
respectively. These results agree with the inhibition tests on AKR1B1 (PDB:3G5E) carried
out by Chethan et al. [18], de la Fuente et al. [19] and Ueda et al. [20]. in which quercetin
showed IC50 values ranging from 14 nM to 248 nM. With regard to HSD11B1 (PDB:4K1L),
Torres-Piedra et al. [21] showed that quercetin was able to produce a decrease in the activity
of HSD11B1 (PDB:4K1L) of up to 27%.

Several studies indicate that quercetin could also influence protein tyrosine phos-
phatase (PTP) (PDB:4GE6) and PPARG (PDB:2FVJ) [22–24].

This diversity of targets shown by quercetin agrees with the results of similarity
analysis in which this compound found high similarity values against other flavonoids
(luteolin and myricetin) and with antidiabetics such as the compound PV2 (inhibitor of
pyruvate dehydrogenase kinase mitochondrial), the compound MB07803, tolrestat (AKR1B1
inhibitor) or the chromium picolinate (III) (Figure 4).

Quercitrin also showed a good interaction with AKR1B1 (PDB:3G5E) with a score
of −8.7 kcal/mol. This interaction was corroborated by the trials of Dhagat et al. [25],
Kim et al. [26], Jung et al. [27] and Yoshikawa et al. [28], in which quercitrin gave IC50
values between 150 and 340 nM. In addition, the studies carried out by Choi et al. [29]
indicate that quercitrin could influence the receptor activated by PPARG (PDB:2FVJ).
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Isoquercitrin presented a score value with AKR1B1 (PDB:3G5E) of −8.9 kcal/mol;
This value is consistent with the tests developed by Kim et al. [26] in which an IC50 value
of 320 nM was obtained for this molecule. Also, in their studies with laboratory rats,
Brindis et al. [30] showed that isoquercitrin caused a decrease in postprandial glucose
peaks similar to that obtained with a dose of acarbose of 5 mg/kg.

Guaijaverin showed a score value of −8.9 kcal/mol in its binding with AKR1B1
(PDB:3G5E). These results agree with laboratory rat tests carried out by Yoshikawa et al. [28],
in which they obtained an IC50 of 180 nM.

Ellagic acid, on the other hand, was predicted to bind AKR1B1 (PDB:3G5E) and insulin
receptor (INSR) (PDB:3EKN) with a score value of −8.8 kcal/mol and −8.2 kcal/mol re-
spectively. In the case of AKR1B1 (PDB:3G5E), trials such as those of Akileshwari et al. [31],
Hundsdörfer et al. [32], Naeem et al. [33], Sawant et al. [34] or Kawanishi et al. [35], in which
the IC50 values of ellagic acid were found between 48 nm and 397 nM again, confirmed the
good predictions obtained through the DIA-DB application. Similarly, the INSR inhibition
analyses carried out by Sawant et al. [34] where an IC50 of 340 nM was obtained further
support the predictions made by DIA-DB.

Several studies indicate that ellagic acid could also influence hepatic glycogen phos-
phorylase (PYGL) (PDB:3DDS) as well as PPARG (PDB:2FVJ) [36,37].

The docking analysis revealed interaction of (epi)-catechin with DPP4, retinol 4 trans-
port protein (RBP4) (PDB:2WR6), AKR1B1 (PDB:3G5E), pancreatic α-amylase (AMY2A)
(PDB:4GQR) and HSD11B1 (PDB:4K1L). Of note here is the binding of catechin 1 and 2 to
AMY2A (PDB:4GQR) with a score of −8.4 kcal/mol; these results agree with the in vitro
studies carried out by Adisakwattana et al. (2011) [38] and Toma et al. (2014) [39] in which
they found that catechin reduced the activity of this enzyme by between 5 and 6%. Similarly,
catechin and epi-catechin were observed to inhibit the rat lens aldose reductase enzyme
in vitro by 38% and 41% at 30 µM, respectively.

The wide diversity of interactions shown by catechin agrees with the results of similar-
ity analyses, in which this compound showed the highest degree of similarity with other
compounds, being very similar to myricetin, luteolin, chromium picolinate (III), and the
compounds 361 (DPP4 antagonist), PFT and PV1 (inhibitors of the HSP90 thermal shock
protein), PV0, PV2 and PV8 (inhibitors of mitochondrial pyruvate dehydrogenase kinase)
and MB07803 (Figure 4).

Geraniin 1 and 2 bind to AMY2A (PDB:4GQR) with score values of−8.9 and−8.2 kcal/mol,
respectively. These results agree with the tests carried out by Palanisamy et al. [40], in which they
found an IC50 value of 970 nM for this compound.

Finally, it is worth mentioning compounds guavinoside C and stachyuranin A. The
docking analysis showed that guavinoside C binds with good score values to: DPP4
(PDB:4A5S), intestinal maltase-glucoamylase (MGAM) (PDB:3L4Y), pyruvate dehydroge-
nase kinase (PDK2) (PDB:4MPC), PTP (PDB: 4GE6), AMY2A (PDB:4GQR), glucokinase
(GCK) (PDB:3IMX), HSD11B1 (PDB:4K1L), AKR1B1 (PDB:3G5E) and INSR. In the case
of stachyuranin A, the range of unions is smaller but not negligible, and potential targets
identified were DPP4 (PDB:4A5S), PYGL (PDB:3DDS), (AMY2A) (PDB:4GQR) and the
insulin receptor.

The analysis of similarity indicated that neither of the two molecules had high sim-
ilarities with any of the known antidiabetic compounds. In addition, no bibliographic
references regarding the antidiabetic activity of these compounds were found.

3. Discussion

Treatment of streptozotocin-/alloxan-induced diabetic rats with P. guajava extracts
in vivo is associated with a reduction in hyperglycaemia. Several protein targets identified
in this study could assist in reducing hyperglycaemia through insulin sensitization and
regulation of glucose homeostasis. Compounds naringenin, (epi)-catechin, guavinoside
C and stachyuranin A were identified as DPP4 inhibitors. Inhibition of DPP4 would
increase the half-life of the incretin hormones and thereby increase insulin secretion, thus
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allowing time to normalize blood glucose levels [41]. Compounds naringenin, quercetin,
(epi)-catechin) and guavinoside C, through their inhibition of 11-beta-HSD1, could inhibit
glucose production by the liver and improve glucose-dependent insulin sensitivity [42].
Similarly, in a study by Shen et al. [43], a P. guajava extract was found to decrease fructose-
1,6-bisphosphatase (FBP1) activity, an enzyme also responsible for glucose production by
the liver, and in this study naringenin, quercetin and (epi)-catechin were observed to share
a high similarity with MB07803, an FBP1 inhibitor.

P. guajava extracts have been observed to stimulate glucose uptake by hepatocytes,
adipocytes, myotubes and intestinal cells possibly through regulation of the insulin signal-
ing pathway [13,43–46]. PTP1B disrupts the insulin signaling pathway and thus treatment
with inhibitors would result in insulin sensitization and improve glucose homeostasis [47].
On the other hand, activation of INSR by agonists will stimulate the insulin signaling
pathway, thereby improving insulin sensitivity, and promoting glucose uptake by the
tissues [48]. Quercetin and guavinoside C were identified as inhibitors for PTP1B, while
ellagic acid and stachyuranin A were found to interact with INSR. Postprandial blood
glucose levels may also be decreased through the inhibition of AMY2A and MGAM, two
enzymes responsible for carbohydrate digestion. (Epi)-catechin and stachyuranin A were
identified as AMY2A inhibitors, while guavinoside C was identified as an inhibitor of both
AMY2A and MGAM. In vitro studies by Liu et al. [49], Oghogho and Nimenibo-Udia [50]
and Wang et al. [51] with porcine pancreatic alpha-amylase and yeast/rat intestinal alpha-
glucosidase showed good inhibitory activity by Psidium guajava extracts, comparable to
positive control acarbose.

In addition to reducing hyperglycaemia, P. guajava extracts have also been shown to
improve the associated hyperlipidaemia. Treatment with P. guajava extracts is associated
with a reduction in total cholesterol, triglycerides, low-density lipoprotein (LDL) and very-
low-density lipoprotein (VLDL) while increasing high-density lipoprotein (HDL) levels
in the blood of diabetic rats [52–54]. The PPARs play various roles in lipid metabolism
by regulating the genes involved in lipogenesis, triglyceride synthesis, reverse cholesterol
transport, lipolysis, and fatty acid oxidation. Quercetin, quercitrin and ellagic acid were
found to bind PPARG, while naringenin was found to bind both PPARD and PPARG.

In conclusion, DIA-DB web server was used to process information about 73 phenolic
compounds present in the extract of guava leaves and to predict their potential bioactivity in
the context of DM. After detailed analyses, catechin, quercetin and naringenin showed the
highest molecular shape similarity values against already available antidiabetic drugs. In
addition, we reported several compounds that act in the DM mechanism through the inter-
action with specific DM protein targets. Some of them are well known phenolic compounds
in guava leaves, such as catechin, ellagic acid, naringenin, guavinoside C, and quercetin
and its derivatives guaijaverin and isoquercitrin. However, guaijaverin and isoquercitrin
are specific of guava leaves extract, although these were not previously reported in the
DM context. In addition, a compound such as stachyuranin A that has not been previously
identified in guava leaves, has demonstrated to contribute to the anti-diabetic properties of
the leaves. In addition, the bibliographic analysis confirms the validation of the DIA-DB
predictions. Finally, this work paves the way for the isolation or selective extraction of some
of the specific compounds reported here, and their application as nutraceuticals and/or
food additives and for further in vivo studies with target compounds.

4. Materials and Methods
4.1. Plant Material and Sample Preparation

Middle age intense green leaves were collected in Motril, Spain (36◦44′43′ ′N 3◦31′14′ ′ W),
in February 2015. The samples were air-dried at room temperature, ground and extracted as
follows. Briefly, 0.5 g of sample were extracted with 15 mL of ethanol/water 80/20 (v/v) via
ultrasound-assisted extraction using a sonicator Branson B3510 for 10 min. Then, samples
were centrifuged for 15 min at 6000 rpm, the surnatan was collected and the extraction was
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repeated two times more on the residue. The surnatants were pooled and evaporated, and the
residues were re-dissolved in 2 mL of methanol/water 1/1 (v/v) [6].

4.2. HPLC-ESI-QTOF-MS Analyses

Chromatographic analyses were performed using an HPLC Agilent 1260 series (Agi-
lent Technologies, Santa Clara, CA, USA) equipped with a binary pump, an online degasser,
an autosampler, and a thermostatically controlled column compartment. Moreover, MS
analyses were carried out using a 6540 Agilent Ultra-High-Definition Accurate-Mass Q-
TOF-MS coupled to the HPLC, equipped with an Agilent Dual Jet Stream electrospray
ionization (Dual AJS ESI) interface. The phenolic compounds were separated using a a
Poroshell 120 EC-C18 (4.6 mm × 100 mm, particle size 2.7 µm) (Agilent Technologies).

All the phenolic compounds from P. guajava L. leaves were ionized in negative
mode, and analyzed using the chromatographic method described by Díaz-de-Cerio et al.
(2016) [6]. The gradient elution was carried out using water containing 1% acetic acid as
solvent system A and acetonitrile as solvent system B, and applied as follows: 0 min, 0.8% B;
2.5 min, 0.8% B; 5.5 min, 6.8% B; 11 min, 14.4% B; 17 min, 24% B; 22 min, 40% B; 26 min,
100% B, 30 min, 100% B; 32 min, 0.8% B; 34 min, 0.8% B. The sample volume injected
was 5 µL and the flow rate used was 0.8 mL min−1. The following MS conditions were
applied: nebulizer pressure, 50 psi; gas drying temperature, 370 ◦C; drying gas flow (N2),
12.0 L/min; capillary voltage, 3500 V; fragmentor voltage and scan range were 3500 V and
m/z 50–1500, respectively. Automatic MS/MS experiments were carried out using the
followings collision energy values: m/z 100, 30 eV; m/z 500, 35 eV; m/z 1000, 40 eV; and
m/z 1500, 45 eV. However, anthocyanin compounds were ionized in the positive mode
using the chromatographic method proposed by Gómez-Caravaca et al. (2013) [55].

The phenolic compounds have been identified according to the data previously
published [6] and considering their experimental and calculated m/z, fragments, molecular
formula, score and error (ppm).

4.3. In Silico Approaches

We used the DIA-DB [56] web server (http://bio-hpc.ucam.edu/dia-db (accessed on
2 December 2021)) to predict the antidiabetic activity of compounds. DIA-DB uses two
different approaches, namely LBVS and SBVS.

LBVS methods exploit all existing available information (structure, physicochemical
parameters, binding affinities, etc.) about known active and inactive compounds. DIA-DB
exploits shape information for checking existence in the database of compounds similar
to the ones used in the input query. For that purpose, DIA-DB uses internally the shape
complementary tool weighted Gaussin algorithm (WEGA) [57].

SBVS identifies compounds which can bind to a target protein with high affinity. This
is achieved by determining the optimal binding position by docking each query molecule
to a database of protein targets involved in diabetes and available in DIA-DB and then
ranking the compound–targets interactions according to their estimated binding affinity
values, namely docking scores. The SBVS protocol implemented in DIA-DB employs the
Autodock Vina docking program [58]. Vina finds well-binding ligands for a protein receptor
of known structure in an input database that contains the three-dimensional structures of
many ligands. Each ligand of the database is docked into the whole surface of the protein
using an all-atom representation of the protein and ligand.

4.4. Bibliography Searches

Based on the obtained SBVS and LBVS DIA-DB predictions, we checked a posteriori
the existence of bibliographical references confirming our predictions.

http://bio-hpc.ucam.edu/dia-db
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