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Abstract: Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) is responsible for the
worldwide coronavirus disease 2019 (COVID-19) pandemic. Although the pathophysiology of SARS-
CoV-2 infection is still being elucidated, the nicotinic cholinergic system may play a role. To evaluate
the interaction of the SARS-CoV-2 virus with human nicotinic acetylcholine receptors (nAChRs), we
assessed the in vitro interaction of the spike protein of the SARS-CoV-2 virus with various subunits
of nAChRs. Electrophysiology recordings were conducted at α4β2, α3β4, α3α5β4, α4α6β2, and α7
neuronal nAChRs expressed in Xenopus oocytes. In cells expressing the α4β2 or α4α6β2 nAChRs,
exposure to the 1 µg/mL Spike-RBD protein caused a marked reduction of the current amplitude;
effects at the α3α5β4 receptor were equivocal and effects at the α3β4 and α7 receptors were absent.
Overall, the spike protein of the SARS-CoV-2 virus can interact with select nAChRs, namely the
α4β2 and/or α4α6β2 subtypes, likely at an allosteric binding site. The nAChR agonist varenicline
has the potential to interact with Spike-RBD and form a complex that may interfere with spike
function, although this effect appears to have been lost with the omicron mutation. These results help
understand nAChR’s involvement with acute and long-term sequelae associated with COVID-19,
especially within the central nervous system.
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1. Introduction

The coronavirus disease 2019 (COVID-19) pandemic was caused by severe acute
respiratory syndrome coronavirus-2 (SARS-CoV-2), which has continuously evolved and
mutated into a range of variants with differing transmission and pathogenesis characteris-
tics [1]. One approach to help understand acute and long-term sequelae associated with
SARS-CoV-2 infection, particularly the neurological consequences [2], is to investigate
the complex binding interactions of the SARS-CoV-2 virus with various receptors in the
human body.

The SARS-CoV-2 virus envelope contains a spike (S) protein of 1273 amino acids,
which is indispensable for attachment to its host cell. This S protein consists of S1 and S2
subunits that are cleaved by target cell proteases during viral infection [3]; upon cleavage,
the S2 protein mediates fusion to and entry into the target cell [4]. Although much of the
focus of the SARS-CoV-2 interaction with the human body has been on the angiotensin-
converting enzyme-2 (ACE2) receptor, coronaviruses have been shown to interact with
other human cellular receptors [5]. The nicotinic cholinergic system has been implicated
in the pathophysiology of SARS-CoV-2 [6–8], supported in part by observations in meta-
analyses of the unexpectedly low prevalence of smokers among hospitalized patients with
SARS-CoV-2 [9–11]. In addition, molecular simulations indicate that there may be an
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interaction between the Y674-R685 region of the S protein with select nicotinic acetylcholine
(ACh) receptors (nAChRs) [12]. nAChRs are ligand-gated ion channels that can be found
distributed widely throughout the human body, including at the skeletal neuromuscular
junction, in the brain, on peripheral neurons, in the gastrointestinal tract, and on organs
such as the heart [13].

Varenicline is a full nAChR agonist at the α7 receptor and a partial agonist at the α4β2,
α4α6β2, α3β4, and α3α5β4 receptors. Varenicline was recently shown to have in vitro
antiviral activity against wildtype, alpha, and beta variants of the SARS-CoV-2 virus in
multiple cell lines (Calu-3 and Caco-2 cells), as well as in vivo antiviral activity in a rhesus
macaque model of SARS-CoV-2 nasal infection [14]. Other studies have suggested that the
SARS-CoV-2 virus may interact with the α4β2, α3β4, and α7 nAChR subtypes [7,15–17].
Therefore, characterizing how the SARS-CoV-2 S protein and S1 and S2 subunits interact
with human nAChRs would help elucidate whether the nicotinic ACh system has a role in
the pathophysiology of SARS-CoV-2 infection. In particular, interaction with select nAChR
subtypes may provide insight into the specific mechanisms of action of SARS-CoV-2, as
well as the long-term sequelae of this infection.

2. Results
2.1. Spike-RBD Interacts with the Human α4β2 and α4α6β2 nAChRs and Possibly the α3α5β4
nAChR, but Not the α3β4 and α7 nAChRs

In cells expressing the α4β2 nAChRs (n = 7), exposure to the 1-µg/mL S protein
containing the receptor-binding domain (Spike-RBD) protein caused a marked reduction of
the current amplitude (Figure 1, left-hand side), and reduction was larger when cells were
exposed over a longer period (Figure 1, right-hand side). In cells expressing the α4α6β2
nAChRs (n = 5), exposure to the 1-µg/mL Spike-RBD protein caused a marked reduction
of the current amplitude (Figure 2). The current evoked at saturating ACh concentration
was reduced by >20%. Determination of the α3α5β4 nAChR concentration-response
curves in the absence or presence of 1 µg/mL of the Spike-RBD protein (n = 4) revealed
a slight modification of the ACh response amplitude (Figure 3). Determination of the
α7 (n = 8) and α3β4 (n = 5) nAChR concentration-response curves in the absence or
presence of 1 µg/mL of the Spike-RBD protein revealed no significant modification of the
ACh response amplitude or changes that occurred over the time course of the assessment.

2.2. The S2 Subunit of the S Protein Interacts with the Human α4β2 nAChR, but Not the α4α6β2,
α3β4, and α3α5β4 nAChRs

In cells expressing the α4β2 nAChRs (n = 9), exposure to 1 µg/mL of the S2 protein
caused a marked reduction of the current amplitude, consistent with the results seen with
the Spike-RBD protein (Figure 4). Determination of the α3β4 (n = 3) and α3α5β4 (n = 4)
nAChR concentration-response curves in the absence or presence of 1 µg/mL of the S2
protein revealed no significant modification of the ACh response amplitude or changes
that occurred over the time course of the assessment.

2.3. The S1 Subunit of the S Protein Interacts with the Human α4β2 nAChRs at an Allosteric
Binding Site That Inhibits Receptor Activity

In cells expressing the α4β2 nAChRs (n = 6), exposure to 1 µg/mL of the S1 protein
caused a marked reduction of the current amplitude (Figure 5), consistent with the results
seen with the Spike-RBD and S2 proteins.

2.4. The SARS-CoV-2 B.1.1.529 Spike-RBD Protein Interacts with the Human α4β2 nAChR at an
Allosteric Binding Site That Potentiates Receptor Activity

In cells expressing the α4β2 nAChR (n = 5), exposure to 10 µg/mL of the SARS-CoV-
2 B.1.1.529 Spike-RBD protein caused a marked potentiation of the current amplitude
(Figure 6).
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Figure 1. Effects of the spike protein containing the receptor-binding domain (Spike-RBD) protein 
at the concentration-response curve to acetylcholine (ACh) of the α4β2 nicotinic acetylcholine 
receptor. Typical currents were recorded in the same cell before (green traces) and during short (left-
hand side) and long (right-hand side) exposure to 1 µg/mL of the Spike-RBD protein (red traces). 
Currents were elicited by brief exposure to ACh test pulses with a series of concentrations. Currents 
were normalized to unity vs. the maximal value and average results obtained in seven cells were 
plotted vs. the logarithm (log) of the ACh concentration. The green curve is the best fit obtained 
with the Hill equation. Areas under the curve are plotted on the lower right-hand side. 

Figure 1. Effects of the spike protein containing the receptor-binding domain (Spike-RBD) protein at
the concentration-response curve to acetylcholine (ACh) of the α4β2 nicotinic acetylcholine receptor.
Typical currents were recorded in the same cell before (green traces) and during short (left-hand side)
and long (right-hand side) exposure to 1 µg/mL of the Spike-RBD protein (red traces). Currents
were elicited by brief exposure to ACh test pulses with a series of concentrations. Currents were
normalized to unity vs. the maximal value and average results obtained in seven cells were plotted
vs. the logarithm (log) of the ACh concentration. The green curve is the best fit obtained with the Hill
equation. Areas under the curve are plotted on the lower right-hand side.

2.5. Preincubation of Varenicline with Spike-RBD Indicates That Varenicline Inhibition of the
Human α4β2 nAChR Is Modified by Spike-RBD

Typical currents recorded in a cell (n = 1) expressing the human α4β2 nAChR exposed
to a series of varenicline concentrations demonstrated a reduction in ACh-evoked current as
a function of the varenicline concentration, indicating desensitization of the α4β2 receptor
(Figure 7). Plots of the peak inward current as a function of the logarithm of the varenicline
concentration recorded in a series of control cells (n = 7) and in a series of cells co-exposed
to 1 µg/mL of the Spike-RBD protein (n = 8) are shown in Figure 8. The right shift caused
by Spike-RBD protein exposure suggested a reduction of the efficiency of varenicline
to desensitize the receptor, and it can be hypothesized that the interaction of the Spike-
RBD protein with varenicline combines to yield a nonfunctional complex. Analysis of
the area under the curve, which corresponds to the charges carried through the open
receptors, constitutes an additional method to evaluate the possible interaction between
varenicline and the Spike-RBD protein. A marked reduction in the area under the curve
was observed for low concentrations of varenicline when cells were co-exposed to 1 µg/mL
of the Spike-RBD protein (Figure 9), in agreement with the hypothesis of an interaction
between varenicline and Spike-RBD.
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Figure 2. Effects of the spike protein containing the receptor-binding domain (Spike-RBD) protein 
at the concentration-response curve to acetylcholine (ACh) of the α4α6β2 nicotinic acetylcholine 
receptor complementary DNA. Typical currents were recorded in the same cell before (green traces) 
and during exposure to 1 µg/mL of the Spike-RBD protein (red traces). Currents were elicited by 
brief exposure to ACh test pulses with a series of concentrations. Currents were normalized to unity 
vs. the maximal value and average results obtained in five cells were plotted vs. the logarithm (log) 
of the ACh concentration. The green curve is the best fit obtained with the Hill equation. Areas 
under the curve are plotted on the lower right-hand side. 

Figure 2. Effects of the spike protein containing the receptor-binding domain (Spike-RBD) protein
at the concentration-response curve to acetylcholine (ACh) of the α4α6β2 nicotinic acetylcholine
receptor complementary DNA. Typical currents were recorded in the same cell before (green traces)
and during exposure to 1 µg/mL of the Spike-RBD protein (red traces). Currents were elicited by
brief exposure to ACh test pulses with a series of concentrations. Currents were normalized to unity
vs. the maximal value and average results obtained in five cells were plotted vs. the logarithm (log)
of the ACh concentration. The green curve is the best fit obtained with the Hill equation. Areas under
the curve are plotted on the lower right-hand side.
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Figure 3. Effects of the spike protein containing the receptor-binding domain (Spike-RBD) protein 
at the concentration-response curve to acetylcholine (ACh) of the α3α5β4 nicotinic acetylcholine 
receptor. Typical currents were recorded in the same cell before (green traces) and during exposure 
to 1 µg/mL of the Spike-RBD protein (red traces). Currents were elicited by brief exposure to ACh 
test pulses with a series of concentrations. Currents were normalized to unity vs. the maximal value 
and average results obtained in four cells were plotted vs. the logarithm (log) of the ACh 
concentration. The green curve is the best fit obtained with the Hill equation. Areas under the curve 
are plotted on the lower right-hand side. 

2.2. The S2 Subunit of the S Protein Interacts with the Human α4β2 nAChR, but Not the 
α4α6β2, α3β4, and α3α5β4 nAChRs 

In cells expressing the α4β2 nAChRs (n = 9), exposure to 1 µg/mL of the S2 protein 
caused a marked reduction of the current amplitude, consistent with the results seen with 
the Spike-RBD protein (Figure 4). Determination of the α3β4 (n = 3) and α3α5β4 (n = 4) 
nAChR concentration-response curves in the absence or presence of 1 µg/mL of the S2 
protein revealed no significant modification of the ACh response amplitude or changes 
that occurred over the time course of the assessment.  

Figure 3. Effects of the spike protein containing the receptor-binding domain (Spike-RBD) protein
at the concentration-response curve to acetylcholine (ACh) of the α3α5β4 nicotinic acetylcholine
receptor. Typical currents were recorded in the same cell before (green traces) and during exposure to
1 µg/mL of the Spike-RBD protein (red traces). Currents were elicited by brief exposure to ACh test
pulses with a series of concentrations. Currents were normalized to unity vs. the maximal value and
average results obtained in four cells were plotted vs. the logarithm (log) of the ACh concentration.
The green curve is the best fit obtained with the Hill equation. Areas under the curve are plotted on
the lower right-hand side.

2.6. The SARS-CoV-2 B.A.1 (Omicron) Spike-RBD Protein Interacts with the Human α4β2
nAChRs at an Allosteric Binding Site That Potentiates Receptor Activity

Exposure to the omicron S protein enhanced the response to ACh but did not cause
significant modification of the desensitization caused by sustained exposure to low concen-
trations of an agonist such as varenicline (Figure 10).
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Figure 4. Effects of the SARS-CoV-2 spike protein S2 subunit at the human α4β2 nicotinic 
acetylcholine receptor. Typical currents were recorded in the same cell before (green traces) and 
during exposure to 1 µg/mL of the Spike protein S2 subunit (red traces). Currents were elicited by 
brief exposure to acetylcholine (ACh) test pulses with a series of concentrations. Currents were 
normalized to unity vs. the maximal value and average results obtained in nine cells were plotted 
vs. the logarithm (log) of the ACh concentration. The green curve is the best fit obtained with the 
Hill equation. Areas under the curve are plotted on the lower right-hand side. 

2.3. The S1 Subunit of the S Protein Interacts with the Human α4β2 nAChRs at an Allosteric 
Binding Site That Inhibits Receptor Activity 

In cells expressing the α4β2 nAChRs (n = 6), exposure to 1 µg/mL of the S1 protein 
caused a marked reduction of the current amplitude (Figure 5), consistent with the results 
seen with the Spike-RBD and S2 proteins. 

Figure 4. Effects of the SARS-CoV-2 spike protein S2 subunit at the human α4β2 nicotinic acetyl-
choline receptor. Typical currents were recorded in the same cell before (green traces) and during
exposure to 1 µg/mL of the Spike protein S2 subunit (red traces). Currents were elicited by brief
exposure to acetylcholine (ACh) test pulses with a series of concentrations. Currents were normalized
to unity vs. the maximal value and average results obtained in nine cells were plotted vs. the loga-
rithm (log) of the ACh concentration. The green curve is the best fit obtained with the Hill equation.
Areas under the curve are plotted on the lower right-hand side.
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Figure 5. Effects of SARS-CoV-2 Spike protein S1 subunit at the human α4β2 nicotinic acetylcholine 
receptor. Typical currents were recorded in the same cell before (green traces) and during exposure 
to 1 µg/mL of the Spike protein S1 subunit (red traces). Currents were elicited by brief exposure to 
acetylcholine (ACh) test pulses with a series of concentrations. Currents were normalized to unity 
vs. the maximal value and average results obtained in six cells were plotted vs. the logarithm (log) 
of the ACh concentration. The green curve is the best fit obtained with the Hill equation. Areas 
under the curve are plotted on the lower right-hand side. 

2.4. The SARS-CoV-2 B.1.1.529 Spike-RBD Protein Interacts with the Human α4β2 nAChR at 
an Allosteric Binding Site That Potentiates Receptor Activity 

In cells expressing the α4β2 nAChR (n = 5), exposure to 10 µg/mL of the SARS-CoV-
2 B.1.1.529 Spike-RBD protein caused a marked potentiation of the current amplitude 
(Figure 6). 

Figure 5. Effects of SARS-CoV-2 Spike protein S1 subunit at the human α4β2 nicotinic acetylcholine
receptor. Typical currents were recorded in the same cell before (green traces) and during exposure
to 1 µg/mL of the Spike protein S1 subunit (red traces). Currents were elicited by brief exposure to
acetylcholine (ACh) test pulses with a series of concentrations. Currents were normalized to unity vs.
the maximal value and average results obtained in six cells were plotted vs. the logarithm (log) of the
ACh concentration. The green curve is the best fit obtained with the Hill equation. Areas under the
curve are plotted on the lower right-hand side.
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Currents were elicited by brief exposure to acetylcholine (ACh) test pulses with a series of 
concentrations. Currents were normalized to unity vs. the maximal value and average results 
obtained in five cells were plotted vs. the logarithm (log) of the ACh concentration. The green curve 
is the best fit obtained with the Hill equation. Areas under the curve are plotted on the lower right-
hand side. 
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Figure 6. Effects of the severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) B.1.1.529 spike
protein containing the receptor-binding domain (Spike-RBD) protein at the human α4β2 nicotinic
acetylcholine receptor. Typical currents were recorded in the same cell before (green traces) and
during exposure to 10 µg/mL of the SARS-CoV-2 B.1.1.529 Spike-RBD protein (red traces). Currents
were elicited by brief exposure to acetylcholine (ACh) test pulses with a series of concentrations.
Currents were normalized to unity vs. the maximal value and average results obtained in five cells
were plotted vs. the logarithm (log) of the ACh concentration. The green curve is the best fit obtained
with the Hill equation. Areas under the curve are plotted on the lower right-hand side.



Int. J. Mol. Sci. 2023, 24, 5597 9 of 15

Int. J. Mol. Sci. 2023, 24, x FOR PEER REVIEW 9 of 17 
 

 

to 1 µg/mL of the Spike-RBD protein (Figure 9), in agreement with the hypothesis of an 
interaction between varenicline and Spike-RBD. 

 
Figure 7. Exposure to low, but sustained, applications of varenicline desensitize the human α4β2 
nicotinic acetylcholine receptor. Typical currents evoked by brief acetylcholine test pulses (50 µM) 
were recorded in a cell expressing the complementary DNA encoding for the human α4β2 receptors 
were recorded first in control conditions (green trace) and then during exposure to a series of 
varenicline concentrations ranging from 0.03 to 300 nM. 

 
Figure 8. Peak inward currents evoked by 50-µM acetylcholine were recorded in a series of cells for 
control (n = 7; red) and during exposure to 1-µg/mL spike protein containing the receptor-binding 
domain (Spike-RBD) (n = 8; green) and normalized to unity vs. the response recorded in control. 
Continuous lines are the best fits obtained with the Hill equation. CTRL, control; log, logarithm. 

Figure 7. Exposure to low, but sustained, applications of varenicline desensitize the human α4β2
nicotinic acetylcholine receptor. Typical currents evoked by brief acetylcholine test pulses (50 µM)
were recorded in a cell expressing the complementary DNA encoding for the human α4β2 receptors
were recorded first in control conditions (green trace) and then during exposure to a series of
varenicline concentrations ranging from 0.03 to 300 nM.
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Figure 8. Peak inward currents evoked by 50-µM acetylcholine were recorded in a series of cells for
control (n = 7; red) and during exposure to 1-µg/mL spike protein containing the receptor-binding
domain (Spike-RBD) (n = 8; green) and normalized to unity vs. the response recorded in control.
Continuous lines are the best fits obtained with the Hill equation. CTRL, control; log, logarithm.
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Figure 9. The area under the curve (charges) of the currents evoked by 50-µM acetylcholine recorded
in a series of cells for control (n = 7; red) and during exposure to 1-µg/mL spike protein containing
the receptor-binding domain (Spike-RBD) (n = 8; green) and normalized to unity vs. the response
recorded in control. Continuous lines are the best fits obtained with the Hill equation. CTRL, control;
log, logarithm.
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3. Discussion

To the best of our knowledge, these in vitro studies are the first to attempt to elucidate
the potential interaction of the S protein of the SARS-CoV-2 virus with human neuronal
nAChRs using a functional electrophysiology model. In summary, we found that the S
protein of SARS-CoV-2 interacted with some (α4β2 or α4α6β2 subtypes), but not all (the
tested α3 or α7 subtypes), nAChRs. The lack of interaction at the homomeric α7 subtype
is consistent with other research findings in the literature [17]. However, desensitization
of the receptor was lost with the omicron mutation of the S protein (potentiation of the
receptor was observed). In addition, this study found that an interaction exists between the
SARS-CoV-2 S protein and the nicotinic agonist varenicline; these may form a nonfunctional
complex that restricts binding at α4-containing nAChRs.

Although many studies have focused on the ability of SARS-CoV-2 to bind to ACE2
receptors and enter the cells to begin replication, the virus may have the ability to interact
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with other membrane proteins. Here we illustrate, using a functional electrophysiology
model, that the S protein of the SARS-CoV-2 virus inhibits certain nAChR subtypes. This is
consistent with computational binding studies that have suggested the Y674-R685 region
of the S protein adopts particular conformation when binding to the α4β2 and α7 nAChR
subtypes, although in our in vitro study, binding to the heteromeric α7 nAChR subtype was
not detected [7]. Interaction with the α4 subunit-containing receptors throughout the body
may explain some of the effects of acute viral infection or long-term symptoms, referred to
as “long COVID” [18]. For example, one of the most common symptoms reported during
and after acute viral infection is loss of taste and/or smell, and nAChRs are located on
the olfactory bulb in the nasal cavity and taste receptor cells in the oral cavity [19,20].
Another example is that symptoms of brain fog, headache, dizziness, and weakness are not
dissimilar to those experienced during exposure to large doses of nicotine from harvesting
tobacco leaves [21]. Finally, a myasthenia gravis–type condition after acute infection
or vaccination has been reported, which can sometimes cloud the differential diagnosis
between infection and new onset or exacerbation of disease [22]. We could hypothesize
that this may be due to autoantibodies generated by nAChRs during SARS-CoV-2 virus
infection, resulting in autoimmunity to the nAChR after infection.

Our results indicate that varenicline interacts with the RBD of the S glycoprotein of
SARS-CoV-2. This is consistent with data from in silico studies that suggest that vareni-
cline binds directly to the hinge side of this region with high affinity [23]. This binding
may prevent a change in the S protein to the up-conformation and inhibit subsequent
binding by the ACE2 and/or nAChR binding site [23], thus potentially preventing or
reducing host cell infection. In studies conducted with the omicron variant (B.A.1) of the
S protein, experiments suggest that the S protein probably binds to the α4β2 nAChR and
facilitates, by an allosteric mechanism (given no displacement with an increased agonist
concentration, and the reduction in amplitude and slope), the activation of the receptors by
ACh. These findings have important implications in the pathophysiology of SARS-CoV-2
viral infection because modulation of the α4β2 nAChR throughout the body could have
important implications for various functions, including neuronal transmission. Compared
with experiments performed with the alpha variant (B.1.17), investigating desensitization
of the α4β2 nAChR revealed that the omicron variant S protein caused no difference in
the desensitization properties to low concentrations of varenicline, although there was a
potentiation of the inward current after preincubation. These findings suggest that the viral
mutations in the S protein may have changed the affinity for interacting with the nicotinic
agonist varenicline.

Although the studies reported here were exploratory and therefore interpretation
is limited, we have confirmed that the nAChR agonist varenicline, the active ingredient
of Tyrvaya nasal spray and Chantix/Champix, may have the potential to interact with
and inhibit interaction with the alpha variant (B.1.17) S protein, although the binding site
seems to have been lost with the mutation to the omicron variant (B.A.1), possibly due
to a mutation in the amino acid sequence. Further, the nicotinic cholinergic system has
been postulated to be involved in the pathophysiology of severe COVID-19 due to immune
dysregulation and cytokine storm because the cholinergic anti-inflammatory pathway may
be an important regulator of the inflammatory response [8,9]. Finally, given the in vitro and
in vivo effectiveness seen in this and other recent studies [14], we propose that varenicline
nasal spray warrants further investigation as an antiviral agent for pre-/postexposure
prophylaxis and/or prevention of transmission of SARS-CoV-2.

4. Materials and Methods

Oocytes were obtained from mature Xenopus laevis females weighing 150 to 300 g and
housed in groups of three to five per vivarium at 20–22 ◦C under exposure to daylight
with artificial light supplementation (6 AM–8 PM in summer; 8 AM–7 PM in winter).
Ovaries were harvested from deeply anesthetized animals by cooling at 4 ◦C and tri-
caine methanesulfonate (MS-222 at a concentration of 150 µg/L) in sodium bicarbonate



Int. J. Mol. Sci. 2023, 24, 5597 12 of 15

(300 µg/L) (according to the latest rules adopted by the FSVO). Once anesthetized, each
animal was sacrificed (decapitated) in compliance with the Animal Welfare Act and other
federal statutes and regulations relating to animals in medical research. A small piece of
the ovary was isolated from each sample for immediate preparation and the remaining
part was placed at 4 ◦C in a sterile Barth’s solution containing the following (in mM):
NaCl (88), KCl (1), NaHCO3 (2.4), HEPES (10), MgSO4.7H2O (0.82), Ca(NO3)2.4H2O (0.33),
and CaCl2.6H2O (0.41) at pH 7.4, and supplemented with 20 µg/mL of kanamycin and
100 unit/mL penicillin.

4.1. Human nAChRs

Injections of complementary DNA encoding for the human α4β2, α3β4, α3α5β4,
α4α6β2, and α7 receptors were performed in ≥95 oocytes using an automated injec-
tion device according to the manufacturer’s instructions [24]. Receptor expression was
examined ≥2 days later.

4.2. SARS-CoV-2 S Protein

The SARS-CoV-2 Spike-RBD and the S1 and S2 subunits were obtained from Lucerna-
Chem AG (Lucerne, Switzerland; #230-01102). The SARS-CoV-2 Spike-RBD and the S1 and
S2 subunits were separately dissolved in a solution of imidazole 150 mM. The SARS-CoV-2
B.1.1.529 (omicron) Spike-RBD was obtained from Lucerna-Chem AG (from Sino Biological
#40592-V08H121) in lyophilized form.

4.3. Varenicline Tartrate

Varenicline tartrate was obtained from Tocris Bioscience (Geneva, Switzerland).

4.4. Electrophysiological Recordings

All recordings were performed at 18 ◦C and cells perfused with OR2 medium con-
taining the following (in mM): NaCl (88), KCl (2.5), HEPES (5), CaCl2.2H2O (1.8), and
MgCl2.6H2O (1) at pH 7.4. Oocytes were voltage clamped at –80 mV (unless otherwise
indicated) throughout the experiment. Currents were evoked by ACh prepared as a con-
centrated stock solution (10–1 M) in water and then diluted in the recording medium to
obtain the desired test concentration. Data were captured and analyzed using a proprietary
data acquisition and analysis platform (HiQScreen Sàrl, Geneva, Switzerland) running
under MATLAB (MathWorks, Inc., Natick, MA, USA). Control non-injected cells display
no detectable response to ACh.

4.5. SARS-CoV-2 B.1.1.7 S Protein Interaction with Human nAChR Subtypes

A series of experiments were performed to characterize the interaction of the SARS-
CoV-2 B.1.1.7 Spike-RBD, S1, and S2 proteins with human α4β2, α4α6β2, α3β4, α3α5β4,
and α7 nAChRs. The experimental protocol to assay the putative effects of the Spike-RBD
protein at these receptors is shown in Figure 11 (note that the putative effects of the vehicle
were assessed before testing the RBD and caused no detectable activity). Briefly, the system
loaded the oocyte and assessed the membrane properties and response to a brief ACh test
pulse. Cells displaying robust ACh-evoked currents and adequate membrane properties
were kept for subsequent measurements. Next, cells were first challenged by brief ACh test
pulses applied in growing concentrations. After these recordings, the cell was incubated
for 225 s in 1 µg/mL of the Spike-RBD (or S1 or S2) protein before each cycle of ACh pulse
testing. Altogether, the cell was maintained in the presence of the Spike-RBD (or S1 or S2)
protein for up to 1 h.
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4.6. SARS-CoV-2 B.1.1.529 (Omicron Variant) S Protein Interaction with Human α4β2 nAChRs

A series of experiments were performed to characterize the interaction of the SARS-
CoV-2 B.1.1.529 Spike-RBD proteins with human α4β2 nAChRs. Similar to the protocol
above, cells were incubated for 225 s in 1 µg/mL of the SARS-CoV-2 B.1.1.529 Spike-RBD
protein before each cycle of ACh pulse testing.

4.7. Varenicline Interaction with Spike-RBD and SARS-CoV-2 B.1.1.529 Spike-RBD

Previous studies have shown that varenicline causes desensitization of the α4β2
nAChR [25]. The desensitization profile of the α4β2 nAChR is highly predictable and
reproduceable. Based on this interaction, it is possible to use the observed desensitiza-
tion of α4β2 nAChRs as a functional electrophysiological tool to evaluate how nicotinic
agonists interact with Spike-RBD or SARS-CoV-2 B.1.1.529 Spike-RBD. Comparing the
effects of incubation with varenicline alone or with varenicline preincubated with the
Spike-RBD/SARS-CoV-2 B.1.1.529 Spike-RBD protein allows for the assessment of the
potential interaction of varenicline with a fixed concentration of the Spike-RBD protein.
Should a significant interaction be observed, this would provide insight into the mecha-
nism of action and rationale for investigating nAChR agonists in preventing or treating
SARS-CoV-2 infections.

In this experiment, oocytes were exposed to low, sustained applications of varenicline
to demonstrate desensitization of the human α4β2 nAChR to ACh. Currents evoked by
brief ACh test pulses (50 mM) recorded in a cell expressing the complementary DNA
encoding for the human α4β2 nAChR were recorded first in control conditions and then
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during exposure to a series of varenicline concentrations ranging from 0.03 to 300 nM. This
series of experiments was then repeated in another group of cells, but each varenicline
solution was first mixed with 1 µg/mL Spike-RBD or 10-µg/mL SARS-CoV-2 B.1.1.529
Spike-RBD and incubated for ≥1 h before the experiment to allow investigation of the
possible interaction between varenicline and Spike-RBD.
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