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Abstract: Wnt ligands are secreted signaling proteins that display a wide range of biological effects.
They play key roles in stimulating Wnt signaling pathways to facilitate processes such as tissue
homeostasis and regeneration. Dysregulation of Wnt signaling is a hallmark of many cancers and
genetic alterations in various Wnt signaling components, which result in ligand-independent or
ligand-dependent hyperactivation of the pathway that have been identified. Recently, research is
focusing on the impact of Wnt signaling on the interaction between tumor cells and their micro-
environment. This Wnt-mediated crosstalk can act either in a tumor promoting or suppressing
fashion. In this review, we comprehensively outline the function of Wnt ligands in different tumor
entities and their impact on key phenotypes, including cancer stemness, drug resistance, metastasis,
and immune evasion. Lastly, we elaborate approaches to target Wnt ligands in cancer therapy.

Keywords: Wnt signaling; Wnt ligands; cancer; non-canonical Wnt signaling; tumor microenviron-
ment; metastasis; immunotherapy; targeted therapy

1. Introduction

In 1973, the first genomic locus of a Wnt ligand (wingless) was discovered as a crucial
component for wing formation in Drosophila melanogaster [1]. In the following years,
several other loci whose disruption caused segmentation defects during Drosophila devel-
opment, a phenotype linked to Wnt signaling, were found to encode genes evolutionarily
conserved in many other species, including vertebrates [2]. Wnt ligands (WNTs) were
linked to cancer when the insertion of the mouse mammary tumor virus (MMTV) into the
promoter of int1, the murine ortholog of wingless (later termed Wnt1), was discovered to
induce mammary tumors in mouse models [3]. Later, it was shown in hereditary colorectal
cancers that hyperactivation of the Wnt pathway is closely linked to carcinogenesis in
humans [4–7]. These findings have initiated many research efforts to uncover the function
of components of the Wnt pathway and its physiological roles, including WNTs, in health
and disease. In this review, we provide an overview of the various roles WNTs play in
tumorigenesis and tumor progression.

1.1. Secretion of WNTs

The family of WNTs comprises 19 distinct genes in humans [8]. WNTs are cysteine-rich
proteins of approximately 40 kDa size [9], which are secreted via the endoplasmic reticulum
(ER) and the Golgi apparatus by a machinery of proteins assisting post translational
modification and transport through the secretory pathway [8]. Upon their translocation
into the ER lumen, glycosaminoglycans are attached to the nascent WNTs at different
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sites [10,11]. Additionally, the ER-resident acyltransferase Porcupine attaches palmitoleic
acid to specific cysteine and serine residues of the WNTs [12]. Subsequently, the cargo
protein Wntless/evenness (WLS/Evi) binds to WNTs by binding to the palmitoleic acid and
guides them through the secretory pathway [13–17]. Upon secretion from the producing
cell, modified WNTs are presented to the recipient cells, either bound to carrier proteins,
such as afamin, or on exosomes or cytonemes to exert their effects in an auto- or paracrine
manner [8,18]. The cargoreceptor Evi/Wls is recycled from the plasma to the ER by a
retromer-dependent mechanism to be loaded again with WNTs [19,20]. Recently, it has
been shown that the abundance of WLS/Evi in the ER is regulated by its ubiquitination
and subsequent degradation, thereby restricting the secretion of WNTs (Wolf and Boutros,
Development, in press) [21].

1.2. The Role of Secreted WNTs in Canonical and Non-Canonical Wnt Signaling

Wnt signaling can be categorized into canonical, β-catenin-dependent signaling, and
several non-canonical, β-catenin-independent pathways. In development and homeostasis,
canonical Wnt signaling is induced by binding of WNTs to their cognate receptors on the
cell membrane. WNTs bind to Frizzled (FZD) receptors and Lrp5/6 co-receptors, result-
ing in Disheveled (DVL) polymerization and subsequent inactivation of the destruction
complex. DVL polymerization leads via additional steps to the accumulation and nuclear
translocation of β-catenin. In the nucleus, β-catenin binds to members of the TCF/LEF
transcription factor family and subsequent expression (or inhibition) of Wnt target genes,
contributing to cell differentiation, proliferation, or maintenance of stemness [22,23]. In
the absence of WNTs, the destruction complex, a large protein multimer comprising the
scaffolding proteins APC and AXIN1/2, the serin/threonin kinases CK1 and GSK-3β,
and the E3 ubiquitin ligase β-TrCP, targets the transcriptional co-activator β-catenin for
proteasomal degradation [22,24]. Canonical Wnt signaling can be augmented by R-spondin
ligands, which increase the abundance of FZDs on the plasma membrane by binding to
LGR5 receptors and consequently inhibiting the E3 ubiquitin ligases RNF43/ZNRF3, which
target FZDs for degradation [25,26].

Unlike canonical Wnt signaling, which drives the expression of transcriptional targets,
non-canonical Wnt signaling comprises different pathways that do not result in the stabi-
lization of β-catenin. The Wnt/planar cell polarity (PCP) and the Wnt/Ca2+ pathways are
both activated by specific WNTs, such as WNT5A and WNT11, but result in the activation
of distinct signaling cascades [27]. In the Wnt/PCP pathway, non-canonical WNTs bind
to FZD receptors and co-receptors, such as VANGL, ROR1/2, and PTK7, which leads to
cellular and transcriptional responses, including activation of the Rho/ROCK and JNK
signaling cascades. As one consequence, alterations of the cell morphology and motility
are induced [28–31]. In Wnt/Ca2+ signaling, binding of WNTs to FZD receptors results in
a swift increase in intracellular Ca2+ levels and subsequent activation of Ca2+-dependent
proteins. For instance, Wnt/Ca2+ signaling can directly influence cell function independent
of transcription by activating protein kinase C (PKC) or calmodulin-dependent protein
kinases (CAMK). Additionally, increased Ca2+ levels lead to transcriptional changes by
modulating the activity of NFAT and NF-κB [32,33].
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Another β-Catenin-independent pathway, Wnt/STOP signaling, requires components of
the canonical Wnt cascade upstream of β-Catenin, such as LRP6 receptors and DVL [34–36].
Wnt/STOP signaling results in the reduction of the GKS3-dependent polyubiquitination
of a variety of proteins and, therefore, increases their abundance. An important target
of Wnt/STOP is the cell cycle regulator c-MYC [34]. Among the effects mediated by
Wnt/STOP signaling are the regulation of cell size and correct microtubule assembly dur-
ing mitosis. Recently, it has been discovered that most WNTs fail to activate Wnt/STOP
signaling. WNT10B was identified as an essential ligand for activation of Wnt/STOP signal-
ing in human cancer and somatic cell lines [35]. The relevance of this novel Wnt pathway
in cancer biology remains to be elucidated, but recent findings indicate an involvement of
Wnt/STOP in ribosome biogenesis in human pancreatic cancer models [37].

WNTs can be classified into activators of canonical or non-canonical Wnt pathways.
Initial studies in Xenopus showed that Xwnt1, -3A, -8, and -8b activate canonical Wnt
signaling, whereas it was shown that non-canonical WNTs can inhibit canonical Wnt
signaling, either via competition at the receptor level or by inducing caspase-mediated
cleavage of β-catenin [38–40]. Furthermore, Xwnt5A, -4, and -11 can exert additional
effects [41,42]. In Table 1, the effects of each WNT ligand on Wnt signaling and other
oncogenic signaling pathways observed in human cancers are summarized.

Table 1. Effects of WNTs on canonical and non-canonical Wnt signaling in cancer; + activating effect
reported, - inhibiting effect reported, * no effects reported.

Gene Canonical Wnt
Signaling

Wnt/
PCP Wnt/Ca2+ Other Pathways Reference

WNT1 + * * EGFR-ERK1/2 [43–46]

WNT2 + * * [47–50]

WNT2B + * * [51]

WNT3 + * * [52]

WNT3A + * + [52–54]

WNT4 + + * [55,56]

WNT5A +/- + *

YAP/TAZ, p53
stabilization,
MAPK-ERK,

MAPK-Rac1-p38

[53,57–63]

WNT5B + *
YAP/TAZ, cell

cycle, LAT1,
MMP-10

[64–66]

WNT6 + * * [67]

WNT7A + * * MMP-10 [68]

WNT7B + * + [69,70]

WNT8A * * *

WNT8B + * * [71]

WNT9A * * *

WNT9B * * *

WNT10A * * *

WNT10B + * * Wnt/STOP [35,72]

WNT11 - + * MAPK-p38 [73–77]

WNT16 + * * [78]

1.3. The Expression and Regulation of WNT Ligands in Cancer

Most research on Wnt signaling in cancer has focused on the biological consequences
of mutations of Wnt pathway components, such as APC or β-catenin. However, WNTs are
also differentially expressed in various cancer entities, such as breast cancer and colorectal
cancer (CRC), as shown in an analysis of RNA sequencing data from the TCGA database
(Figure 1) [47,52,79,80]. As each specific WNT ligand plays distinct roles in development
and tissue homeostasis, their expression needs to be tightly controlled on a spatio-temporal
level [81]. The expression of WNT genes is regulated by a variety of (tissue-specific)
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transcription factors and finetuned post-transcriptionally by non-coding RNAs [82,83].
In carcinogenesis, tumor cells often hijack these regulatory mechanisms to increase the
expression of specific WNTs. For instance, the upregulation of WNT11 observed in small
cell lung cancer cell lines was found to be facilitated by the oncogenic transcription factor
ASCL1 [76]. Another example is that the transcription factor and known tumor suppressor
GATA4 inhibits WNT7B expression via TGF-β signaling in murine lung cancer models [84].
Similarly, GATA6, a tumor-suppressive transcription factor that is mutationally inactivated
in pancreatic cancer, suppresses the expression of WNT7B [85,86]. In t(1;19) pre-B acute lym-
phoblastoid leukemia (ALL), the oncogenic fusion protein E2a-pbx1 drives the expression
of WNT16 [87]. Moreover, specific cases of post-transcriptional control of WNT transcripts
by miRNAs or lncRNAs have also been described [46,65,68,72,88–95]. For instance, the
expression of WNT1 was shown to be regulated by miRNA-148a in non-small cell lung
cancer [90], and miRNA-200b in gastric cancer and CRC [46,94]. Overall, a dysregulated
expression of various WNTs in diverse cancer types was described, but the functional
consequences has remained elusive in most cases.

Notably, not only WNTs are implied in the regulation of WNT signaling in tumor
cells and their microenvironment. In multiple myeloma, for instance, Dickkopf-1 (DKK1),
an inhibitor of WNT-receptor-interaction, secreted by myeloma cells takes a key role in
formation of osteolytic lesions by inhibiting osteoblast differentiation [96,97].
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Figure 1. Expression of WNT ligands in different tumor entities. (A) Transcript abundance of all
WNT genes in a panel of selected cancer entities. High expression is indicated in green. WNTs are
specifically expressed across different cancer entities, e.g., WNT7B is highly expressed in cancers
derived from squamous cell epithelium. For all available datasets of tumor tissues, log2 of the median
fragments per kilobase million (FPKM) values of all samples is shown. (B) Relative expression of all
WNT genes in a panel of cancer entities compared to corresponding normal tissues. Upregulation
of a gene in cancer tissues is shown in red, while downregulation is indicated in blue. (A,B) Data
were obtained from the TCGA database using the TCGAbiolinks package in R [98]. Heatmaps were
generated using the Complexheatmap package [99]. For all datasets providing normal tissue gene
expression data, median FPKM values were separately calculated for normal and tumor tissues. From
these values, log2(fold change) was calculated.
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2. The Interplay of Secreted WNTs and Oncogenic Signaling Pathways

WNT proteins have pleiotropic effects during homeostasis and development, partly
due to modulation of signaling cascades resulting in altered gene transcription, Ca2+ levels
and cytoskeletal rearrangements. Thus, WNTs can contribute to a multitude of oncogenic
processes. Even though different WNTs can exhibit overlapping effects on signaling pathways,
there are many examples of context- and tissue-specific effects of individual WNTs. Here, we
describe the involvement of specific WNTs in β-catenin-dependent and -independent signaling
cascades, which contribute to cancer initiation and progression (Figure 2).
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Figure 2. Overview of mechanisms by which secreted Wnt ligands promote cancer cell prolifera-
tion. Several WNTs, among those WNT1, WNT2, and WNT3A, activate canonical Wnt signaling
to promote proliferation. Beside effects on canonical Wnt signaling, WNTs act on multiple other
pathways to stimulate cell growth. For instance, WNT5B promotes cell cycle progression and uptake
of amino acids in lung cancer, as well as stimulates Hippo signaling in breast cancer. WNT4, WNT5B,
and WNT11 activate Wnt/PCP signaling. WNT5B and WNT11 furthermore activate p38-MAPK
signaling in melanoma, while WNT1 activates ERK1/2 signaling in an EGFR-dependent manner.
WNT10B has been shown to activate GSK3-dependent Wnt/STOP signaling.

2.1. Oncogenic Effects of Secreted WNTs

Hyperactivation of canonical Wnt/β-catenin signaling is often observed during car-
cinogenesis. Many in vitro and in vivo studies show that in different tumor types, such as
colorectal, lung, breast, or hepatocellular cancer, specific WNTs, including WNT1, WNT2,
WNT3A, WNT6, WNT8B, WNT7B, and WNT16B, can activate canonical Wnt signaling and
support tumor proliferation [43,46–48,50,67,69,71,78,92,94,100]. Interestingly, knockdown
of WNT3 and WNT3A reduces Wnt reporter activity in CRC cell lines with mutant APC,
indicating that WNTs can stimulate canonical Wnt signaling even in the presence of Wnt
pathway mutations [52].

Beyond their impact on canonical Wnt signaling, many tumor-promoting effects
of specific WNTs were linked to their effects on β-catenin-independent pathways. For
example, Rodriguez-Hernandez et al. reported an important role of Wnt/PCP signaling
for melanoma progression, which was induced by WNT5B and WNT11 [73]. In melanoma
cell lines, knockdown of WNT5B and WNT11 reduced the formation of melanospheres.
Knockdown of FZD7 and DAAM1, as well as pharmacological inhibition of Rho-associated
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protein kinase (ROCK), could reproduce this effect, and furthermore, reduce tumor volume
in a xenograft mouse model of melanoma. Additionally, a reduction in the invasiveness of
melanoma cells in a collagen invasion assay upon knockdown of WNT5B and WNT11 was
observed. Mechanistically, it was shown that WNT11 controls proliferation and invasion
by binding to FZD7 receptors and downstream activation of the Rho-ROCK1/2-Myosin
II signaling pathway [73]. Another interaction of WNTs and components of the PCP
pathway was demonstrated in cervical cancer cell lines and xenograft mouse models. Here,
WNT4 was shown to be a mediator of oncogenic effects of the viral oncoprotein E6. Upon
silencing of E6, a reduced translation of WNT4 and JNK interacting protein 2 (JIP2) could
be observed by polysome profiling. Overexpression of either WNT4 or JIP2 could rescue
the proliferative defect upon E6 silencing. This effect correlated with phosphorylation of
JNK, suggesting a link between Wnt/PCP and JNK signaling in this model [101]. Further,
the Wnt/Ca2+ pathway was reported to sustain tumor proliferation. In prostate cancer cell
lines, knockdown of WNT7B reduced cell proliferation. This effect could be reproduced
by knockdown of different PKC isoenzymes, which are central mediators of Wnt/Ca2+

signaling, as well as by the knockdown of the PKC substrate MARCKS. Upon ectopic
expression of WNT7B, an increased phosphorylation of MARCKS could be observed,
while knockdown of WNT7B conferred the opposite effect. This supports the hypothesis
that WNT7B enhances prostate cancer cell proliferation of by activating PKC-MARCKS
signaling [70]. Furthermore, an interplay between WNTs with other signaling pathways
besides Wnt/PCP and Wnt/Ca2+ signaling was described by several studies.

For instance, in lung cancer cell lines and transgenic mouse models, WNT7B was
shown to be the downstream effector of a GATA4–TGFB2 signaling axis which mediates
cell senescence. Knockdown of WNT7B in lung cancer cell lines could phenocopy the
senescence-inducing effect of ectopic GATA4 expression, while WNT7B overexpression
could rescue this effect. Interestingly, the effects of WNT7B were not mediated by canonical
Wnt signaling, as knockdown or pharmacological inhibition of β-catenin could not repro-
duce the pro-senescent effect of WNT7B abrogation [84]. In another study in lung cancer
cell lines, knockdown of WNT5B reduced colony formation ability. Mechanistically, knock-
down of WNT5B induced cell cycle arrest and altered the expression of cell cycle-associated
proteins. Additionally, WNT5B was shown to induce the expression of the amino acid
transporter LAT1. Overexpression of LAT1 could partly rescue the growth defect conferred
by knockdown of WNT5B, underlining its important role in mediating the biological effects
of WNT5B [65].

In breast cancer cells, depletion of WNT5B by RNAi decreased the formation of mam-
mospheres, which could be rescued by overexpression of TAZ, indicating an interplay
between Wnt and Hippo signaling on breast cancer initiation [64]. In small cell lung can-
cer (SCLC), WNT11 has been shown to act on cell proliferation and p38/AKT signaling.
Upon knockdown of WNT11, the growth of two SCLC cell lines was reduced. Conversely,
overexpression of WNT11 enhanced cell growth and was associated with increased phos-
phorylation of p38 and AKT [76]. Another interplay of a WNT with a MAPK signaling
cascade was demonstrated in a mouse breast cancer model, where WNT1 activates an
EGFR–ERK1/2 signaling axis, which contributes to tumor cell proliferation [43]

Oncogenic effects of secreted WNTs do not remain confined to solid tumor entities.
WNT5A signaling, for instance, has been reported to promote proliferation in several
hematological cancers. In multiple myeloma, WNT5A mediates the adhesion of myeloma
cells to bone marrow cells via a ROR2 and AKT-dependent mechanism [102]. In chronic
lymphocytic leukemia (CLL), WNT5A was shown to be secreted from nurse-like cells
(NLC) in the CLL microenvironment in the bone marrow and secondary lymphoid tissues. In
CLL cells, NLC-derived WNT5A was shown to enhance proliferation in a ROR1-dependent
manner [103]. Furthermore, treatment of CLL cells with WNT5A in vitro led to phosphorylation
of ERK1/2 and increased cell proliferation [63]. Altogether, WNT5A has been shown to activate
non-canonical pathways through ROR1/2 receptors in hematological malignancies.
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2.2. Tumor-Suppressive Effects of Secreted WNTs

While many tumor-promoting effects of secreted WNTs have been described, some
WNTs also display tumor-suppressive effects. Contradictory to other studies showing
an involvement of WNT5A in CRC progression [104,105], the promoter of WNT5A was
found to be frequently methylated in CRC tissues and cell lines, but not in normal colon
tissue [106]. Supporting a tumor suppressive function of WNT5A, two studies showed
that its overexpression in the CRC cell line HCT116 could reduce Wnt reporter activity,
β-catenin protein abundance and tumor growth in mouse xenograft experiments [106,107].
Ambiguous roles have also been described for WNT7A in gastric cancer. The WNT7A
promoter was shown to be frequently methylated in gastric cancer, leading to its transcrip-
tional downregulation. Overexpression of WNT7A in gastric cancer cells decreased the
expression of the EMT markers Snail and Vimentin. Furthermore, reduced cell invasion,
migration, and proliferation of gastric cancer cells were observed upon overexpression of
WNT7A. In mouse xenograft experiments, overexpression of WNT7A reduced the tumor
volume [108]. However, Wang et al. showed that WNT7A is upregulated in gastric cancer
tissues compared to normal gastric mucosa and that depletion of WNT7A by RNA interfer-
ence reduces migration and invasion capabilities of gastric cancer cells in transwell and
Matrigel invasion assays [89]. Furthermore, the canonical WNT3 is upregulated in CLL
cells compared to normal B-cells, but a relatively low expression of WNT3 is associated
with a poor prognosis [109]. In B-ALL primary cells and cell lines, treatment with WNT3A
activated expression and nuclear translocation of β-catenin and reduced leukemia prolifer-
ation [110]. These results indicate a possible tumor-suppressive effect of canonical WNTs
in lymphocytic leukemia.

To summarize, specific WNTs show diverse tumor-promoting, but also tumor-suppressive
effects in different cancer models. These phenotypes can mainly be attributed to the modu-
lation of canonical Wnt signaling, but due to their pleiotropic effects, WNTs also promote
cell proliferation by influencing other oncogenic signaling cascades.

3. Secreted WNTs in Cancer Stemness

In homeostasis, the self-renewal of stem cells is often controlled by niches containing
WNT-secreting cells [111,112]. In intestinal crypts, for instance, this niche consists of
stromal and Paneth cells, while in hair follicles, a niche of self-sustaining quiescent stem
cells with autocrine WNT secretion exists [111–113]. A similar principle can be observed
in several cancer entities, in which subsets of cells, so-called cancer stem cells (CSC), are
indispensable for tumor maintenance and progression [114]. Wnt signals can be critical
for maintaining cancer stemness, as several studies show. For instance, Tammela et al.
demonstrate that the spheroid-forming ability of lung cancer cells was drastically increased
by treatment with recombinant WNT3A, while pharmacological inhibition of endogenous
WNT secretion had the opposite effect. Using a lung cancer mouse model, they also
showed that pharmacological inhibition or genetic depletion of Porcn or Lgr5 reduces tumor
formation. In this murine model, a subset of WNT-secreting tumor cells was identified,
which constitutes a niche sustaining proliferative signaling and tumor progression [115].

In Wnt-dependent cancers characterized by mutations in RNF43/ZNRF3 or by RSPO-
fusions, WNTs provided by the tumor cells or the microenvironment are essential for
tumor propagation [116,117]. For instance, in a mouse model of WNT-dependent CRC
with intestine-specific mutations of Rnf43 and Znrf3, a Wnt3 secreting niche provided by
Paneth cells was necessary to maintain tumor growth [118]. Another study underlines
the importance of a WNT-dependent CSC population for tumor progression. In a human
patient-derived xenograft mouse model harboring PTPRK–RSPO3 fusions, which amplify
canonical Wnt signaling driven by WNTs, treatment with anti-RSPO antibodies led to
reduced tumor volumes, loss of stem cell properties, and induction of differentiation [119].
Following this logic, by losing their dependence on growth-factor-secreting niches, cancer
cells can increase their malignant potential [114]. This niche independence can be achieved
through mutations in Wnt pathway components downstream of the receptor level or by
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upregulation of autocrine WNT secretion. For example, Seino et al. demonstrated that
WNT-dependent human pancreatic cancer organoids can be classified into two subtypes,
of which one depended on stromal WNTs, while the other exhibited autocrine secretion of
WNTs [85]. It was shown that pancreatic organoids with engineered oncogenic mutations in
KRAS, CDKN2A, TP53, and SMAD4 can acquire independence of a stromal WNT-secreting
niche by upregulating endogenous WNT7B expression [85]. A similar result was shown
in a mouse model of chemically induced colon cancer without mutations in core Wnt
pathway components (AOM/DSS). Here, the expression of Wnt7a/Wnt7b was upregulated
in tumor cells compared to a healthy colon. In this model, blockage of WNT secretion from
tumor cells by conditional knockout of Wls/Gpr177 increased the proportion of apoptotic
and differentiated tumor cells, highlighting the importance of endogenous WNT secretion
to maintain self-renewing capacity [120]. Furthermore, WNTs derived from the tumor
microenvironment can contribute to cancer cell stemness, and co-culture of ovarian cancer
stem cells with M2-polarized macrophages increased the expression of the stem cell marker
ALDH in the cancer cells, an effect which could be reversed by blockade of WNT secretion,
as well as knockdown of WNT5B in macrophages [121].

The examples described above show that WNT secretion from tumor or stroma cells
promote carcinogenesis by inducing stem cell like phenotypes. However, a well-balanced
secretion of WNTs can also protect against cancer initiation. In a VillinCreERAPCfl/fl mouse
model, pharmacological inhibition of Wnt secretion favors growth of APC mutant cells. The
proposed mechanism is that APC mutant cells do not require WNTs for growth, thereby
outcompeting untransformed colon epithelial cells, which depend on WNTs secreted in the
crypt [122]. Furthermore, two studies showed that in human colon organoid models, APC
mutant cells secrete inhibitors of canonical Wnt signaling, e.g., NOTUM or WIF1, to gain
a growth advantage over WNT-dependent wild type stem cells [123,124]. These results
demonstrate the importance a well-regulated WNT secreting niche, not only for epithelial
homeostasis, but also for prevention of tumor initiation in colon.

Taken together, the discussed studies highlight the different roles of WNTs derived
from the tumor and adjacent stroma cells for cancer stemness and therapy resistance. WNTs
can, depending on the presence of cancer mutations, sustain cancer cell stemness, but also
restrict cancer initiation indirectly by supporting the growth and differentiation of adjacent
healthy cells

Secreted WNTs and Drug Resistance

Cancer treatment traditionally relies on three pillars: surgery, radiotherapy, and
chemotherapy [125]. In the last decades, targeted and immunomodulatory therapies were
added to this repertoire [125–128]. A challenge to cancer therapy is that cancer cells often
acquire therapy resistance during the course of treatment. In this context, CSCs play an
important role, as they were frequently found to be intrinsically resistant to chemo- and
radiotherapy [129,130], an observation that was mechanistically linked to hyperactive Wnt
signaling [131–133].

In line with these observations, several WNTs were functionally linked to chemo-
and radiotherapy resistance. For instance, WNT7B and FZD7 have been found to be
overexpressed on both the RNA and protein level in gemcitabine-resistant pancreatic
cancer cell lines. Upon treatment with gemcitabine in these cell lines, knockdown of
WNT7B or FZD7 reduced the proportion of cells expressing the CSC markers CD44 and
CD24, as well as increasing the proportion of apoptotic cells and reducing expression of
β-catenin [134]. Additionally, siRNA mediated knockdown of WNT2B in ovarian cancer cell
lines treated with paclitaxel or cisplatin, and increased cell death and apoptosis [135,136].
Furthermore, WNT6 expression in gastric cancer tissues was negatively correlated with
response to chemotherapy. In line with these results, knockdown of WNT6 reduced survival
in gastric cancer cells treated with anthracyclines [137]. Moreover, WNT8A has been linked
to radiation resistance. Clofibrate was shown pancreatic cancer cells sensitize to radiation.
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Mechanistically, it could then be shown that clofibrate abrogates WNT8A expression and
consequentially reduces canonical Wnt activity [138].

Besides radio- and chemotherapy, WNTs modulate the response to targeted agents. In
melanoma patients undergoing treatment with BRAF inhibitors (BRAFi), WNT5A expres-
sion in tumor tissues correlates with therapy response [59]. Upon long-term treatment with
BRAFi, melanoma cell lines upregulate WNT5A expression. Knockdown of WNT5A by
RNAi in BRAFi-resistant cell lines results in a lower activity of Akt signaling and reduced
viability upon BRAFi treatment. The effects of WNT5A in these models were shown to
depend on FZD7 and RYK receptors, emphasizing the role of non-canonical Wnt signaling
in this process [139]. Another study showed that WNT5A stabilized p53 in TP53 wild
type melanoma cell lines and thereby renders the cells resistant to BRAFi. Consequently,
inhibition of p53 induced by WNT5A sensitized the melanoma cells to treatment with
BRAF and MEK inhibitors [57].

Not only tumor-intrinsic WNT secretion is implicated in therapy resistance, but also
ligands provided by the tumor microenvironment. In prostate cancer, for instance, geno-
toxic stress induced by radio- and chemotherapy induces the expression of WNT16B in
cancer-associated fibroblasts (CAF) in vitro and in tumor biopsies. Furthermore, it was
shown that knockdown of WNT16B by shRNA in fibroblasts reduced prostate cancer cell
viability after treatment with mitoxantrone [78]. Similarly, WNT3A could be detected in
conditioned medium derived from CRC-associated fibroblasts. Addition of this medium
to CRC cell lines increased the volume of xenograft tumors generated from these cells
upon treatment with 5-fluorouracil and oxaliplatin. Concomitantly, an increased canonical
Wnt activity and expression of the stem cell markers Nanog and CD133 was observed in
these tumors. In vitro, addition of exogenous WNT3A to CRC spheres during treatment
with oxaliplatin increased sphere number, while blockade of WNT secretion by porcupine
inhibition diminished it, indicating a vital effect of WNT3A on oxaliplatin resistance of
CRC cells [140]. Two different studies showed that in CLL, WNT5A has been reported to
contribute to resistance to the BTK inhibitor Ibrutinib [61] and the BCL-2 inhibitor Veneto-
clax [62], in both cases via a ROR1-dependent signaling axis [61,62]. In mouse xenograft
models of CLL, treatment with the anti-ROR1-antibody Cirmtuzumab further reduced
spleen volume, which indicates a suppressive effect on CLL progression [61].

In summary, WNTs secreted both from tumors and adjacent stroma cells can contribute
to chemo- and radiotherapy resistance by enhancing canonical Wnt signaling and inducing
cancer cell stemness.

4. Secreted WNTs and Metastasis

Cancer development is a multistep process that involves tumor initiation, tumor pro-
gression, and metastasis. Microscopically, the process of metastasis can be subdivided
into different subprocesses, namely dissemination and invasion, intravasation, circulation,
extravasation, and colonization [141,142]. In epithelial cancers, EMT is one of the hallmarks
of metastasis. During EMT, tumor cells gain a more mesenchymal phenotype, which is char-
acterized by altered expression of specific markers, such as a reduction of E-cadherin levels
and an increase of vimentin and N-cadherin [143]. Furthermore, matrix-metalloproteinases
(MMPs) play important roles for metastasis by cleaving extracellular matrix and thereby
facilitating tumor cell invasion [144]. In this section, we highlight the roles of WNTs in
subprocesses of metastasis (Figure 3).
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to mesenchymal transition; MET, mesenchymal to epithelial transition.

4.1. Canonical WNTs and Metastasis

Beyond initiation of carcinogenesis, hyperactivation of canonical Wnt signaling can
also modulate advanced tumor phenotypes, such as metastasis. In a study in breast cancer,
a canonical Wnt signaling signature was shown to be enriched in triple-negative breast
cancer (TNBC), a subtype that exhibits high invasiveness and metastatic potential. In
TNBC-derived cell lines, either knockdown of β-catenin or pharmacological inhibition
of WNT secretion could diminish invasion and migration abilities in in vitro assays [145].
The involvement of canonical WNTs in breast cancer metastasis is further supported by
findings from a transgenic mouse model. Here, ablation of Trp53 induced the expression of
multiple WNTs, including Wnt1, Wnt6, and Wnt7a, which coincided with an increased Wnt
signaling gene expression signature. Those WNTs in turn locally induced the secretion of
IL-1β in tumor-associated macrophages, consequently promoting systemic inflammation
and facilitating pulmonary metastasis. Interestingly, this phenotype could be reverted by
inhibition of WNT secretion with a porcupine inhibitor [146].

Pro-metastatic effects of canonical Wnt signaling were shown to depend on WNTs
in other cancers, as well. For instance, WNT2 secreted from CAFs was shown to activate
canonical Wnt signaling in CRC cell lines and to promote CRC cell invasion and induce
angiogenesis in 3D co-culture assays [49,50]. Another study showed that in the CRC cell
lines HCT116 and HT29, hypoxia induced the secretion of exosomes that contain a high
amount of WNT4. Those exosomes subsequently stimulated the invasion and migration
abilities of these cell lines in vitro, which could be reverted by knockdown of WNT4 or
pharmacological inhibition of β-catenin signaling [55]. In a subclone of the urothelial blad-
der carcinoma (UBC) cell line 5637, which was selected for its increased invasion capability,
WNT7A was shown to be overexpressed compared to the parental cell line, in parallel
to an increased level of active β-catenin. In concordance with these results, treatment
of UBC cell lines with recombinant WNT7A induced the invasive behavior in transwell
assays. Consistently, tail vein injection of UBC cells transfected with a WNT7A expression
plasmid in mice resulted in an increase of lung metastasis foci. Mechanistically, it could
be shown that WNT7A induced the expression of several EMT markers, such as Vimentin
and of Matrix-Metalloprotease 10 (MMP10). In this case, the expression of MMP10 was
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demonstrated to be regulated by two TCF/LEF binding sites, suggesting an important role
of canonical Wnt signaling [68]. A similar link between WNT5B, cell invasion, and the
expression of MMP10 was also observed in squamous head and neck squamous cancer
cell lines [66]. For WNT2B, another ligand known to activate canonical Wnt signaling,
multifaceted roles in metastasis were reported. For instance, it was shown that knockdown
of WNT2B reduces invasion and migration in in vitro assays in nasopharyngeal carcinoma
cell lines [95]. Furthermore, WNT2B-conditioned medium was shown to induce the ex-
pression of EMT markers in hepatocellular carcinoma (HCC) cells, while medium of cells
with knockdown of WNT2B conferred the opposite effect [51]. Conversely, in an in vitro
model of EMT in CRC, WNT2B was shown to confer the opposite effect, as it has been
shown to be critical for the mesenchymal to epithelial transition (MET) of the CRC cell
line LIM1863 [147]. These results show that WNTs can influence the transition between
epithelial and mesenchymal states of cancer cells in both directions.

4.2. Non-Canonical WNTs and Metastasis

The non-canonical Wnt/PCP and Wnt/Ca2+ signaling pathways are strongly implied
in metastatic processes, as they are able to influence cytoskeletal remodeling, cellular
motility, and migration [29,148]. Particularly, the non-canonical ligands WNT5A and
WNT11 were shown to contribute to metastasis in several cancer entities. For instance, in
breast cancer, WNT11 was shown to bind the non-canonical receptor ROR2. Increased ROR2
expression is inversely associated with metastasis-free survival, and ROR2 overexpression
increases cell invasion in vitro. Simultaneous knockdown of WNT11 by RNAi could
reverse these pro-metastatic effects of ROR2 overexpression [149]. In several CRC cell
lines, depletion of WNT11 by RNAi or treatment with WNT11-targeting antibodies reduced
their invasion capability. Upon overexpression of WNT11 in CRC cell lines, an increased
activity of an ATF2 reporter, which can be stimulated by JNK and p38-MAPK signaling,
and a reduction of a Wnt reporter was observed. However, no mechanistic link between
modulation of pathways and the invasive phenotype could be demonstrated in these
models [74]. Similarly, overexpression of WNT11 in the CRC cell line HCT116 activated
Jun/JNK signaling and increased the invasion and migration ability of cells, with no effects
on canonical Wnt signaling [77]. In prostate cancer cell lines, WNT11 was shown to signal
via FZD8 and the transcription factor ATF2 to increase cell migration and invasion in
Matrigel assays and 3D cell cultures [75]. In mouse breast cancer cell lines, knockdown
of Wnt11 reduced cell motility and protrusive activity. Mechanistically, it could be shown
that Wnt11 is loaded onto fibroblast-derived exosomes by breast cancer cells and is then
secreted in an autocrine manner to activate Wnt/PCP signaling via Fzd6 [150]. In the CRC
cell lines RKO and SW480, exogenous addition of WNT3A and WNT5A could increase
intracellular Ca2+ levels and increase cell migration in scratch assays, an effect which could
be reverted by addition of a Phospholipase C (PLC) inhibitor [53]. These results indicate
that both WNTs can increase CRC cell migration via Wnt/Ca2+-PLC signaling, despite
WNT3A being known as an activator of canonical Wnt signaling (Table 1). Similarly, in
SW480 cells, knockdown of WNT5A was shown to decrease directed cell migration, an
effect which could be rescued by the addition of WNT5A-conditioned medium. The same
study showed that in Apc1638N mice, a transgenic mouse model of CRC, overexpression
of WNT5A had no effect on tumor size and expression of proliferation markers as assessed
by immunohistochemistry. These observations suggest that WNT5A does not contribute to
the initiation and progression of tumors driven by APC mutation. Further, no difference in
expression of EMT markers in immunohistochemistry could be shown in this study [104].
Thus, it remains unknown whether the pro-metastatic effects of WNT5A are confined to
in vitro models in CRC.
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Beside pro-metastatic effects of WNTs secreted from the tumor cells themselves, WNTs
secreted from the tumor microenvironment contribute to metastatic phenotypes. In a mouse
model of breast cancer, invasion-promoting tumor-associated macrophages (TAM) were
selected by their ability to co-migrate into a needle inserted into the tumor. Comparison of
these invasion-promoting TAM with a bulk TAM population from the same mice revealed
elevated expression of WNT5B and WNT7B in invasion-promoting TAMs. Yet, the precise
contribution of those WNTs remains unknown [151]. Similarly, another study showed
that TAMs in breast cancer biopsies express WNT5A. Upon co-culture with TAMs, the
invasiveness of the breast cancer cell line MCF-7 in a Boyden chamber assay was drastically
increased, an effect which could be emulated by addition of recombinant WNT5A. In
this model, increased invasiveness was shown to be dependent on JNK/AP-1 signaling.
Furthermore, WNT5A induced the expression of MMP7 in MCF-7 cells in a JNK-dependent
manner, possibly contributing to invasion by increasing extracellular proteolysis [152].

In summary, secreted WNTs from both tumor cells and adjacent cells from the TME
play a role in various metastasis-associated subprocesses by both canonical and non-
canonical Wnt signaling. Particularly the non-canonical ligands WNT5A/B and WNT11
strongly contribute to metastatic phenotypes by facilitating remodeling of the cytoskeleton
and cell–cell-contacts via Wnt/PCP and Wnt/Ca2+ signaling. In addition, WNTs enhance
metastasis by reshaping the extracellular matrix by matrix metalloproteases.

5. Secreted WNTs and Cancer Immune Evasion

In the recent years, the importance of the crosstalk between tumor cells and compo-
nents of the innate and adaptive immune response for carcinogenesis and tumor progres-
sion has been widely recognized [153]. Therapeutically, these discoveries have enabled the
development of immune checkpoint inhibitors and adoptive T-cell transfer [127,128,154].
Novel immunotherapeutic approaches have been proven clinically effective in subsets of
cancer patients [155], but immune evasion mechanisms, such as immune cell exclusion or
downregulation of tumor antigens, pose obstacles for their widespread application [128].
Here, we discuss the implication of Wnt signaling and especially secreted WNTs for im-
mune homeostasis in cancer (Figure 4).

Several cell types are involved in anti-tumor-immunity. Dendritic cells (DC), T lym-
phocytes, as well as TAMs present in the immune TME, can be polarized to exhibit either
tumor-promoting or tumor-suppressing effects [156,157]. For instance, TAMs can be po-
larized into M1 and M2 lineages. The M1 subtype is linked to inflammation, while the
M2 subtype is associated with an anti-inflammatory phenotype [158,159]. In this context,
cytokines secreted from tumor and stroma cells, such as IL-10, as well as chemokines like
CCL4, play a crucial role in shaping the immune TME in a tumor-promoting manner [153].
In non-cancer tissues, Wnt signaling was shown to influence hematopoietic lineage com-
mitment, immune cell differentiation, and cytokine secretion [39,160–165]. WNT5A, for
instance, was shown to induce a regulatory phenotype in DCs by induction of IL-10 through
Wnt/Ca2+ signaling [166]. These physiological mechanisms are often hijacked by cancers
to drive immune escape.
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Figure 4. Function of secretion of WNTs in tumor immune evasion. Key processes in immune
evasion and WNTs acting on them are shown. The cancer entities in which the processes have been
observed are listed in italic. WNTs, especially WNT5A, contribute to the anti-inflammatory modula-
tion of dendritic cells and macrophages in the tumor immune microenvironment. Both processes
contribute to the exclusion of T cells from the microenvironment, for instance, by downregulation of
specific chemokines. In melanoma, WNT5A downregulates the expression of MART-1, a tumor anti-
gen, and alters chemokine expression in tumor cells themselves, contributing to a lowered activity of
tumor-infiltrating T cells. Clinically, inhibition of WNT secretion by ETC-159 has shown to synergize
with immune checkpoint inhibition in preclinical studies and pilot clinical trials.
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5.1. WNTs and Tumor-Associated Dendritic Cells and T Cells

Active Wnt signaling in tumor cells and/or immune cells in the TME has been shown
to favor the immune escape of tumor cells. For instance, knockdown of WNT5A in
melanoma xenografts in mice resulted in a in a lower number of Foxp3+ regulatory T
cells (Treg) in the tumors as well as in tumor-draining lymph nodes. In in vitro experi-
ments, this effect could be attributed to a specific upregulation of Indole-2,3-dioxygenase
(IDO) in DCs by WNT5A. These WNT5A-conditioned DCs then mediate the Treg po-
larization of naïve CD4+ T cells [167]. Additionally, DC-specific knockout of β-catenin
in a melanoma mouse model of diminished IDO expression and augmented the antitu-
moral T-cell response, suggesting a WNT5A-β-catenin-IDO axis in DCs that promotes
Treg polarization in melanoma. Beside this mechanism, WNT5A was shown to contribute
to immune tolerance by inhibiting pro-inflammatory cytokines and inducing metabolic
changes in DCs [168]. Concordantly, in a BRAFV600E PTEN–/– melanoma mouse model
and a KrasLSL-G12D/+ Trp53fl/fl non-small cell lung cancer mouse model, blockage of WNT
secretion by ETC-159 or antagonization of WNTs by the anti-FZD-antibody Vantictumab
led to an increase of intratumoral CD8+ T cells [169]. In lung cancer tissues, WNT1 expres-
sion showed an inverse correlation with the proportion of tumor infiltrating cytotoxic T
lymphocytes (CTLs). Knockdown of WNT1 in a lung cancer xenograft mouse model led to
an increased proportion of antigen specific CTLs in a lung cancer xenograft mouse model.
Mechanistically, this could be attributed to downregulation of chemokines, such as CCL4
and CCL7 upon WNT1 overexpression in DCs. Confirming these results, administration of
siWNT1 nanoparticles in a mouse model of chemically induced lung cancer led to reduced
levels of nuclear β-Catenin in intratumoral DCs, increased CTL infiltration and a decrease
of total tumor burden [44]. A similar observation was made in HCC and CRC mouse mod-
els, where addition of recombinant WNT3A to tumor-derived T cells increased expression
of β-Catenin and decreased expression of the CTL differentiation marker T-bet. In this CRC
mouse model, intratumoral administration of a WNT3A targeting antibody (aWNT3A)
decreased tumor volume and an increased the proportion of tumor antigen-specific CTLs in
the TME, which exhibited a higher expression of T-bet and IFN-γ. These results indicate an
important role of WNT3A for repressing functionality of tumor-infiltrating CTLs [54,170].
This WNT3A-dependent polarization of T cells seems to be mostly dependent on DCs, since
CTLs which were not exposed to aWNT3A still showed increased effector functions in aWNT3A
CRC xenografts [54]. The studies above provide compelling evidence that specific WNTs
contribute to T-cell exclusion from tumors by inducing canonical Wnt signaling in DCs.

Not only canonical Wnt signaling is implicated in driving polarization of T cells and
their exclusion from the tumor. In a BRAFV600E PTEN–/– melanoma mouse model, expres-
sion of the non-canonical WNT5A was upregulated upon immune checkpoint inhibition
with a PD-1-targeting antibody. In this model, WNT5A was shown to increase the expres-
sion of CXCL5, which then reduced the infiltration of myeloid-derived suppressor cells.
Since co-occurring with WNT5A upregulation, a stabilization of YAP could be observed,
indicating that the effects of WNT5A on chemokine expression in this model are mediated
by Hippo signaling [60].

Apart from escaping the immune system by modulating adjacent immune cells, cancer
cells often downregulate tumor-associated antigens to diminish the adaptive immune
response towards the tumor [171]. In a subset of melanoma tissues with low expression
of tumor antigens such as MART-1, the expression of WNT5A is increased. Consistently,
overexpression of WNT5A in melanoma cell lines downregulated the expression of MART-1,
which was shown to be dependent on a PKC-STAT3 signaling axis. Finally, in co-culture
assays, treatment with recombinant WNT5A was shown to dampen the reactivity of CTL
to melanoma cells [172].
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5.2. WNTs and Tumor-Associated Macrophages

WNTs are also implied in modulating tumor-associated macrophages in the TME.
For instance, in a xenograft mouse model of HCC, abrogation of the WNT secretion of
tumor cells by knockdown of WLS decreased the proportion of tumor-infiltrating TAMs
and Treg cells and increased the proportion of CD4+ and CD8+ T cells. This coincided
with a reduction of tumor weight of the xenografts in this model [173]. Furthermore, Liu
et al. could show that in CRC tissues, WNT5A expression correlated with the expression
of the M2 polarization marker CD163 in macrophages. Upon co-culture with CRC cell
lines, the macrophage cell line THP-1 cells upregulated WNT5A and subsequently CD163
expression, which was dependent on a CaMKII-ERK-STAT3 signaling axis. By addition
of an IL-10-targeting antibody, this effect could be reverted. Knockdown of WNT5A in
these TAM reduced tumor formation in xenograft experiment with CRC cells. These results
suggest that WNT5A supports CRC progression by promoting M2 polarization of TAMs in
an autocrine manner through induction of IL-10 and Wnt/Ca2+ signaling [58].

Supporting these results, in tissue microarrays of breast cancer samples, a correlation
between WNT5A expression in tumor cells and the percentage of M2 macrophages could be
shown [165]. In HCC, WNT2B was shown to be expressed in M2 TAMs. Overexpression of
WNT2B in THP-1 cells increased the expression of CD163. In TAMs derived from coculture
with HCC cells, knockdown of WNT2B or β-catenin reduced the expression of CD163,
indicating an effect of WNT2B-induced canonical Wnt signaling on M2 polarization of
TAMs in HCC [51]. Corroborating these results, the expression of WNT5A and WNT2B
correlated with the abundance of M2 macrophages in SCLC tissues [174]. Furthermore,
in a xenograft WNT5A-knockout mouse model of ovarian cancer, several chemokines,
among those CCL1 and CXCL10, were downregulated in the peritoneal lavage. This was
accompanied by an elevation of CD8+-T cells and M1 TAM, as well a decrease of FOXP3+-
Treg cells and M2 TAM in the tumor tissues, implying that WNT5A modulates the immune
response to the tumor in a tolerogenic fashion [175].

In summary, several studies showed that WNTs derived from both tumor and stroma
cells contribute to main mechanisms of cancer immune escape. First, different WNTs have
been shown to prime DCs in a tolerogenic manner, which influences cytokine expression
and leads to exclusion or tolerogenic polarization of tumor-infiltrating T cells. Secondly,
secreted WNTs, especially WNT5A, were reported to be involved in M2 polarization of
TAMs, leading to an altered cytokine profile and immune cell exclusion from the tumor.

6. Therapeutical Targeting of WNTs in Cancer

The various important functions of secreted WNTs for cancer biology renders WNTs
attractive pharmacological targets for antineoplastic therapy. Several approaches to target
WNTs in cancer have been investigated so far. Firstly, we provide an overview of the
different pharmacological strategies to target secreted WNTs in cancer. Secondly, we
summarize clinical trials that include therapeutics targeting WNTs in the treatment of
cancer (Table 2). It is important to mention that so far, these trials remain restricted to phase
I and II. Hence, these studies have not been designed to assess the clinical efficacy of the
tested drugs in the treatment of the respective cancer entities, and the conclusions that can
be drawn from them are limited.
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Table 2. Overview of drugs targeting secreted WNTs investigated in clinical trials in cancer. A
detailed review of Wnt secretion inhibitors and Fzd antagonists in cancer treatment was provided by
Jung et al. [176].

Drug Class Drug Tumor Entity Combination Clinical Trial Phase Reference

PORCN inhibitor LGK974 Various WNT
dependent cancer NCT01351103 Rodon et a. 2021

[177]

PORCN inhibitor LGK974
BRAF-mutant

metastatic colorectal
cancer (mCRC)

LGX818 (PI3Ki)
Cetuximab NCT02278133 I/II N/A

PORCN inhibitor RXC004

(RNF43) or
R-spondin (RSPO)

aberrated,
metastatic,

microsatellite stable,
colorectal cancer

Nivolumab
Denosumab NCT04907539 II Kopetz et al. 2022

[178]

PORCN inhibitor RXC004 Advanced
malignancies NCT03447470 I Cook et al. 2021

PORCN inhibitor RXC004 Advanced solid
tumors Denosumab NCT04907851 II N/A

PORCN inhibitor CGX1321 Advanced GI
Tumors

Pembrolizumab
Encorafenib (Raf

inhibitor) for
BRAFV600E

positive tumors

NCT02675946 I N/A

PORCN inhibitor XNW7201 Advanced solid
tumors NCT03901950 I N/A

PORCN inhibitor ETC159 Advanced solid
tumors Pembrolizumab NCT02521844 I Ng et al. 2017 [179]

FZD mAb Vantictumab
metastatic

HER2-negative
breast cancer

NCT01973309 Ib Diamond et al. 2020
[180]

FZD mAb Vantictumab
Previously

untreated stage IV
pancreatic cancer

Nab-Paclitaxel
Gemcitabine NCT02005315 I Davis et al. 2020

[181]

FZD mAb Vantictumab Previously treated
NSCLC Docetaxel NCT01957007 I N/A

Decoy WNT
receptor Ipafricept Hepatocellular

cancer NCT02069145 I N/A

Decoy WNT
receptor Ipafricept Solid tumors NCT01608867 I Jimeno et al. 2017

[182]

Decoy WNT
receptor Ipafricept Stage IV pancreatic

cancer NCT02050178 I Dotan et al. 2019
[183]

Decoy WNT
receptor Ipafricept

recurrent
platinum-sensitive

ovarian cancer
NCT02092363 I Moore et al. 2019

[184]

radiolabeled FZD10
mAb OTSA101-DTPA Synovial sarcoma NCT04176016 I N/A

radiolabeled FZD10
mAb OTSA101-DTPA Synovial sarcoma NCT01469975 Giraudet et al. 2018

[185]

ROR1 mAb Cirmtuzumab
Chronic

lymphocytic
leukemia

NCT02222688 Choi et al. 2018
[186]

ROR1-mAb-drug-
conjugate

Zilovertamab
vedotin Lymphoid cancers NCT03833180 Wang et al. 2021

[187]

6.1. Blockade of WNT Secretion

Small molecules inhibiting Porcupine, e.g., LGK-974, block general secretion of WNTs
and are the most intensively studied antineoplastic drugs that target the WNT pathway.
This class of drugs proved to effectively inhibit canonical Wnt signaling and to induce
cancer cell death and slow tumor growth in preclinical animal models [120,188–192]. For in-
stance, in HNSCC xenograft models, LGK-974 treatment strongly reduced Wnt target gene
expression and tumor volume, in the absence of obvious adverse effects [190]. In patient-
derived xenografts of RSPO-translocation CRC, the porcupine inhibitor ETC-159 could
effectively diminish Wnt reporter activity and tumor volume [191]. In a MMTV-WNT1
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breast cancer mouse model, Wnt-C59 treatment could reduce tumor growth [192]. Beside
its effect on canonical Wnt signaling and cell proliferation, blockade of WNT secretion
was shown to synergize with immune checkpoint inhibition due to the immunomodula-
tory effects of specific WNTs [169,193]. Several porcupine inhibitors entered early clinical
trials, namely, LGK-974, ETC-159, RXC-004, and CGX-1321 [194–197]. In a phase 1 trial
conducted in patients with various solid tumors, LGK-974 efficiently decreased Wnt target
gene expression in normal and tumor tissues of most patients [177]. In another phase 1
trial including patients with several advanced solid tumors, ETC-159 was shown to inhibit
Wnt signaling in tumor and normal tissues at tolerated doses [179]. The most observed
adverse effects of porcupine inhibitors in these two studies were dysgeusia and loss of
bone density. In both studies, no patient showed a response to PORCN inhibitor therapy
in terms of tumor reduction [177,179], and their clinical potential and tumor entities to be
targeted remain an open question.

In line with WNTs contributing to cancer immune escape in vitro, studies indicate that
targeting WNT secretion could facilitate cancer immune therapy. In melanoma patients, it
was shown that in tissue specimens of patients not responding to checkpoint inhibitors,
expression of several WNTs was strongly upregulated [169]. Accordingly, in preclinical
mouse studies, a synergism of WNT blockade and checkpoint inhibition could be shown
in melanoma, lung cancer, and CRC models [169,193]. Furthermore, in a phase 1 trial
including patients with a broad spectrum of solid tumors, the response of canonical Wnt
signaling in tumor tissues to inhibition of WNT secretion by LGK-974 was associated with
an increase in chemokine expression in tumor biopsies, indicating that targeting WNT
secretion in solid tumors may have beneficial effects on the cytokine composition in the
TME and the immune response towards the tumor [177].

6.2. Disruption of WNT Ligand–Receptor Interactions

Another strategy to diminish the effects of secreted WNTs on cancer cells is to intercept
the interaction of WNTs with their cognate FZD receptors with anti-FZD antibodies. The
anti-FZD antibody Vantictumab was evaluated for clinical use in metastatic pancreatic ade-
nocarcinoma and metastatic HER2-negative breast cancer in phase I clinical trials [180,181].
Response to Vantictumab as determined by lower expression of Wnt target genes in the
tumor tissue correlated with better overall survival, but the conclusions to be drawn are
limited due to a low number of participants and a missing control arm [180]. In another
study, Vantictumab treatment resulted in loss of bone density in some patients, whereas
no conclusion about the anti-tumor efficacy could be drawn [181]. Furthermore, a decoy
WNT-receptor, Ipafricept, was tested in clinical trials [182,184]. Overall, a combination
of Ipafricept with paclitaxel and carboplatin in ovarian cancer patients showed a favor-
able response, but the interpretation of clinical efficacy is limited due to the design of the
study. Overall, WNT- or FZD-targeting antibodies were well tolerated, but in some pa-
tients, they exhibited remarkable adverse effects on bone metabolism, such as pathological
fractures [180–182,184].

Beside FZDs, ROR1 is utilized as a therapeutical target. In CLL, WNT5A-ROR1
signaling is an integral contributor to proliferation. Anti-ROR1-antibodies, for instance
Cirmtuzumab have entered phase I trials in lymphoma [186,187]. In a cohort of 26 CLL
patients, most patients achieved stable disease, measured by the absolute lymphocyte count
during treatment with Cirmtuzumab. Furthermore, Cirmtuzumab reduced the expression
of genes related to cancer stem cells, as well as Rac1 and HS1 signaling in CLL cells [186].
In various lymphoid cancers, Zilovertamab Vedotin, an anti-ROR1 antibody coupled to
the microtubule inhibitor Auristatin E, could achieve partial response in the subgroup of
patients with mantle cell lymphoma and diffuse large cell B-cell lymphoma [187].

Although targeting secreted WNTs in cancer by inhibiting WNT secretion or intercept-
ing the interaction of WNTs with receptors seems to be a promising strategy for cancer
treatment in preclinical trials, compelling evidence for their activity as single agent in early
clinical phase trials is still lacking. Notably, since canonical Wnt signaling takes a pivotal
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role in adult tissue maintenance [198], specific adverse effects of the tested inhibitors and
antibodies on bone metabolism could be observed [176]. The potential adverse effects
of general Wnt inhibition could be overcome by targeting specific WNTs, e.g., through
RNA interference or antibody-based therapeutics. In different mouse models of lung
cancer, for instance, an efficient silencing of WNT1 in tumors through administration
of siWNT1 nanoparticles could be demonstrated, which coincided with a lower tumor
burden [44]. Furthermore, due to the pleiotropic nature of WNTs, treatments targeting
secreted WNTs could be combined with drugs targeting other oncogenic pathways in
cancer-specific manner. In preclinical studies, LGK-974 was proven to facilitate immune-
checkpoint inhibition [60,193]. Combination therapy of PORCN and immune checkpoint
inhibitors is currently under investigation in clinical trials, but no results have been pub-
lished (NCT02675946, NCT04907539, and NCT02521844) [178]. As another example, in
xenograft models of different WNT-dependent cancer entities, treatment with ETC-159
efficiently reduced the expression of DNA repair genes, rendering the cells susceptible
to PARP inhibition [199]. Further, in xenograft mouse models of Wnt-addicted cancers,
inhibition of Wnt secretion synergized with inhibition of mTOR/PI3K signaling to reduce
tumor growth [189]. Together, these results suggest that general WNT inhibition alone may
not suffice to effectively treat cancers, but that targeting of specific WNTs or combination of
WNT inhibition with other therapeutical strategies may be a promising option.

7. Outlook

Over the last decades, many insights into the roles of WNTs in tumors have been
obtained, revealing a spectrum of distinct functions during many steps of carcinogenesis,
from tumor initiation to proliferation and metastasis. These diverse oncogenic phenotypes
are not only driven by the effect of WNTs on canonical and non-canonical Wnt signaling,
but also through its cross-talk with other oncogenic pathways. Furthermore, WNTs were
shown to be important mediators of communication between cancers and cells in the tumor
microenvironment. Paracrine signaling, mediated for instance by WNT5A, is important for
tumor immune evasion, which can be observed across many different cancer entities. De-
spite these insights, many questions about the biological function of WNTs in cancer remain
open. For instance, the WNT family comprises a large set of genes. While the functions of
singular WNTs, such as WNT5A and WNT3, have been extensively described in cancer,
other family members still need to be characterized in detail. In this respect, the distinct
expression pattern of WNT family members in different tumor types suggest that there are
tumor tissue- and stage-specific functions of WNTs for cancer biology. Thus, the biological
function of all WNTs needs to be determined within specific, relevant contexts. Insights
from this research will likely address controversies regarding the tumor-suppressive or
-promoting function of specific WNTs, such as WNT5A.

Furthermore, in most cancers, several WNTs are expressed simultaneously, but their
contribution to the net effect on tumor phenotypes is unclear. Hence, the contribution of
single WNT family members and their interaction with other expressed WNTs needs to
be disentangled. This is particularly important for cancer therapy, as general approaches
to block WNT secretion remained challenge and might cause adverse effects. Identifying
specific WNT family members drives cancer phenotypes in specific tumor entities, or learn
how targeting WNT in combination with other targeted or immune therapies. Furthermore,
compared to other pathways, there is still a limited number of pharmacological agents
against WNT pathway components, and expanding this repertoire will hopefully turn the
Wnt pathway into a druggable target in the future.
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