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Abstract: Salt stress has a detrimental impact on crop yield, quality, and profitability. The tau-like
glutathione transferases (GSTs) represent a significant group of enzymes that play a crucial role
in plant stress responses, including salt stress. In this study, we identified a tau-like glutathione
transferase family gene from soybean named GmGSTU23. Expression pattern analysis revealed that
GmGSTU23 was predominantly expressed in the roots and flowers and exhibited a concentration–time-
specific pattern in response to salt stress. Transgenic lines were generated and subjected to phenotypic
characterization under salt stress. The transgenic lines exhibited increased salt tolerance, root length,
and fresh weight compared to the wild type. Antioxidant enzyme activity and malondialdehyde
content were subsequently measured, and the data revealed no significant differences between
the transgenic and wild-type plants in the absence of salt stress. However, under salt stress, the
wild-type plants exhibited significantly lower activities of SOD, POD, and CAT than the three
transgenic lines, whereas the activity of APX and the content of MDA showed the opposite trend.
We identified changes in glutathione pools and associated enzyme activity to gain insights into
the underlying mechanisms of the observed phenotypic differences. Notably, under salt stress, the
transgenic Arabidopsis’s GST activity, GR activity, and GSH content were significantly higher than
those of the wild type. In summary, our findings suggest that GmGSTU23 mediates the scavenging of
reactive oxygen species and glutathione by enhancing the activity of glutathione transferase, thereby
conferring enhanced tolerance to salt stress in plants.

Keywords: soybean; glutathione transferase; salt stress; glutathione

1. Introduction

Soil salinization is widely distributed in more than 60% of countries or regions, causing
severe food and economic problems worldwide [1–3]. According to statistics, about 7% of
the fundamental arable land in China is saline soil and has a trend of increasing yearly [4].
In saline soil, excessive sodium and chloride ions are released into the soil which are actively
absorbed by plants, inhibiting seed germination and plant growth and development [5].
Salt stress can seriously affect crops’ yield, quality, and benefit, and it has become one of
the principal abiotic stresses and limiting factors affecting crop production and agricultural
development [5,6]. In order to resist the damage of salt stress, different salt tolerance
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mechanisms exist in crops [7–9]. Plant salt tolerance mechanisms mainly include ion
homeostasis, osmotic adjustment, cell wall and membrane lipid modifications under salt
stress, and changes in antioxidant-related enzymes [9–11].

Enzymes play an irreplaceable role in the normal life activities of plants. Currently,
several families of salt stress tolerance genes have been identified in plant species [12–15].
Glutathione S-transferase (GST) is a ubiquitous, large, and diverse gene family [16–18].
Arabidopsis, rice, and soybean genomes contain 28, 41, and 59 family members (PTHR11260),
respectively [18–21]. According to amino acid sequence similarity, these genes were clas-
sified into five subcategories of tau, phi, zeta, theta, and lambda [22–24]. Glutathione
S-transferases (GSTs) catalyze the binding of glutathione to toxic biological heterologous
substances or oxidation products to facilitate their metabolism, regional isolation, or elimina-
tion [25,26]. Their promoter contains MYB and MYC domains and at least one conservative
protein domain (GST_NTER, GST_CTER). In its classical reaction mode, GSTs catalyze
the transfer of glutathione (GSH) to a coenzyme (R-X) containing an active electrophilic
center to establish a polar S-glutathione reaction product (R-SG) [22,25,26]. Recent studies
have shown that GST protein is essential in multiple metabolic reactions [12,24,27]. It has
been reported that GST protein in plant roots increases the biological nitrogen fixation
efficiency of legume nodules [28–30]. Wen et al. found that GST protein might be involved
in coupling exogenous glutathione with chromium ions to alleviate the toxicity of heavy
metals [31]. In addition, GST protein may be involved in crop herbicide metabolism and
selection, and has been used in the soybean and maize seed industries [24,32–34].

Tau class glutathione transferase is a vital enzyme in plant cells that plays a significant
role in plant antioxidant defenses and metabolic regulation. It is of utmost importance
for improving plant stress resistance, growth, and development. Recent research has
demonstrated that regulating the expression and activity of tau glutathione transferases
can significantly enhance plant adaptability to various stress environments, such as high
salt, low temperature, and drought [35–37]. For example, the research by Cao et al. proved
that CsGSTU19 was involved in the defense of tea trees against temperature stress [36]. In
Medicago ruthenica and Medicago sativa, MruGSTU39 detoxified ROS under drought stress
by up-regulating GST and glutathione peroxidase activities [37]. In addition, some GST
genes, such as PpGST, OsGSTL2, and PtGSTU51, were also isolated and conferred heavy
metal tolerance to Pyrus pyrifolia, Oryza sativa, and Populus tomentosa, respectively [38–40].
Moreover, the GST genes were also identified as necessary in the physiological and molecu-
lar mechanisms of plant resistance to salt stress. The salt tolerance of transgenic plants was
enhanced after the GST gene of Suaeda salsa was heterologously transformed into Arabidop-
sis thaliana [41]. In a study of tomato LeGSTU2 gene function, transgenic plants expressing
tomato glutathione S-transferase showed enhanced resistance to salt and drought stress [42].
Similarly, GsGST, PtGSTF1, and CsGSTU8 have been reported to have similar functions in
Glycine soja, Pyrus pyrifolia and Camellia sinensis [43–45]. In particular, co-expression of the
Suaeda salsa glutathione S-transferase and catalase in transgenic rice may have a synergistic
effect in response to salt stress [46].

Soybean (Glycine max) is one of the most substantial oil and protein crops in the world
and participates in the human diet and food industry as an essential raw material [47–50].
Salt stress will have a severe toxic effect on each growth stage of soybean plants, which
will eventually leading to the loss of soybean yield and the reduction of soybean qual-
ity [51–53]. Predecessors studied the molecular mechanisms of soybean salt tolerance,
and some genes were identified such as GmPAL1.1, GmCHX1, GmSALT3, GmHKT1;4, and
GmbZIP44 [54–58]. Meanwhile, the molecular mechanism of soybean GSTs under salt stress
has not been thoroughly studied and identified. The primary objective of this investigation
is to elucidate the involvement of glutathione S-transferase in the molecular mechanisms
of plant salt tolerance. In the present study, a salt-responsive glutathione S-transferase
gene, named GmGSTU23, was isolated from transcriptome-based analysis of changes in
gene expression patterns after salt stress. The function of GmGSTU23 was identified, and
phenotypic analysis was performed on overexpressed transgenic lines from Arabidopsis
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thaliana. Our study postulated that GmGSTU23 has a crucial role in plant responses to
salt stress, ameliorating plant salt tolerance through its regulation of enzyme activity and
the proportion of reduced glutathione in plants. The results of this study offer theoretical
support in understanding the role of glutathione S-transferase in the molecular mechanisms
of plant salt tolerance.

2. Results
2.1. Isolation and Bioinformatics Analysis of the GmGSTU23

Based on the identification of salt-tolerant soybean material resources (unpublished
data), a salt-induced gene encoding glutathione S-transferase was isolated from the high
salt-tolerant soybean variety Guizao 1 (Table S1). A BLAST search in the soybean reference
genome Wm82.a2.v1 identified the gene as Glyma.07G139700 which was named GmGSTU23
and belongs to the GST tau subfamily based on previous studies [59]. The soybean genome
database showed that the full-length genomic sequence of GmGSTU23 consisted of two
exons and one intron, with a DNA length of 1066 bp, including a 678 bp CDS sequence,
which encodes a peptide 226 amino acids in length with an isoelectric point of 5.39 (Table S1,
Figure 1A). The amino acid sequence of GmGSTU23 was aligned with the GST members of
other plant species. GmGSTU23 shares a degree of homology with members of the GST
family from Phaseolus vulgaris, Phaseolus vulgaris, Medicago sativa, Cicer arietinum, and Ara-
bidopsis thaliana, with the highest identity being with PvGST (Figure 1B). The Pfam database
shows that GmGSTU23 has two typical conservative domains called GST-N and GST-C, rep-
resenting the typical domain characteristics of GST family (Figure 1A,B). The predictions of
the GmGSTU23 protein structural model showed that it has seven protein folds (Figure 1C).
Subcellular localization predictions suggest that expression of GmGSTU23 may be located
in the cytoplasm. Phylogenetic analysis revealed that GmGSTU23 homologs of legume
species were clustered, and there were several homologous genes in the dicotyledonous
plant A. thaliana (Figure 1D).

2.2. Expression Pattern Analysis of the GmGSTU23

In different plant organs, the expression of GmGSTU23 was mainly concentrated in the
flower and roots, while the expression in the leaf, stem, and pod was low (Figure 2A). In
the experiment of detecting the response to time, GmGSTU23 showed a significant upward
trend after 4 h of NaCl treatment, and the expression level increased significantly with the
treatment time and reached the maximum expression at 8 h, and then began to decline
(Figure 2B). In addition, as shown in Figure 2C, the expression of GmGSTU23 in soybean
tissues significantly increased with the increase in NaCl concentration after exposure to
salt for 8 h.
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members in other species.
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Figure 2. Determination of GmGSTU23 expression patterns. (A) The relative expression of GmGSTU23
in different organs of soybean plants. (B) Time-dependent expression pattern of GmGSTU23. The
plant materials were collected after 0, 2, 4, 8, 12, and 24 h in 200 mM NaCl. (C) Dose-dependent
expression pattern of GmGSTU23. The seedings were measured after exposure to 0, 50, 100, 150,
and 200 mM NaCl for 8 h. Different letters above the bars indicate significant differences among the
treatments (p < 0.05).

2.3. Generation and Detection of the GmGSTU23 Overexpression Lines

To explore the function of GmGSTU23 in plant salt stress responses, the coding se-
quence of GmGSTU23 was inserted into the expression vector pTF101 containing a strong
CaMV 35S promoter, and the transgenic plant was obtained by the floral dip method. A
total of 11 overexpressed lines were selected by herbicide identification and the expres-
sion levels of GmGSTU23 in the different lines were determined by qRT-PCR (Figure S1).
Then, three T3 generation transgenic lines (OE-2, OE-5, and OE-11) with high expression
levels were selected for studying the salt tolerance phenotype and physiological analysis
(Figures S1, 3 and 4).
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Figure 3. Overexpression of GmGSTU23 relieved the inhibition of root elongation by salt stress.
(A) Phenotypes of the GmGSTU23 transgenic lines in plate culture. (B) Analysis of root elongation of
seedlings. Scale bar = 1 cm. The bars represent the average ± SD of three replicates. Different letters
above the bars indicate significant differences among the treatments (p < 0.05). WT, wild type; OE-2,
OE-5, OE-11: GmGSTU23 transgenic lines.
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enzyme activity under salt stress. (A) Phenotypes of the GmGSTU23 transgenic lines in soil culture.
(B) Analysis of fresh weight, MDA, CAT, SOD, POD, and APX in the WT and transgenic lines. Scale
bar = 1 cm. Different letters above the bars indicate significant differences among the treatments at
p < 0.05.
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2.4. Overexpression of GmGSTU23 Confers Phenotypic Tolerance to Salt Stress

To evaluate the salt tolerance of the GmGSTU23 transgenic lines, the salt dose response
phenotype of the seedlings was analyzed in agarose plate and soil culture. As shown in
Figure 3A, the root elongation of wild-type and transgenic A. thaliana was inhibited to
varying degrees under 100 mM or 150 mM NaCl treatment in the plate culture experiment.
However, the inhibition of salt stress on the overexpression lines was significantly lower
than that in the wild type (Figure 3B). Specifically, under the treatment of 150 mM NaCl,
the root lengths of WT and GmGSTU23 transgenic seedlings were 4.1 cm and 5.2 cm,
respectively (Figure 3B). In the long-term salt stress test in soil culture, 15-day-old plants
were continuously irrigated with 200 mM NaCl solution for 20 days. The phenomena
of yellowing of plant leaves and stunted growth were revealed under salt stress. It was
observed that the growth of wild-type plants was severely affected by salinity, while the
growth of the transgenic plants was less affected (Figure 4A). Compared with the condition
without salt stress, the fresh weight of WT and GmGSTU23 transgenic lines under 200 mM
NaCl treatment was decreased by 81.2% and 53.1%, respectively (Figure 4B). In addition,
the content of malondialdehyde in the wild-type strain was significantly higher than that
in transgenic lines under salt stress, which reflected the degree of membrane peroxidation
(Figure 4B). The data on antioxidant enzyme activities showed that there was no significant
difference between transgenic and wild-type plants in the absence of salt stress. Under salt
stress, the activities of SOD, POD, and CAT in the wild type were significantly lower than
those of the three transgenic lines, while the activity of APX showed the opposite situation
(Figure 4B).

2.5. Changes of Glutathione Pool Composition and Related Enzymes under Salt Stress

To analyze the underlying causes of the phenotypic differences, glutathione pools
and the associated enzyme activity changes were determined. Under salt stress, GST
activity, GR activity, and GSSG content were increased, while GSH content showed the
opposite effect (Figure 5). The analysis between wild-type and transgenic plants showed
that the GST activity, GR activity, and GSH content of transgenic Arabidopsis thaliana
were significantly higher than those of the wild-type strain under 200 mM NaCl treatment
(Figure 5A,C,D). Specifically, there were significant differences in GST activity and GSH
content in the absence of salt stress (Figure 5A,B).
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of treatment with 0 or 200 mM NaCl solution. Different letters above the bars indicate significant
differences among the treatments (p < 0.05).

3. Discussion

Salt stress is one of the abiotic stresses that has the most significant impact on agricul-
ture. It can severely reduce the yield and quality of crops by destroying the homeostasis
of plant ions, osmosis, and reactive oxygen species [5–7,10,11]. During their long evolu-
tion, plants have developed many responses to salt stress, such as calcium signals and
glutathione-anti-circulating pathways to maintain cell homeostasis and eliminate reactive
oxygen species [7,60]. The mechanisms of salt tolerance-related genes have been identified
in some species, such as AtHKT1;1, AtHAK5, OsLAX, OsABCB, SOS2, SnRK2, GmDof41,
SlWRKY23, etc., and these genes have endowed plants with different degrees of tolerance
to salt stress [61–67]. The ascorbate–glutathione (ASA-GSH) cycle is widespread in living
organisms and plays an essential role in plant oxidative defenses and abiotic stress re-
sponses [31,68]. During this cycle, GSTs, a family of proteins widely distributed in various
organisms, plays a crucial role in detoxification [69]. Specifically, its primary function is to
catalyze the coupling of some electrophilic groups with the thiols of reduced glutathione, to
change its hydrophobicity so that it can easily cross the cell membrane to the extracellular
space after being decomposed, thus achieving detoxification [70,71]. According to previous
genome-wide identification reports of the GST family, it has been found that it has functions
related to oxidative stress responses to abiotic stress [17,72–75]. AtGSTF8, AtGSTU19, and
AtGST1 relieved salt stress by maintaining redox homeostasis in A. thaliana roots [76,77].
The glutathione S-transferase gene has been isolated in a study in wild-type soybeans, and
transgenic plants showed a higher tolerance to salt at the seedling stage than wild-type
plants [43]. Meanwhile, the molecular mechanisms of soybean GST family genes under salt
stress have been rarely reported and are unclear.

In this study, a salt-responsive glutathione S-transferase gene, defined as GmGSTU23,
was identified as a differentially expressed gene under salt stress. Through sequence
alignment and conservative domain analysis, we found that GmGSTU23 shares a high
degree of homology with the identified tau subfamily genes, particularly with PaGST
(Figure 1A,D). These results indicated that the GST family genes are highly conserved
among different species and may have similar functions in response to environmental
stress [17,73]. Analysis of the promoter of GmGSTU23 revealed a total of 3 ABREs (ABA-
responsive elements), 2 LTREs (low-temperature responsive elements), 17 MYB-responsive
elements, and 20 MYC-responsive element cis-counterparts. Among them, ABRE is mainly
involved in the regulation of ABA response or drought expression [78,79]. Based on these
results, it was speculated that GmGSTU23 might be associated with abiotic stress responses
in plants. Due to the existence of LTREs, some studies have suggested that GmGSTU23 also
encodes a heat shock protein in soybeans, which may respond to high-temperature stress,
and further studies are needed [80].

The orthologous gene of GmGSTU23 in A. thaliana is At3g09270 with 80% similarity,
which is thought to be involved in the early responses of A. thaliana cells to cadmium
exposure [19,81]. Although it is similar to the GST family genes of other species in structure
such as in the conservative domain, GmGSTU23 may have a unique expression pattern and
molecular function (Figures 1 and 2). In some previous studies, the expression patterns
of GmGSTU23 were localized in the roots, especially in the root hair [82]. Meanwhile,
our results showed that the expression of GmGSTU23 is not confined to the roots, but is
expressed in other organs of the plant, especially at high levels in the flowers (Figure 2A),
which is similar to the results of some previous reports [83]. After 8h of salt treatment,
the expression of GmGSTU23 reached a peak, which suggested that GmGSTU23 might be
regulated by some transcription factors and may indirectly participate in plant salt stress
responses (Figure 2B). The 3D structure model of GmGSTU23 did not have a transmembrane
domain, and its subcellular localization was predicted to be cytoplasmic. Therefore, it is
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speculated that GmGSTU23 was expressed in the cytoplasm to catalyze the binding of GSH
and ROS (Figures 1 and 2).

In order to further identify the mechanism of GmGSTU23 in enhancing the tolerance
of plants to salt stress, we obtained transgenic A. thaliana lines and conducted a salt stress
treatment experiment. Compared with the control, the growth of wild-type and trans-
genic A. thaliana was inhibited under salt stress, and the leaves became withered and
yellow (Figures 3A and 4A). The results showed that under salt stress, the root length and
fresh weight of transgenic A. thaliana were significantly higher than those of wild type
(Figures 3B and 4B). Malondialdehyde is generally considered to be an indicator of the
degree of cell membrane peroxidation and the strength of plant responses to adverse condi-
tions [84]. Malondialdehyde content in the transgenic lines was lower than in wild type,
indicating that they were less damaged by ROS (Figure 4B) and that the overexpression
of GmGSTU23 enhanced the tolerance of plants to salt stress. The content of antioxidant
enzymes in the transgenic A. thaliana and wild-type lines was also determined to study
its response mechanism to salt stress (Figure 4B), and the results were similar to those
of previous studies [39–41]. Some antioxidant enzymes such as SOD, POD, CAT, and
APX can eliminate ROS in cells and reduce the generation of hydrogen peroxide, thereby
enhancing salt tolerance [85]. We speculated that the GmGSTU23 transgenic A. thaliana
might induce changes in antioxidant enzymes through some pathways to improve the
plant’s tolerance to salt stress. The measurement of glutathione pool composition and
related enzymes showed that the GST activity and GSH content of the transgenic lines
were significantly higher than those of the WT strain, regardless of the presence of salt
stress (Figure 5). Therefore, it is speculated that GmGSTU23 directly enhances the activity
of glutathione transferase and participates in the clearance of reactive oxygen species with
glutathione, thereby enhancing the tolerance of plants to salt stress [31,33,84]. However,
little is known about the interactions between GmGSTU23 and other transcription factors,
which will need further exploration. Therefore, we will use a yeast library, RNA-Seq, and
other techniques to study the function of the GmGSTU23 gene in future studies to increase
our understanding of the salt tolerance mechanisms in plants.

4. Materials and Methods
4.1. Plant Materials and Growth Conditions

The sterilized seeds of soybean variety Guizao 1, obtained from the South China
Agricultural University (Guangzhou, China), were selected and sowed in vermiculite.
After germination, the seedlings with consistent growth were selected and transferred to a
hydroponic system (pH 6.8) with modified Hoagland nutrient solution at 28/25 ◦C and
a 14 h/10 h (light/dark) photoperiod, as described by Ke Wen et al. [86]. The nutrient
solution was rejuvenated daily. In the soil culture experiment, the plant organs including
the roots, stem, leaf, flower, and pod were collected at the soybean V6 stage and then quickly
frozen in liquid nitrogen and stored in an ultra-low-temperature refrigerator [86–88]. The
experimental plants were grown in the basin with the nutrient soil in an environmentally
controlled incubation chamber.

4.2. Analysis of Gene Expression Pattern

The plants were processed with the following treatments in the experiment to analyze
the gene expression patterns in soybean plants (G. max) [86]. In order to determine the
dose-dependent expression patterns, the seedings were cultivated in a solution with 0, 50,
100, 150, and 200 mM NaCl for 8 h. The plant materials were collected after 0, 2, 4, 8, 12, and
24 h in the 200 mM NaCl treatment to determine the time-dependent expression patterns.
To determine organ-specific expression, the plant organs stored in the −80 ◦C refrigerator
described in Section 4.1 were used for qPCR identification [31].

The total RNA was extracted from the plant samples using the RNA-easy Isolation
Reagent (Vazyme, Nanjing, China) according to the manufacturer’s instructions and then
reverse transcribed into cDNA using PrimeScript RT kit (Takara, Shiga, Japan). The gene
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expression level was evaluated by qPCR using the 2−∆∆ct method using real-time PCR
on a CFX96™ Touch Real-Time PCR System (Bio-Rad, Hercules, CA, USA) with SYBR
Premix ExTaq™ II Mix (TaKaRa, Shiga, Japan) [86]. GmACTIN6 (GeneBnak Accession:
AAK285830.1) was used as an internal control for three technical replicates. All primers
were designed using the NCBI Primer tool (http://www.ncbi.nlm.nih.gov/, accessed on
4 February 2022) and are shown in Table S2.

4.3. Cloning and Bioinformatics Analysis of GmGSTU23

In this study, the cDNA of the soybean variety Guizao 1, reverse-transcribed from
its mixed tissue RNA sample, was used to clone the gene sequence. GmGSTU23 was
extracted with PrimeScript RT Reagent Kit with gDNA eraser (TaKaRa, Shiga, Japan)
by PCR using the specific primer pair: 5′-CGCATTCATACGCAGCAATCA-3′ and 5′-
AGCAATAACTCAACAAGACAAGT-3′. The PCR cloning was performed with primers
and cDNA using the following program: 5 min at 94 ◦C; 35 cycles of 30 s at 94 ◦C, 1 min at
54 ◦C, and 2 min at 72 ◦C; and 5 min at 72 ◦C for the final extension.

The sequence with the correct molecular size detected by agarose gel electrophoresis
was integrated into the pLB vector (Tiangen Biotech, Beijing, China) and sent to a se-
quencing company (Shenggong, Guangzhou, China) for sequencing. The multiple protein
sequence alignment of GmGSTU23 with other glutathione S-transferases (GST) was per-
formed using ClustalW2 (https://www.ebi.ac.uk/Tools/msa/clustalw2/, accessed on 15
January 2023). The tree of gene homology and molecular evolutionary genetics analysis was
constructed using MEGA-X software via the Neighbor-Joining (NJ) method. The protein
3D structure of GmGSTU23 was predicted by the phyre2 online prediction website (http:
//www.sbg.bio.ic.ac.uk/phyre2/html/page.cgi?id=index, accessed on 17 January 2023).
The subcellular localization prediction was performed by the Cell-PLoc 2.0 online tool
(http://www.csbio.sjtu.edu.cn/bioinf/Cell-PLoc-2/, accessed on 17 January 2023).

4.4. Vector Construction and Transgenic Lines Generation

To obtain transgenic Arabidopsis thaliana lines, the exonic region of GmGSTU23 was
amplified using gene-specific primers with XbaI and SacI sites (Table S2). GmGSTU23
was then linearly cloned into the pTF101.1 binary vector with a modified CaMV 35S
promoter, which contained a phosphinothricin acetyltransferase (bar) resistance gene
(phosphinothricin N-acetyltransferase, PAT) as selection marker for the transgenic line. The
constructed vector was transformed into Agrobacterium strain GV3101 by electroporation
(Gene Pulser Xcell™ Electroporation Systems, Hercules,CA, USA), and the target gene was
transferred into the A. thaliana ecotype Columbia (Col-0) by flower dipping [89]. The T0
generation of A. thaliana was identified by overexpression by herbicide (Liberty®, Bayer,
Leverkusen, Germany) spraying and PCR molecular identification. Molecular identification
of the T3 transgenic line was performed using the 2 × Taq Plus Master Mix (Vazyme,
Nanjing, China) according to the manufacturer’s instructions. The specific primers used
for PCR were designed based on the vector and the gene sequence (Table S2).

4.5. Phenotypes Analysis of GmGSTU23 Transgenic Lines

To analyze the phenotypes of GmGSTU23-overexpressing (OE) and wild-type (WT) A.
thaliana under salt stress, three T3 transgenic lines with high expression levels were selected
for 1/2 MS agar plates and soil culture experiments. Specifically, the seeds sterilized with
10% sodium hypochlorite for 10 min were sown on 1/2 MS agar plates and vernalized at
4 °C in the dark for four days [86]. Subsequently, the plates were erected and placed in
a growth chamber at 22–24 ◦C, with 60% relative humidity and a 16 h/8 h (light/dark)
photoperiod until the roots grew to 1 cm. The seedlings with consistent growth were
transferred to 1/2 strength MS agar medium containing different concentrations of NaCl
(0 mM, 100 mM, 150 mM) for ten days. The length from the base of the rosette leaf to the
top of the straight root was measured with a ruler, and the image was photographed with a
Canon EOS 750d camera. In addition, T3 transgenic seeds and wild-type seeds (Columbia-

http://www.ncbi.nlm.nih.gov/
https://www.ebi.ac.uk/Tools/msa/clustalw2/
http://www.sbg.bio.ic.ac.uk/phyre2/html/page.cgi?id=index
http://www.sbg.bio.ic.ac.uk/phyre2/html/page.cgi?id=index
http://www.csbio.sjtu.edu.cn/bioinf/Cell-PLoc-2/
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0) after vernalization were planted in sterile substrate soil (Jiffy, Oslo, Norway) with a
16 h/8 h (light/dark) photoperiod in a GXZ-300D illuminated growth incubator (Jiangnan,
Ningbo, China). The two-week-old seedlings were treated with 200 mM NaCl solution
irrigation for 20 days. Then, the fresh weight and height of the plants were measured, and
the leaf of the plants were quickly frozen in liquid nitrogen and stored in a refrigerator at
−80 ◦C for the determination of various physiological indicators [43].

4.6. Physiological Analysis of GmGSTU23 Transgenic Lines

To analyze the physiology of the transgenic lines, 0.2 g of the flash frozen sample
was accurately weighed, transferred to a centrifuge tube containing 1 mL of the sodium
phosphate buffer, ground into a homogenate by a hand-held grinder, and centrifuged
at 12,000 rpm for 15 min at 4 ◦C. Then, the absorbance of supernatant was measured at
different wavelengths using a spectrophotometer (Shanghai Precision Instruments Co.,
Ltd., Shanghai, China, Model v-5800). Specifically, the absorbance values of glutathione
S-transferase (GST), glutathione (GSH), oxidized glutathione (GSSG), glutathione reductase
(GR, EC 1.6.4.2), malondialdehyde (MDA), peroxidase (POD, EC 1.11.1.7), superoxide
dismutase (SOD, EC 1.15.1.1), peroxidase (CAT, EC 1.11.1.6), and ascorbate peroxidase
(APX, EC 1.11.1.11) were measured at 340 nm, 412 nm, 412 nm, 532 nm, 470 nm, 450 nm,
510 nm, and 290 nm, respectively. The above physiological indexes were determined
according to a previous method and using the corresponding kit (Grace Biotechnology,
Suzhou, China) [31].

4.7. Statistical Analysis

The experiment was designed with random blocks, and there were at least three
experiments and biological repetitions. The data are shown as the mean ± SE (standard
error) of the three replicates. For statistical analysis, SPSS Statistics Ver. 22 (IBM, New
York, NY, USA) and GraphPad Prism 6 (Boston, MA, USA) were used. One-way ANOVA
and Student’s t-test were used for comparisons, and p ≤ 0.05 was the threshold for a
significant difference.

5. Conclusions

In this study, a soybean gene GmGSTU23 encoding a tau class glutathione transferase
was identified. GmGSTU23 was up-regulated under salt stress. The overexpression of
GmGSTU23 in Arabidopsis thaliana lines enhanced their tolerance to salt stress. Based on the
physiological data and previous studies, we speculated that GmGSTU23 might improve the
activity of glutathione transferase and the clearance of ROS by GSH, thereby alleviating salt
toxicity in plants. This study provides some support for understanding the mechanisms of
plant regulation of salt tolerance.
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