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Abstract: Laurus nobilis (bay laurel) is a natural source of biological compounds, and some of its
extracts and phytocompounds are also endowed with antiviral activity toward the family of the severe
acute respiratory syndrome (SARS)-associated β-coronaviruses. Some glycosidic laurel compounds
such as laurusides were proposed as inhibitors of important protein targets of SARS-CoV-2, which
clearly recalls their potential as anti-COVID-19 drugs. Due to the frequent genomic variations
of the β-coronaviruses and the consequent importance of evaluating a new drug candidate with
respect to the variants of the target β-coronavirus, we decided to investigate at an atomistic level
the molecular interactions of the potential laurel-derived drugs laurusides 1 and 2 (L01 and L02,
respectively) toward a well-conserved and crucial target, the 3C-like protease (Mpro), using the
enzymes of both the wild-type of SARS-CoV-2 and of the more recent Omicron variant. Thus, we
performed molecular dynamic (MD) simulations of laurusides—SARS-CoV-2 protease complexes
to deepen the knowledge on the stability of the interaction and compare the effects of the targeting
among the two genomic variants. We found that the Omicron mutation does not significantly
impact the lauruside binding and that L02 connects more stably with respect to L01 in the complexes
from both variants, even though both compounds prevalently interact within the same binding
pocket. Although purely in silico, the current study highlights the potential role of bay laurel
phytocompounds in the antiviral and specifically anti-coronavirus research and shows their potential
binding toward Mpro, corroborating the important commitment of bay laurel as functional food and
disclosing novel scenarios of lauruside-based antiviral therapies.

Keywords: molecular dynamics; 3C-like protease; Mpro; omicron; variants; SARS-CoV-2; COVID-19;
bay laurel; phytochemistry; food drugs

1. Introduction

The two most serious pandemics of the 21st century were caused by β-coronaviruses:
SARS in 2002–2003 was linked to SARS-CoV [1], while the 2019 coronavirus disease (COVID-
19) [2] was caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2),
for which numerous prophylactic [3–7] and therapeutic [8–14] measures were investigated.
COVID-19 has affected about 755 million people as of 7 February 2023 and more than
6.8 million people have died (according to https://covid19.who.int/, accessed on 7 Febru-
ary 2023). Despite the enormous efforts that the scientific research and the pharmaceutical
companies have made in developing effective prophylactic and/or therapeutic agents, the
efficiency of these measures is hampered by the frequent changes in the SARS-CoV-2 virus
genome. Famously, vaccines trigger an immune response in the body, which is believed to
be bolstered also by constant physical exercise [15], nature-inspired strategies [16–19], or
following the consumption of vitamins and micronutrients [20]. However, SARS-CoV-2
has evolved to produce variant strains with varying levels of virulence and transmissibility
including Alpha (B.1.1.7), Beta (B.1.351), Gamma (P.1), Delta (B.1.617.2), and Omicron
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(B.1.1.529) [21]. Notably, compared to other variants of SARS-CoV-2, Omicron is the most
highly mutated, with 50 mutations across its genome, especially in the gene encoding for
the spike (S) protein. These mutations help Omicron evade the immune barrier offered by
the available immunizations [22]. Due to the high risk of infection and high reinfection rate,
Omicron became the dominant variant worldwide. However, although it is highly conta-
gious and spreads rapidly, epidemiological studies have shown that Omicron leads to less
severe COVID-19 than wild-type strains and other variants of SARS-CoV-2 [23,24]. In any
case, the likelihood of SARS-CoV-2 with its variants remaining around for an extended pe-
riod of time, with serious consequences in elderly and frail patients and of new pathogenic
β-coronaviruses appearing in the next decades, emphasizes the importance of developing
safe and effective broad-spectrum anti-coronavirus drugs. In this context, the main protease
(Mpro) of SARS-CoV-2, also termed 3-chymotrypsin-like proteases (3CLpro), is an attractive
therapeutic target due to the critical role it plays in viral replication and its conservation
among β-coronaviruses and the different SARS-CoV-2 variants [25]. Thus, considering
that the Mpro has a crucial role in the life cycle of all the human β-coronaviruses, this
hydrolase is viewed as a promising target for developing broad-spectrum anti-coronavirus
therapies [26] and, more specifically, accumulating evidence has consolidated an indis-
pensable role for the Mpro targeting as a fundamental strategy for therapy of COVID-19.
Importantly, the absence of any closely related Mpro homologs in humans makes Mpro

inhibitors a first-choice class of COVID-19 drugs, which are unlikely to cause any serious
side effects [26].

Structurally, the Mpro (34.21 kDa) monomer consists of three domains, including
domain I, domain II, and domain III, with the latter one being an extra helix domain, whose
aggregation initiates the Mpro dimerization in a homodimeric form, which is more active
than the monomer and acts as the functional unit endowed with the highest hydrolytic
function. Notably, the catalytic site is found at the intersection of domains I and II, which
can be divided into five (S1–S5) sub-pockets, and only one of the two catalytic sites possesses
hydrolytic activity in the homodimer. Different from 3-chymotrypsin whose activity is
linked to a catalytic triad, the Mpro function is based on a catalytic dyad formed by His-41
and Cys-145 [26]. Apart from the catalytic dyad, the Mpro active site is demarcated by
residues Ser-46, Gln-189, Thr-190, Ala-191, Pro-168, Glu-166, Leu-141, and Asn-142 [27].

To date, some synthetic drugs such as Nirmatrelvir, marketed as Paxlovid [28,29],
as well as numerous natural molecules, have been identified as efficacious inhibitors of
the Mpro, displaying great potential for developing novel COVID-19 drugs and broad-
spectrum anti-coronavirus therapeutics [26]. Among the several classes of compounds
with importance as inhibitors of the Mpro, those found in foods and especially plants
of dietary use are given a great relevance. In fact, over the past few years, a number
of structurally diverse plant molecules [30,31] and their derivatives have been found to
have potential therapeutic effects [32], and some of them have been identified as antiviral
molecules. In general, different studies have demonstrated the beneficial properties of
culinary Mediterranean plants [33,34] and corresponding functional foods [35–37] with
respect to several ailments. Some of them can strengthen the human body’s defenses against
viral infections because they interfere with the life cycle of the virus or have beneficial
effects on the host immunity [38–41], while others such as several steroidal glycosides
including ouabain, digitoxin, and digoxin have shown in vitro a direct inhibitory activity
against SARS-CoV-2 [42]. The influenza viruses and the coronavirus SARS-CoV-2 are
only some examples of the many viral pathogens that can be managed using foods with
antiviral properties [43] including bay laurel (Laurus nobilis), a culinary Mediterranean plant
whose extracts were found to be active against highly pathogenic human coronaviruses
such as SARS-CoV [44]. Remarkably, bay laurel contains specific glycosides known as
laurusides [45] that were hypothesized to be inhibitors of SARS-CoV-2 Mpro [46] and, among
these, laurusides 1 and 2 (herein below indicated as L01 and L02) showed high scores of the
Mpro binding affinity [46], and enzyme inhibition as predicted by Molinspiration software
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(Table S1). Chemically, L01 and L02 are diastereomers showing comparable properties, as
reported in Table S1.

Pursuant to the above premise, we decided to investigate in the present work the
interaction of laurusides L01 and L02 with the Mpro of both wild-type and Omicron variants
of SARS-CoV-2 by using molecular dynamics simulations. Although purely in silico and
lacking an experimental validation, this is a relatively rapid approach that makes it possible
to obtain important information on new drug candidates (Scheme 1).
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Scheme 1. Schematic representation of the main methodology adopted in this work. Laurel-derived
glycosides (laurusides) are investigated by molecular dynamics (MD) as potential binders of the
Mpros of wild-type and Omicron SARS-CoV-2 in the context of the new anti-β-coronavirus drug
discovery (photo taken by GN Roviello).

The main goals of this investigation were (i) to get more insights on the potential ability
of these phytocompounds to interact with residues of the protease involved in its catalytic
activity, potentially inhibiting a function that is of vital importance for virus replication; as
well as (ii) to collect new elements supporting the hypothesis of a potential utility of bay
laurel as a source of food drugs useful to prevent or mitigate the effects of the infection
caused by SARS-CoV-2 and possibly other β-coronaviruses.

2. Results and Discussion

To investigate in silico the Mpro binding activities of laurusides L01 and L02, we
modeled their respective interactions with the main proteases of wild-type and Omicron
variants of SARS-CoV-2 (MproWT and MproO, respectively). Indeed, this molecular interac-
tion could reinforce the hypothesis that laurusides are able to protect from the COVID-19
infection by inhibiting the Mpro activity already reported in [46] and could thus, support
the use of bay laurel as functional food.

The three-dimensional structure of L01 and L02 (depicted as 2D structures in Figure S1)
were manually complexed with both the Mpro variants, using the Nirmatrelvir inhibitor [28,29]
in complex with the Mpro of Omicron (carrying the P132H mutation) deposited in the 7TLL
X-ray PDB structure [47] as guide to define the binding pose (Figure 1). In this complex
structure, the ligand cyano moiety contacted Asn-142, Gly-143, Cys-145, and Glu-166 with
its main binding residues seeming to be asparagine and cysteine. In detail, the models of
the two Mpro variants were both superimposed to the 7TLL structure, and the binding pose
of the Nirmatrelvir was used to define the binding pockets of the lauruside compounds.
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Figure 1. Wild-type and Omicron Mpro variants in complex with the L01 and L02 compounds.
The protein structures are shown in cartoon and the compounds in spheres with the following
scheme color: magenta: L01-MproWT (W1), yellow: L02-MproWT (W2), green: L01-MproO (O1), cyan:
L02–MproO (O2).

The obtained four lauruside-Mpro complexes (hereafter W1, W2, O1, and O2 for L01
and L02 in complex with wild-type and Omicron SARS-CoV-2, respectively) were then
subjected to 500 ns of MD simulation, to stabilize the models and to assess the efficacy of the
two ligands in targeting the Mpros in that specific pocket. The root mean squared deviations
(RMSD), computed considering the protein C-α atoms along the trajectories, were also
measured to monitor the deviation of the proteins from the initial conformation (Figure 2).
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Figure 2. Top: C-α RMSD profiles along the L01–MproWT, (mean: 0.22, SD: 0.02, black), L02–MproWT
(mean: 0.24 and SD 0.04, red), L01–MproO (mean: 0.26 and SD: 0.03, green) and L02–MproO (mean
0.22 and SD 0.02, blue) whole simulation complexes. Bottom: residue root-mean-square fluctuation
(RMSF) profiles along the L01–MproWT, (black), L02–MproWT (red), L01–MproO (green) and L02–
MproO (blue) whole simulation complexes.
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This analysis suggests that the enzymes deviate in a comparable fashion along all
the trajectories and the two ligands do not induce important Mpro conformation changes.
Moreover, the RMSF plots of the protein residues were comparable along the four trajecto-
ries (Figure 2). Globally, the proteins are poorly affected by the presence either of L01 or
L02 in both the variants. Although no significant overall changes of the three-dimensional
structure of the protease were provoked by our ligands, their interaction with the Mpro

could be still important as it may impede the virus infection by occupying an important
active site of the protease structurally hindering the access to the natural substrates. Thus,
we monitored the ligand-protein interactions by computing the persistence of the hydrogen
bonds (Tables 1 and 2) and the distances between the ligand and the protein center of
masses along the four simulations (Figure 3A).

Table 1. Percentage of occurrence of ligand-protein residue connections along the trajectory frames.
For each pair, the sum of the hydrogen bonds between any residue atoms is considered.

Occurrence (%)

W1 W2 O1 O2

Thr 24 8
Thr 25 8
Thr 26 12
His 41* 8 5 9
Thr 45 3
Ser 46 11 3
Tyr 54 17
Met 49 16
Asn 142 13 58 13
Gly 143 2 13
Cys 145 * 4
His 164 * 20 7 68
Glu 166 * 24 18 2 83

Asp 187 100
Arg 188 63 2 13
Gln 189* 23 5 41 2
Thr 190 12 7
Gln 192 73 11 9

* appendix indicates residues taking part to the Nirmatrelvir binding site in the 7TLL PDB structure.

Table 2. Percentage of occurrence of ligand-protein connections along the trajectory frames, for each
atomic pair. Only the connections present in more than 20% of the frames are reported.

MD Protein Atom Ligand Atom Occurrence (%)

w1 His 164 * O L01 O2/O3 20
w2 Asn 142 ND2 L02 O1 26

Asn 142 OD1 L02 O4/O57/O8 32
Asp 187 OD1/2 L02 O2 100
Arg 188 O L02 O3 63
Gln 192 O L02 O9 32
Gln 192 N L02 O8 34

o1 - - - - - -
o2 His 164 * ND1 L02 O2 66

Glu 166 * OE1/2 L02 O8/O9 21
Glu 166 * N L02 O10 33
Glu 166 * N L02 O7 21

* appendix indicates residues taking part to the Nirmatrelvir binding site in the 7TLL pdb structure.
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Figure 3. Protein-ligand center of masses distances along the L01-MproWT, (black), L02-MproWT
(red), L01-MproO (green) and L02-MproO (blue) whole simulation complexes (A). Zoom view of the
complex binding pose of the representative structures of Mpro variants in complex with L01 and L02.
The protein structures are shown in transparent surface and the main protein residue interactors
and the compounds in sticks and spheres. L01-MproWT (a), L02-MproWT (b), L01-MproO (c) and
L02-MproO (d) (B).

In Table 1, the ligand-protein connections are reported as the percentage of hydrogen
bonds occurrence among all the trajectory frames. L02 connects for more than 50% of
the MD frames with the residues Asn-142, Arg-188, and Gln-192 in W2 and with Glu-166
in O2, but Asp-187 in W2 and His-164 in O2 are importantly connected to this ligand in
more than 80% of the frames (Table 1). L01 shows a less conserved binding mode with
more variable interaction networks of wider but poorly persistent connections and lower
persistence of hydrogen bonds with either MproWT than MproO enzymes. In fact, this
ligand detaches from the pocket during the last part of O1 simulation time (Figure 3A),
while the other trajectories show the protein-ligand center-of-mass (COM, computing
considering the overall protein and ligand atoms, respectively; for more details, please
see Section 3) distance profiles to be comparable and rather stable. Even though this is
somewhat expected given the nature of the targeting—indeed non-covalent interactions
may induce loss-and-recapture events of the binding pose—such behavior is consistent
with the lower stability of the L01-Mpro complexes relative to the L02 ones. In Figure 4,
the representative complex conformations of each simulation, extracted from all the MD
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frames, are superimposed to the relative starting state to visualize the deviations from the
initial pose of each system.
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Figure 4. Superimposition of the starting and the representative structures of Mpro variants in
complex with the L01 and L02 compounds. The proteins are shown in transparent surface and the
compounds in sticks and spheres with the following scheme color: gray: starting trajectory structures,
magenta: L01-MproWT, yellow: L02-MproWT, green: L01-MproO, cyan: L02-MproO.

Consistent with the analysis described above, L02 well retains the initial position
interacting with both Mpros. Conversely, L01 reveals a significant deviation from the initial
binding region, particularly when it interacts with the Omicron Mpro protein variant. A
detailed view of the most representative poses along the trajectories is also depicted in
Figure 3B, where the main residues involved into the atomic interaction that persist for at
least 20% of the trajectory frames along the MD are shown.

In summary, to explore at an atomistic level of details the Mpro binding ability of
the laurusides, we here used MD simulations. During our calculations, one of the two
ligands (L02) showed a more stable profile of interaction with both the Mpro variants
with respect to the other ligand. In fact, L01 shows a less conserved targeting along the
simulations, even if the binding is retained during most of the MD time. On the other
hand, L02 can target the main SARS-CoV-2 protease stably accommodating in the same
site occupied by Nirmatrelvir in its complex with the Omicron Mpro variant, as solved in
the 7TLL PDB structure (Table 1) and used here as a template. Notably, L02 persists in
the initial region for all simulations and, despite some rearrangements of the interaction
network involving the sugar moieties, it stably connects to Asp-187 in wild-type and to
Glu-166 in Omicron Mpro variants through persistent hydrogen bonds brought by the
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cyclohexane ring. In contrast, L01 exhibits a different targeting profile albeit differing only
in the configuration of the secondary OH group on the cyclohexane moiety (Figure S1). To
better clarify the different behavior of the two compounds, we evaluated the intramolecular
hydrogen bonds within L01 and L02 (Table S2 and Figure S2). Notably, a higher number
of persistent hydrogen bonds within the L01 with respect to L02, confirms that the last
diastereomer is more prone to interacting with the protein, showing a not significant
number of connections within the compound, except those among very close atoms. On
the other hand, the diverse targeting properties shown by our ligands are represented
somewhat already in the literature regarding diastereomers [48]. Overall, our investigations
deepen important aspects of this molecular diversity, which often affects the efficacy of
mixtures of compounds, often hiding the potential of the pure ligands as therapeutics.
Natural compounds can be available in racemic or diastereoisomeric mixtures and the
relative components’ efficacy needs to be carefully analyzed considering the diverse efficacy
of the single components. We here show that a detailed picture of the interactions at the
atomistic level is essential to suggest and guide novel applications of compounds extracted
from natural products, such as lauruside derivatives, differing from each other for the
configuration even of single stereocenters.

3. Methods

The three-dimensional structure of the wild-type and Omicron proteases were down-
loaded from the Protein Data Bank database (PDB: 6Y84 [49] and 7TLL [47], respectively).
These structures were then used as templates to create whole models of the systems, filling
the structural gaps, by homology modelling with MODELLER 9.22 program [50]. The three-
dimensional structures of the two laurusides compounds were obtained by MOLVIEW
(http://molview.org, accessed on 9 February 2023) in analogy to other literature exam-
ples [51,52], saved as .pdb files, and manually complexed into the Mpro variants using the
binding pose of Nirmatrelvir in PDB 7TLL as a guide [47]. In particular, the coordinates of
the Nirmatrelvir were used for the binding pocket definitions in order to insert both the
laurusides, upon superimposition of the two variant models on the 7TLL X-ray structure
of Nirmatrelvir in complex with Omicron Mpro. The representative conformations were
extracted from each MD simulation by the clustering method. MD simulations were run
using the Parmbsc1 [53] with GROMACS 2020.6 [54] upon solvation of the systems in an
octahedron box using the TIP3P [55] water models with a 1.1 nm distance to the border
of the molecule, and 150 mM KCl concentration and additional ions for neutralization
were added to simulate the biological conditions. The particle-mesh Ewald [56] method
and Berendsen [57] algorithm were used to treat electrostatic interactions and control
temperature and pressure, as already performed in previous protocols [58–61]. All the
system waters were firstly relaxed by energy minimization and 10 ps of simulations at
300 K using protein and ligands atomic position restrains, with a harmonic potential. Suc-
cessively, the systems gradually heated from 50 K to 300 K in a six step phases. Finally,
simulation runs for 500 ns without restraints were preceded by NPT standard conditions
for 2500 steps. The trajectories were analyzed using GROMACS [62] VMD [63] Grace [64]
and Pymol [65] packages. Clustering analyses of each MD simulation were used to select
representative conformations of each complex using the gromos clustering method with
the algorithm presented by Daura et al., based on RMSD criteria [66]. The center-of-mass
distances plotted in Figure 3A were computed by using GROMACS tools; we also reported
as comparison the distance between the Omicron Mpro protein and Nirmatrelvir center of
masses of the X-ray structure 7TLL (Figure S3). Note that Nirmatrelvir belongs to the class
of the synthetic peptide derivatives [67,68]. The enzymatic score for each lauruside was
computed by Molinspiration (Molinspiration Cheminformatics free web services, Sloven-
sky Grob, Slovakia; https://www.molinspiration.com/ accessed on 7 February 2023) using
the following Simplified Molecular Input Line Entry System (SMILES) codes:

http://molview.org
https://www.molinspiration.com/
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L01 [IUPAC name: (2R,3E)-4-[(1S,4R,6R)-1,4-Dihydroxy-2,2,6-trimethylcyclohexyl]-3-buten-2-yl 6-
O-[(2R,3R,4R)-3,4-dihydroxy-4-(hydroxymethyl)tetrahydro-2-furanyl]-β-D-glucopyranoside ] SMILES:
C[C@H](C=C[C@@]1(O)[C@H](C)C[C@@H](O)CC1(C)C)O[C@@H]3O[C@H](CO[C@@H]
2OC[C@](O)(CO)[C@H]2O)[C@@H](O)[C@H](O)[C@H]3O
L02 [IUPAC name: (2R,3E)-4-[(1S,4S,6R)-1,4-Dihydroxy-2,2,6-trimethylcyclohexyl]-3-buten-2-yl 6-
O-[(2R,3R,4R)-3,4-dihydroxy-4-(hydroxymethyl)tetrahydro-2-furanyl]-β-D-glucopyranoside ] SMILES:
C[C@@H]1C[C@@H](CC([C@]1(/C=C/[C@@H](C)O[C@H]2[C@@H]([C@H]([C@@H]([C@H]
(O2)CO[C@H]3[C@@H]([C@](CO3)(CO)O)O)O)O)O)O)(C)C)O

More details on the enzymatic inhibition score and other useful information achievable
through Molinspiration are given at https://www.molinspiration.com/docu/miscreen/
druglikeness.html (accessed on 7 February 2023).

4. Conclusions

Aiming to provide more efficacious COVID-19 drugs useful also as broad-spectrum
anti-coronavirus agents [69], in this work we focused on the structural features of the
binding of certain almost unexplored phytomolecules, i.e., the laurusides extracted from
bay laurel, toward one of the main therapeutic targets investigated in the fight against
pathogenic human β-coronaviruses, i.e., the main protease Mpro. More in detail, we
examined the binding behavior of two glycosidic compounds found in bay laurel, herein
referred to as L01 and L02, toward the Mpro of both wild-type and Omicron SARS-CoV-
2. Molecular dynamics studies showed that Mpro-L01 complexes show more variable
interaction networks of wider but poorly persistent connections and lower persistence
of hydrogen bonds with either the protease of the wild-type virus or the protease of the
Omicron mutation. On the other hand, L02 is able to target the main SARS-CoV-2 protease
stably accommodating in the same site occupied by Nirmatrelvir in its complex with the
Omicron Mpro variant. Overall, our ligands, and especially L02, connect to the protein
region deputed to accommodate the physiological substrates of the protein; indeed, specific
residues of the Mpro catalytic site, such as Asn-142, and Glu-166, are also persistently
interacting with laurusides. In summary, our analyses shed light on crucial structural points
of targeting essential in the interaction of the laurel glycosides with the main protease
of both the wild-type and Omicron variant of SARS-CoV-2. From a more applicative
perspective, this study highlights not only the importance of laurusides from Laurus nobilis
as Mpro ligands able to potentially modulate the protease activity with possible anti-COVID
therapeutic effects, but it also supports the current importance given to bay laurel as a
functional food that is part of the Mediterranean diet.
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