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Abstract: There is a lack of effective diagnostic biomarkers for neurodegenerative disorders (NDDs).
Here, we established gene expression profiles for diagnosing Alzheimer’s disease (AD), Parkinson’s
disease (PD), and vascular (VaD)/mixed dementia. Patients with AD had decreased APOE, PSEN1,
and ABCA7 mRNA expression. Subjects with VaD/mixed dementia had 98% higher PICALM
mRNA levels, but 75% lower ABCA7 mRNA expression than healthy individuals. Patients with
PD and PD-related disorders showed increased SNCA mRNA levels. There were no differences in
mRNA expression for OPRK1, NTRK2, and LRRK2 between healthy subjects and NDD patients.
APOE mRNA expression had high diagnostic accuracy for AD, and moderate accuracy for PD and
VaD/mixed dementia. PSEN1 mRNA expression showed promising accuracy for AD. PICALM
mRNA expression was less accurate as a biomarker for AD. ABCA7 and SNCA mRNA expression
showed high-to-excellent diagnostic accuracy for AD and PD, and moderate-to-high accuracy for
VaD/mixed dementia. The APOE E4 allele reduced APOE expression in patients with different
APOE genotypes. There was no association between PSEN1, PICALM, ABCA7, and SNCA gene
polymorphisms and expression. Our study suggests that gene expression analysis has diagnostic
value for NDDs and provides a liquid biopsy alternative to current diagnostic methods.
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1. Introduction

Neurodegenerative disorders (NDDs) are a growing concern in the field of geriatric
medicine as they are becoming increasingly prevalent in the aging population [1]. These
disorders are primarily characterized by the loss of neurons and are associated with a di-
verse array of pathophysiological mechanisms that include memory impairment, cognitive
decline, movement disorders, and other debilitating symptoms [2]. The most common
NDDs are Alzheimer’s disease (AD) and Parkinson’s disease (PD). AD is a progressive
disorder that leads to irreversible loss of memory and cognitive function. It is character-
ized by the presence of intracellular neurofibrillary tangles and senile plaques, which are
caused by the accumulation of hyperphosphorylated microtubule-associated tau protein
and amyloid-β (Aβ) peptides, respectively [3]. PD is the second most prevalent NDD,
affecting approximately 2% of the population over the age of 60 [4]. The etiology of PD
remains largely unknown, although a combination of genetic and environmental factors
have been implicated in its pathogenesis [4]. Motor dysfunction in PD patients is due to the
progressive loss of dopaminergic neurons in the substantia nigra pars compacta, and the
presence of Lewy bodies, which are intracellular inclusions composed of α-synuclein [5].

A major public health challenge concerning NDDs is the lack of reliable and early
diagnostic markers for these disorders. Alterations in protein aggregation, synaptic trans-
mission, and mitochondrial pathways are common denominators in NDDs [6]. The iden-
tification of biomarkers that are accurate and accessible could significantly aid the early
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diagnosis of NDDs and the implementation of precision medicine programs. However,
there are currently no reliable biomarkers for the diagnosis, classification, or for deter-
mining the progression of NDDs [7]. The most commonly utilized biomarkers are based
on costly and/or invasive techniques such as neuroimaging or cerebrospinal fluid (CSF)
analysis [8]. Neuroimaging techniques, such as amyloid positron emission tomography
(PET) scanning with the novel tracers 18F-florbetaben, 18F-flutemetamol, and 18F-florbetapir
are efficacious in the diagnosis of AD. Interestingly, the level of the major norepinephrine
metabolite in the brain, 3-methoxy-4-hydroxyphenylglycol, in serum and CSF has been
suggested as a new marker to differentiate AD from dementia with Lewy bodies and PD [9].
Liquid biopsy, a more cost- and time-effective and less invasive approach, has emerged
as a promising option for the detection of biomarkers. In recent years, several lines of
research have been focused on identifying new liquid biopsy biomarkers using different,
more accessible, fluids such as urine, saliva, and blood. However, definitive liquid biopsy
biomarkers for NDDs have yet to be identified. Furthermore, dysregulation of microRNA
expression in peripheral blood has the potential for diagnosing AD and other NDDs. More-
over, data from a large-sample prospective study identified two blood biomarkers for VaD,
asymmetric dimethylarginine (ADMA) and oxidized low-density lipoprotein (oxLDL) that
appear to be promising [10]. The identification of plasma biomarkers for the diagnosis
of NDDs has the potential to improve disease detection accuracy and specificity, partic-
ularly in separating AD from other clinical pathologies. Furthermore, the use of plasma
biomarkers may improve the early diagnosis of AD, perhaps years before clinical symp-
toms appear. Several large, independent, cohorts of patients with AD showed consistent
correlations between plasma Aβ42/Aβ40 levels and amyloid PET status [11]. Moreover,
the plasma Aβ42/Aβ40 ratio, determined using an antibody-free mass-spectrometric (MS)
approach, detects early pathogenic alterations in AD [12]. In addition to the emerging
role of plasma Aβ as a biomarker for AD, plasma measurements of tau phosphorylated at
threonine 231 (p-tau231), p-tau181 and p-tau217 have also shown diagnostic potential for
the disease [13–15]. In fact, plasma p-tau217 levels in CSF exhibit changes that coincide with
the appearance of amyloid plaques and precede tau-PET-positivity by 15 to 20 years [16],
suggesting that plasma p-tau217 may be a useful tool for monitoring the pharmacodynamic
effects of anti-amyloid drugs on amyloid pathology [17].

There is presently no cure or effective treatment for AD. In AD, neuronal death often
begins more than a decade before the first symptoms manifest, implying that a diagnosis is
often made when neuron loss is irreversible. Early diagnosis of NDDs may provide a longer
therapeutic window for future therapies to slow or stop the neurodegeneration associated
with AD, which could subsequently have a significant influence on patient survival and
quality of life. Gene expression can be affected by a variety of factors, including genetic
factors, exposure to toxins, and age. Comparisons of mRNA levels between healthy and
diseased individuals allow for the identification of differentially-expressed genes, which
may be causes, consequences, or mere correlates of the disease [18].

The aim of the current study was to explore novel biomarkers for the diagnosis of
NDDs, with emphasis on the differential expression of several genes that are associated with
neurodegeneration. Through the utilization of cutting-edge techniques, we have identified
several genetic markers whose expression levels differ between healthy individuals and
those with NDDs, suggesting that these markers, in the form of liquid biopsy biomarkers,
may serve as valuable diagnostic tools for NDDs.

2. Results
2.1. Neurodegeneration-Related Gene Expression Is Altered in Patients with NDDs

NDD-related gene expression was analyzed in healthy individuals (n = 9), and in
patients with AD (n = 7), PD and PD-related disorders (n = 14), and VaD/mixed dementia
(n = 13) (Table 1). Apolipoprotein E (APOE) is a major risk factor for the development
of AD [19]. We first compared APOE expression in buffy coat samples from healthy
individuals with APOE expression in samples from patients with AD, PD, and PD-like
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disorders, and AD-like disorders such as vascular (VaD) and mixed dementia. APOE mRNA
expression significantly decreased from 0.25 ± 0.014 in healthy individuals to 0.002 ± 0.001
in patients with AD (p < 0.05) (Figure 1A). There were no significant differences between
healthy subjects and patients with PD or VaD/mixed dementia.

Table 1. Patient demographics and clinical diagnosis.

Group Clinical Diagnosis MMSE Age (Years)

Healthy Healthy (n = 9) 29.18 ± 1.18 61.36 ± 8.58

AD AD (n = 8) 14.92 ± 4.94 69.76 ± 7.9

VaD/mixed dementia

Vascular encephalopathy multi-infarction
Binswanger-like (n = 4)

18.2 ± 4.8 77.6 ± 5.84

Stroke (n = 2)

Mixed Dementia
(Vascular-hypovitaminosis)

Vascular encephalopathy (n = 2)

Ischemic vascular encephalopathy (n = 4)

PD and PD-related disorders

Parkinson’s (n = 7)

26.4 ± 2.26 67.8 ± 8.15

Left vascular hemiparkinsonism

Incipient Parkinsonism (n = 2)

Parkinson’s with VaD (n = 2)

Familial Parkinson’s

AD, Alzheimer’s disease; MMSE, Mini-Mental State Examination; VaD, vascular dementia.
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Figure 1. Gene expression in blood (buffy coat) samples from healthy subjects and patients with
NDDs. Gene expression was analyzed in buffy coat samples from individuals with no-NDDs (n = 9)
and patients with AD (n = 7), PD and PD-related disorders (n = 14), and VaD/mixed dementia
(n = 13). qPCR with TaqMan probes for (A) APOE, (B) PSEN1, (C) PICALM, (D) ABCA7, (E) OPRK1,
(F) NTRK2, (G) SNCA and (H) LRRK2 were used. One-way ANOVA with post hoc Bonferroni
corrections (* p < 0.05). Data are presented as means ± S.E.M. NDD, neurodegenerative disorders; AD,
Alzheimer’s disease; ABCA7, ATP-binding cassette, subfamily A, member 7; APOE, apolipoprotein E;
PD, Parkinson’s disease; PICALM, phosphatidylinositol-binding clathrin protein; PSEN1, presenilin-1;
qPCR, quantitative real-time PCR; SNCA, alpha synuclein; VaD, vascular dementia.
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Mutations in the presenilin (PSEN) gene are known to cause early-onset familial
AD [20]. Patients with AD had PSEN1 mRNA levels of 0.34 ± 0.18, which were significantly
lower than in healthy individuals (1.31 ± 0.33) (p < 0.05) (Figure 1B). There were no
statistically significant differences in PSEN1 mRNA expression between subjects with
no-NDDs and patients with PD or VaD/mixed dementia.

Phosphatidylinositol-binding clathrin protein (PICALM) gene is a susceptibility locus
for the incidence of late-onset AD (LOAD) [21]. We found no differences in the levels
of PICALM expression between non-ND subjects and AD patients (Figure 1C). However,
PICALM mRNA expression in patients with VaD/mixed dementia (29.1 ± 17.26) was 98%
higher than in patients without NDDs (0.61 ± 0.3) (p < 0.05).

ATP-binding cassette, subfamily A, member 7 (ABCA7) is one of the most important
risk factors for both early- and late-onset AD [22]. ABCA7 mRNA levels decreased by
72% from 2.57 ± 0.7 in non-NDD subjects to 0.73 ± 0.36 in patients with AD (p < 0.05)
(Figure 1D); no differences in ABCA7 expression were detected between healthy subjects
and patients with PD. However, ABCA7 mRNA expression in patients with VaD/mixed
dementia (2.57 ± 0.7) was 75% lower than in patients without NDDs (0.64 ± 0.24) (p < 0.05).

Alpha synuclein (SNCA) is a major component of Lewy bodies in PD [23]. Five
mutations in the SNCA gene have been linked to autosomal dominant PD [23]. SNCA
mRNA levels increased from 6.92 ± 3.35 in healthy subjects to 73,361.12 ± 52,458.3 in
patients with PD (p < 0.05) (Figure 1G). There were no statistically significant differences
in SNCA mRNA expression between individuals with no-NDDs and patients with AD or
VaD/mixed dementia.

Opioid receptor kappa 1 (OPRK1) regulates cognitive and learning processes by
inhibiting neurotransmitter release [24]. Moreover, there is a greater number of OPRK1
binding sites in the limbic system in AD brains than in healthy subjects [25]. There were
no statistically significant differences in OPRK1 mRNA levels between non-NDD subjects
and patients with AD, PD, or VaD/mixed dementia (Figure 1E). The tyrosine receptor
kinase (TRK) signaling pathway regulates neuronal development and plasticity, and there
is a strong genetic link between neurotrophic receptor tyrosine kinase 2 (NTRK2) gene
expression and AD [26]. We did not detect any differences in NTRK2 mRNA expression
between healthy individuals and patients with NDDs (AD, PD, or VaD/mixed dementia)
(Figure 1F). Mutations in leucine-rich repeat kinase 2 gene (LRRK2) are linked to inherited
and sporadic PD [27]. Similarly, we also found no differences in LRRK2 mRNA levels
between healthy subjects and patients with NDDs, including PD (Figure 1H).

To assess the diagnostic accuracy of APOE, PSEN1, PICALM, ABCA7 and SNCA, we
generated receiver operating characteristic (ROC) curves and calculated the area under
the curve (AUC) for each gene in patients with AD, VaD/mixed dementia, and PD and
PD-like disorders. APOE expression showed high diagnostic accuracy for AD with an
AUC of 0.886 (100% sensitivity and 71.4% specificity, p < 0.001) (Figure 2A). In contrast,
the AUCs for PD and VaD/mixed dementia were lower (0.636 and 0.7, respectively), with
45.5% sensitivity and 100% specificity for PD-like disorders (Figure 2B), and 70% sensitivity
and 71.4% specificity for VaD/mixed dementia (Figure 2C).

ROC curve analysis of PSEN1 expression also showed promising diagnostic ac-
curacy for AD with an AUC of 0.852 (80.3% sensitivity, 77.8% specificity, p < 0.001)
(Figure 2D). However, the diagnostic accuracy of PSEN1 in PD-like disorders (Figure 2E)
and VaD/mixed dementias (Figure 2F) was lower with an AUC of 0.681 (66.7% sensitivity,
77.8% specificity) and 0.713 (75% sensitivity, 66.7% specificity), respectively. The p value for
PSEN1 mRNA expression as a biomarker for patients with VaD/mixed dementia versus
healthy subjects was 0.068, which was close to statistical significance.
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Figure 2. ROC curve analysis of mRNA expression data from buffy coat samples from patients
with AD, PD and PD-like disorders, and VaD/mixed dementia. ROC curve analysis of APOE
(A–C), PSEN1 (D–F), PICALM (G–I), ABCA7 (J–L) and SNCA (M–O) mRNA expression from healthy
(n = 9) subjects and patients with AD (n = 7; (A,D,G,J,M)), PD and PD-related disorders (n = 14;
(B,E,H,K,N)), and VaD/mixed dementia (n = 13; (C,F,I,L,O)). The optimal cutoff values derived
from the Youden’s J index are indicated below each graph. The red diagonal line is the ROC curve
reference line. p values were calculated using Delong’s test; p < 0.05 was considered statistically
significant. 95% confidence interval, 95% CI; AD, Alzheimer’s disease; ABCA7, ATP-binding cassette,
subfamily A, member 7; APOE, apolipoprotein E; AUC, area under the curve; PD, PD, Parkinson’s
disease; PICALM, phosphatidylinositol-binding clathrin protein; PSEN1, presenilin-1; ROC, receiver
operating characteristic; SNCA, alpha synuclein; VaD, vascular dementia.
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ROC curve data in AD patients showed an AUC for PICALM of 0.55 (87.5% sensitivity,
40% specificity, p = 0.8) (Figure 2G); the AUC for PICALM in patients with PD and PD-like
disorders was 0.569 (62.5% sensitivity, 66.7% specificity, p = 0.769) (Figure 2H). However,
ROC curve analysis of PICALM expression revealed an AUC of 0.764 (44.4% sensitivity,
100% specificity; p = 0.028) in patients with VaD/mixed dementia (Figure 2I).

Analysis of the ROC curve for ABCA7 mRNA expression as a biomarker for AD
and AD-like disorders showed AUC values of 0.833 (66.7% sensitivity, 100% specificity,
p = 0.006) (Figure 2J) and 0.828 (75% sensitivity, 100% specificity, p < 0.001) (Figure 2L). In
samples from PD patients, the AUC was 0.688 (50% sensitivity, 100% specificity, p = 0.163)
(Figure 2K).

The AUC from the ROC curve for SNCA mRNA expression in samples from AD
patients was 0.667 (50% sensitivity, 100% specificity, p = 0.655) (Figure 2E). However, ROC
curve data of SNCA mRNA levels as a biomarker for PD (Figure 2N) showed AUCs of 1
(100% specificity, 100% sensitivity, p < 0.001). The AUC from the ROC curve for VaD/mixed
dementia was 0.7 (70% specificity and 71.4% sensitivity).

2.2. The ApoE4 Allele Alters APOE Expression Levels

The E4 allele of the APOE gene is a strong risk factor for developing AD [28]; the E2
allele, however, is protective against AD. To investigate the effect of the APOE gene on the
levels of APOE expression, we next examined APOE expression in patients with different
APOE genotypes (Table 2). Our patient sample included individuals with the following
APOE genotypes: APOE 2.3, APOE 3.3, APOE 2.4, APOE 3.4, and APOE 4.4. Due to limited
sample availability, we were only able to obtain samples from healthy individuals with the
APOE 3/3 and APOE 3/4 genotypes. Compared to patients with the APOE 3.3 genotype,
APOE mRNA expression decreased in patients with NDDS: by 64% in subjects with the
APOE 2.4 genotype, 51% in those with the APOE 3.4 genotype, and 73% in patients with
the APOE 4.4 genotype (Figure 3A). On the contrary, we did not find statistically significant
differences between APOE 3.3 and APOE 3.4 genotypes in healthy subjects (Figure 3B).

Table 2. Demographics and diagnosis of patients with different APOE genotypes.

GENOTYPE DIAGNOSIS AGE (Years) SEX

APOE 3.3

NCD mixed dementia 80 F

PD 65 F

NCD mixed dementia 80 M

NCD mixed dementia 71 F

Healthy (n = 4) 68 ± 8.12 2M, 2F

APOE 2.3

PD 69 F

NCD 65 M

BIPOLAR DISORDER 64 M

NCD 61 M

APOE 2.4

NCD mixed dementia 78 M

PD 75 F

Depression 74 F

Maturational delay 22 M

NCD 75 M

APOE 3.4

NCD 76 M

NCD 71 F

NCD mixed dementia 65 M

Depression 40 F

Stroke 60 M

Healthy (n = 4) 66.25 ± 12.5 2M, 2F
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Table 2. Cont.

GENOTYPE DIAGNOSIS AGE (Years) SEX

APOE 4.4

Encephalopathy 63 M
NCD 69 F

NCD 68 M

NCD-AD 70 F

NCD 70 M
AD, Alzheimer’s disease; APOE, Apolipoprotein E; NCD, neurocognitive disorder; PD, Parkinson’s disease; Sex:
M, male; F, female.
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Figure 3. Gene expression in patients with different APOE genotypes. (A) APOE gene expression
was analyzed in buffy coat samples from patients with the APOE 3.3, APOE 2.3, APOE 2.4, APOE 3.4
and APOE 4.4 genotypes, and in (B) healthy individuals with the APOE 3.3 and APOE 3.4 genotypes.
Data are presented as means ± S.E.M. One-way ANOVA with Bonferroni corrections or t student
(* p < 0.05; ** p < 0.01).

2.3. PSEN1, PICALM, ABCA7 and SNCA Genotypes Do Not Affect Their Gene Expression

Next, we wanted to determine if there were any variations in the levels of gene
expression among individuals with different NDD-related gene polymorphisms. We
analyzed gene expression levels in patients with polymorphisms in PSEN1, PICALM,
ABCB7 and SNCA (Supplementary Table S1). The polymorphism in intron 8 (rs165932)
of PSEN1 is associated with increased susceptibility to LOAD [29]. In the current study,
there was a slow progressive induction in PSEN1 expression in heterozygous (GT) and
homozygous (TT) pathological polymorphisms compared to the non-pathological (GG)
polymorphism; however, these changes were not statistically significant (Figure 4A). The
rs3851179 polymorphism in the PICALM gene is a prominent locus that contributes to
AD [30]. However, there were no significant differences in the levels of PICALM expression
among the different genotypes (Figure 4B). In terms of the ABCA7 gene, the rs3764650
polymorphism is a susceptibility locus for AD [31,32]. We observed a small decrease
in ABCA7 mRNA levels in patients with the GG genotype, but this was not statistically
significant (Figure 4C). The rs356182 polymorphism in the SNCA gene is related to tremor
and is a risk factor for PD [33]. There were no statistically significant differences in the levels
of SNCA expression among the different genotypes with this polymorphism (Figure 4D).
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ABCA7, ATP-binding cassette, subfamily A, member 7; PICALM, phosphatidylinositol-binding
clathrin protein; PSEN1, presenilin-1; SNCA, alpha synuclein.

3. Discussion

The three most prevalent forms of dementia are AD, VaD, and mixed dementia. The
presence of lacunar infarcts and white matter lesions in patients with AD indicates a strong
association between cardiovascular disease and AD. Furthermore, classic AD-associated
pathological changes such as amyloid plaques and neurofibrillary tangles are found in
elderly patients with VaD. The brain lesions associated with VaD and AD often co-occur
and interact, which significantly increases the likelihood of a substantial decline in cognitive
function [34]. To this day, The lack of effective diagnostic biomarkers for NDDs remains
a major challenge in clinical practice. The aim of the current study was to discover new
biomarkers for NDD diagnosis by identifying differences in neurodegeneration-related
gene expression. The NDD patient cohort included subjects with dementia (AD- and
AD-like-disorders such as mixed and vascular dementia), and patients with PD and PD-like
disorders. We used buffy coat samples obtained from healthy individuals and individu-
als with NDDs to measure changes in neurodegeneration-related gene expression. Our
major finding was that gene expression analysis has diagnostic value for NDDs, offer-
ing a non-invasive (liquid biopsy) alternative to current diagnostic methods. Specifically,
we identified several genes that showed differential expression in patients with AD, PD,
and VaD/mixed dementia compared to healthy individuals. APOE, PSEN1, and ABCA7
mRNA expression decreased in patients with AD, while PICALM mRNA levels increased
in subjects with VaD/mixed dementia. Patients with PD and PD-related disorders showed
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increased SNCA mRNA levels. APOE mRNA expression had high diagnostic accuracy for
AD, and moderate accuracy for PD and VaD/mixed dementia, while PSEN1 mRNA expres-
sion showed promising accuracy for AD. ABCA7 and SNCA mRNA expression showed
high-to-excellent diagnostic accuracy for AD and PD, and moderate-to-high accuracy for
VaD/mixed dementia. The APOE E4 allele reduced APOE expression in patients with
different APOE genotypes, but there was no association between PSEN1, PICALM, ABCA7,
and SNCA gene polymorphisms and expression.

APOE is the major lipid and cholesterol carrier in the CNS [35]; it is important in
lipoprotein metabolism in the brain and in the periphery, and is implicated in dementia
and in ischemic heart disease [36]. In the current study, APOE mRNA levels decreased in
venous blood samples from AD patients, suggesting that it may be a useful biomarker for
the diagnosis of AD. More specifically, we also performed ROC curve analysis for five genes
(APOE, PSEN1, PICALM, ABCA7, and SNCA) that are known to be regulated in NDDs. ROC
curve analysis is a widely used tool for evaluating the diagnostic performance of biomarkers
or diagnostic tests. By offering a comprehensive overview of sensitivity trends across all
cutoffs, ROC curve analysis provides insights into the correlation between biomarker
sensitivity and specificity [37,38]. ROC curves are particularly useful because they allow
the calculation of the AUC, which represents the overall performance of the biomarker. In
the current study, ROC curve analysis was used to assess the diagnosis accuracy of APOE,
PSEN1, PICALM, ABCB7 and SNCA mRNA levels in distinguishing between different
NDDs (AD, PD, and VaD/mixed dementia). The importance of the ROC curve analysis
to our conclusions is that it allowed the quantitative determination of the accuracy of the
identified biomarkers in distinguishing between these NDDs in terms of sensitivity and
specificity. For example, APOE expression showed high diagnostic accuracy for AD with an
AUC of 0.886, while PSEN1 expression had an AUC of 0.852 for AD. These results suggest
that APOE and PSEN1 mRNA levels could be potential biomarkers for the early detection
of AD. Similarly, SNCA mRNA levels had an AUC of 1 in distinguishing between PD and
other NDDs, indicating that SNCA mRNA expression may be a specific biomarker for PD
diagnosis. The identified biomarkers in the current study have the potential to provide
more objective and accurate diagnoses, which could lead to earlier detection of NDDs and
more personalized treatment programs. Our study therefore highlights the importance of
identifying reliable and accurate diagnostic biomarkers for NDDs.

As previously mentioned, the ROC curve for APOE showed an AUC of 0.886 with
71.4% specificity and 100% sensitivity, indicating its strong potential as a biomarker for AD.
This finding is consistent with other studies that link APOE levels in CSF or plasma with an
increased risk of developing AD [39,40]. APOE methylation in peripheral blood has also
been proposed as a diagnostic biomarker for AD [41]. There is no association between APOE
expression and cognitive impairment after stroke [42], which concurs with our current
findings that APOE mRNA levels are not regulated in patients with VaD/mixed dementia.

There are three important APOE gene polymorphisms in humans, APOE2, APOE3, and
APOE4; of these, the E4 allele is a major genetic risk factor for the development of LOAD [35].
E4 carriers have low levels of APOE, which may contribute directly to AD progression [43].
Furthermore, the E4 allele of APOE affects Aβ protein deposition and clearance and is
associated with increased risk in individuals with sporadic AD [19]. For several decades,
the prevalent belief about the origin of AD is that the accumulation of Aβ plaques and
hyperphosphorylated tau tangles lead to neurodegeneration and cognitive impairment.
However, the etiology of sporadic AD, which accounts for more than 95% of all cases of
AD, remains unknown [44]. In dementia with a vascular component, there is compelling
evidence that neurovascular dysfunction precedes Aβ accumulation, thus contributing to
the progression and/or development of AD. Moreover, microhemorrhages/microinfarcts
may be early contributors to AD through deterioration of the blood–brain barrier and
reduction of cerebral blood flow, which impede Aβ clearance [45]. In the current study, the
level of APOE mRNA expression was lower in E4 carriers than in patients harboring the
APOE2.3 and 3.3 genotypes.



Int. J. Mol. Sci. 2023, 24, 5746 11 of 18

Genetic mutations that are directly linked to AD include those in the presenilin
1 (PSEN1) and PSEN2 genes. Mutations in PSEN1 are the most common cause of AD;
the second most prevalent cause of AD is mutations in the APP gene. Mutations in the
PSEN2 gene that lead to AD, however, are uncommon [46]. PSEN1 encodes the major
component of γ secretase, which is responsible for the proteolytic cleavage of APP and
NOTCH receptor proteins, and the subsequent formation of Aβ peptides [47]. PSEN1
protein levels are reduced in the hippocampus and cerebral cortex of patients with AD [48].
PSEN1 mRNA expression levels are similar in brain and leukocytes in AD patients [49].
PSEN1 protein levels are lower in platelets (but not in leukocytes) from AD patients than in
healthy controls [50]. In the present study, our data reveal that PSEN1 mRNA levels are
lower in AD patients than in healthy subjects. Although PSEN1 transcript levels increase
after ischemia [51], there were no changes in the expression of PSEN1 mRNA in patients
with VaD/mixed dementia.

PICALM is one of the most important susceptibility genes for LOAD [52,53]. There
are significant associations between several SNPs in the PICALM locus with AD-related
phenotypes such as the age of onset, hippocampal atrophy, cognitive functions, and tau
or Aβ levels in CSF [30]. Numerous and independent GWAS have identified several
SNPs in the PICALM gene that are strongly associated with LOAD, the most significant
being rs3851179 [54]. Compared to subjects with no NDDs, PICALM mRNA levels are
high in the blood and brain in patients with AD and are downregulated in patients with
PD [55]. Moreover, PICALM proteins have significantly stronger associations with cog-
nition than PICALM mRNA; the levels of PICALM transcripts are not regulated in AD
pathology [56]. Our current findings revealed no significant differences in PICALM mRNA
levels between healthy subjects and patients with AD. However, PICALM expression levels
were significantly higher in patients with VaD than in individuals from either of those two
groups. Genetic variation in PICALM is associated with VaD independently of the APOE
genotype [57], and PICALM overexpression causes PICALM to have a dominant-negative
effect [58]. Thus, both an overexpression and a reduction of PICALM can produce a similar
phenotype [59]. PICALM overexpression in HEK293 cells increases the expression of genes
that are associated with cholesterol metabolism [59]. This indicates that there is a consistent
link between abnormal cholesterol metabolism and VaD [60,61].

Mutations in genes that encode transporter proteins affect the pathogenesis and
treatment of brain diseases, and the ABC gene family is particularly important in AD [62].
Examination of methylation and blood gene expression of the ABCA7 gene as a biomarker of
AD shows that ABCA7 mRNA expression is higher in AD patients than in healthy controls;
in patients with AD, high ABCA7 transcript levels are linked to disease progression and a
decline in cognitive function [63]. However, in our study, we found the opposite showing
a significant decrease in ABCA7 expression in AD patients. It has also been shown that
having the protective rs3764659 (T) allele is linked to increased ABCA7 expression [64].

PD is a form of multisystemic α-synucleinopathy characterized by the presence of
Lewy bodies in the midbrain. Elevated expression of wild-type SNCA causes early-onset
familial PD [65]. The normalization of overexpressed α-synuclein with moderate gene si-
lencing RNA interference (expression control RNAi, ExCont-RNAi) substantially improves
motor function [66]. In patients with Lewy body disease (LBD), SNCA transcript levels
are increased in the brain but are decreased in the blood [67]. SNCA mRNA expression is
reduced in early LBD and increases in early PD, suggesting that it may serve as a biomarker
for the diagnosis of early LBD [67]. Our findings showed an increase in SNCA mRNA
levels in PD and PD-related disorders. Furthermore, the SNCA rs356182 variant within the
intercluster region increases SNCA expression in the human frontal cortex [68,69]. There
were no significant differences in SNCA expression levels between the different genotypes
with this polymorphism in the present study.

The fundamental objective of NDD biomarker research is to provide clinicians with
neuroimaging or biochemical techniques that will aid in the diagnosis and surveillance of
NDD activity. The field of preclinical diagnosis of AD through the use of liquid biopsy has
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undergone considerable advancements in recent years [70]. Given the limitations of the
current biomarkers in accurately differentiating between various forms of dementia [71],
the development of new liquid biopsy biomarkers is therefore important for the diagnosis
and differentiation of NDDs such as AD and VaD, which often present with several similar
symptoms. Indeed, the current biomarkers have an important limitation in their ability
to discern among the different types of dementia. A combination of using plasma tau
phosphorylated at threonine 181 (p-tau-181), neurofilament light chain (Nfl), and glial
fibrillary acidic protein (GFAP) for the discrimination of AD, frontotemporal dementia, and
dementia with Lewy bodies, has been recommended [72]. Aβ42 and Aβ40 are among the
most extensively researched blood markers for diagnosing AD, and high plasma levels
of Aβ42 correlate with the presence of the disease [73]. Tau phosphorylated at threonine
181 (p-tau-181) in blood is a highly specific and easily-accessible biomarker for diagnosing
AD [74]. Plasma tau, when measured using ultrasensitive assays, is highly elevated in
patients with dementia, but not to the same extent as in CSF [75]. However, there is no
distinguishable difference between patients with mild cognitive impairment (MCI) who
eventually develop AD and those with stable MCI [70].

In the present study, we propose that analyzing APOE, PSEN1, PICALM, ABCB7,
and SNCA gene expression can be used to differentiate between PD, AD, and VaD/mixed
dementia (Table 3). APOE and PSEN1 mRNA levels are downregulated in blood samples
from AD patients, SNCA expression is upregulated in patients with PD, PICALM expression
is upregulated in patients with VaD/mixed dementia, and ABCB7 transcript levels are
downregulated in subjects with AD and in VaD/mixed dementia. Recent studies have
also proposed global DNA methylation as a diagnostic and/or prognostic biomarker for
AD, PD, and VaD [76,77]. Since sirtuin activity, brain-derived neurotrophic factor (BDNF)
expression, and global DNA methylation levels significantly decrease in patients with PD
or dementia, our group previously proposed the integration of these three epibiomarkers
to improve NDD diagnostic accuracy [77]. However, these and other biomarkers have yet
to be incorporated into routine clinical practice.

Table 3. Summary of gene expression data.

APOE PICALM OPRK1 LRRK2 ABCA7 PSEN1 NTRK2 SNCA

AD low - - - low low - -
VaD/mixed dementia - high - - low - - -

PD and PD-related
disorders

- - - - - - high

ABCA7, ATP-binding cassette, subfamily A, member 7; SNCA, alpha synuclein; AD, Alzheimer’s disease; APOE,
apolipoprotein E; LRRK2, leucine-rich repeat kinase 2; NTRK2, neurotrophic receptor tyrosine kinase 2; OPRK1,
opioid receptor kappa 1; PD, Parkinson’s disease; PICALM, phosphatidylinositol binding clathrin assembly
protein; PSEN1, presenilin-1; VaD, vascular dementia.

4. Materials and Methods
4.1. Subjects

For this retrospective study, patients were recruited from the CIBE Database at EuroE-
spes International Center of Neuroscience and Genomic Medicine (C000925, 21 October
2013, EuroEspes Biomedical Research Center). The study was conducted in accordance with
the Helsinki Declaration, Spanish law (Organic Law on Biomedical Research, 14 July 2007),
and following the approval of the Ethics/Research Committee of the EuroEspes Biomedical
Research Center (Epibiomarkers EE0620). The samples were collected after the informed
consent of all patients and/or legal caregivers. Following a comprehensive genetic and
clinical examination, patients were diagnosed using globally-accepted diagnostic criteria.
Patients with NDDs included those with dementia (AD and AD-like disorders such as
vascular (VaD) and mixed dementia), and PD and PD-like disorders. Genomic analysis of
many several single nucleotide polymorphisms (SNPs) associated with AD, PD, or vascular
risk/mixed dementia, as well as psychological tests, brain mapping, and neuroimaging
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were included in the clinical protocol for patients. In the present study, the Mini-Mental
State Examination (MMSE), a widely recognized and commonly used screening tool for
evaluating cognitive impairment, was administered to all patients.

4.2. Sample Collection and Analysis

Venous blood samples were collected from individuals in the supine position following
overnight fasting. EDTA-coated tubes from peripheral blood were centrifuged at 3000 rpm
for 10 min at 4 ◦C and the buffy coat was then collected and stored at −40 ◦C until
DNA extraction.

4.3. RNA Extraction

RNA was isolated from peripheral blood lymphocytes using the miRNeasy Mini Kit
(Qiagen, Hilden, Germany) according to the manufacturer’s instructions. Samples were
incubated at room temperature for 5 min before being mixed with chloroform, and were
then centrifuged at 12,000× g for 15 min at 4 ◦C to separate the upper aqueous and organic
phases. RNA was extracted using the QIAcube according to the manufacturer’s protocol. A
microplate reader (Epoch, BioTek, Winooski, Vermont, USA) was used to determine RNA
concentrations and quality. Only RNA samples with 260/280 and 260/230 ratios above 1.8
were used.

4.4. RT-qPCR

The high-capacity cDNA reverse transcription kit (Applied Biosystems, Foster City,
CA, USA) was used to reverse transcribe RNA. Purified RNAs (200 ng) were copied into
cDNAs using gene-specific primers with the following thermocycling conditions: 25 ◦C for
10 min, 37 ◦C for 120 min, and 85 ◦C for 5 min.

Gene expression was quantified by quantitative real-time RT-PCR (qPCR) using the
StepOne Plus Real-Time PCR system (Applied Biosystems, Foster City, CA, USA). Each
PCR reaction was carried out in duplicate, using the TaqMan Gene Expression Master
Mix (Thermo Fisher, Waltham, MA, USA) and specific TaqMan probes (Thermo Fisher,
Waltham, MA, USA) (Table 4). Results were then normalized to human glyceraldehyde
3-phosphate dehydrogenase (GAPDH) as an endogenous reference gene. Data analysis was
done using the comparative CT method with the StepOne Plus Real-Time PCR software,
and are presented as mean ± S.E.M.

Table 4. TaqMan probes.

GENE ID

APOE Hs00171160_m1

PSEN1 Hs00240518_m1

PICALM Hs00300318_m1

ABCA7 Hs1105094_m1

OPRK1 Hs00175127_m1

NTRK2 Hs00178811_m1

SNCA Hs00240906_m1

LRRK2 Hs00968192_m1

4.5. Genotyping

We sought to investigate the effects that polymorphisms and genetic variation in
different NDD-related genes have on their mRNA expression levels. SNPs and copy
number variants (CNVs) were genotyped by qPCR with Taqman assays using the Step
one Plus Real Time PCR System (Life Technology, Waltham, MA, USA) and Taqman
OpenArray DNA microchips for the QuantStudioTM 12K Flex Real-Time PCR System.
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Genotyper software (Thermo Fisher Scientific, Waltham, MA, USA) was used to analyze
the genotyping data.

4.6. Statistical Analysis

Data were tested for normality and equality of variances with the D’Agostini-Pearson and
Levene’s tests, respectively. Statistical significance was determined with a one-way ANOVA
with Bonferroni post hoc comparisons (GraphPad Prism, CA). Receiver operating characteristic
(ROC curves) were plotted using MedCalc software (version 16.4.3; Ostend, Belgium). For
ROC curves, the Youden’s index J (= maximum {sensitivity + specificity − 1}) was used to
determine the optimum biomarker cut-off values, indicating the highest sensitivity and
specificity for each marker. The area under the curve (AUC) and the associated p-values for
each ROC curve were reported using Delong’s test; 95% confidence intervals of the AUCs
were estimated with the exact binomial method. The area under the ROC curve provides a
number between 0 and 1, where values from 0.9–1 are considered excellent, 0.8–0.9 are very
good, 0.7–0.8 good, 0.6–0.7 sufficient, 0.5–0.6 bad and <0.5 not useful [78]. Higher AUC
values correlate to better biomarker diagnostic power. Data are presented as mean ± S.E.M.;
* p < 0.05, ** p < 0.01, and *** p < 0.001 were considered statistically significant.

5. Limitations of the Study

The findings of the current study will need to be confirmed using larger sample sizes.
Furthermore, while our study only used buffy coat samples obtained from peripheral
blood, it would be important to validate the findings of this study by using, for example,
cerebrospinal fluid to reflect changes in gene expression that occur in the brain.

To investigate the effect of the APOE gene on APOE expression levels, we analyzed
APOE mRNA levels in patients with different APOE genotypes. While including data on
APOE gene expression in healthy individuals for comparison purposes would be valuable,
we were unable to obtain samples from healthy subjects for each genotype. Nevertheless,
we obtained samples from healthy individuals with two of the genotypes (APOE 3/3 and
APOE 3/4) in our subject group. Future studies incorporating all three genotypes (APOE
2/3, APOE 2/4, and APOE 4/4) would provide a more comprehensive understanding of the
role of APOE genotypes in APOE expression, and would aid in the validation of potential
targets for therapeutic interventions in AD. Finally, data normalization using alternative
housekeeping genes (e.g., RPL13A) with lower biological variation should be considered
for qPCR analyses to address the potential variability with regard to commonly used
housekeeping genes such as GAPDH and β-tubulin (β-TUB).

6. Conclusions

In this study, we analyzed gene expression levels in healthy individuals and in patients
with NDDs to identify novel biomarkers for NDD diagnosis. Our findings revealed that
the analysis of APOE, PSEN1, PICALM, ABCB7 and SNCA mRNA levels can be used
to differentiate between PD, AD, and VaD/mixed dementia, and may serve as potential
biomarkers for the early detection of these NDDs. Our study further highlights the impact
of APOE gene variants in NDD patients, where E4 carriers exhibit low APOE mRNA levels,
which may directly contribute to the development of AD. Our study suggests that gene
expression analysis may be a liquid biopsy alternative to the current diagnostic methods,
thus addressing the lack of effective diagnostic biomarkers for NDDs. Moreover, the
identified biomarkers may be clinically useful for the early identification of NDDs, which
could help facilitate the development and implementation of a personalized treatment
program for these diseases.
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