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Abstract: In recent years, numerous efforts have been made to identify reliable biomarkers useful
in migraine diagnosis and progression or associated with the response to a specific treatment. The
purpose of this review is to summarize the alleged diagnostic and therapeutic migraine biomarkers
found in biofluids and to discuss their role in the pathogenesis of the disease. We included the
most informative data from clinical or preclinical studies, with a particular emphasis on calcitonin
gene-related peptide (CGRP), cytokines, endocannabinoids, and other biomolecules, the majority of
which are related to the inflammatory aspects and mechanisms of migraine, as well as other actors
that play a role in the disease. The potential issues affecting biomarker analysis are also discussed,
such as how to deal with bias and confounding data. CGRP and other biological factors associated
with the trigeminovascular system may offer intriguing and novel precision medicine opportunities,
although the biological stability of the samples used, as well as the effects of the confounding role of
age, gender, diet, and metabolic factors should be considered.

Keywords: migraine; CGRP; endocannabinoid system; inflammation; biofluids

1. Introduction
Migraine Pathogenesis

Migraine is a complex disease characterized by recurring attacks with unilateral or
bilateral head pain, often pulsating in quality, of moderate to severe intensity, associated
with other disabling symptoms, and aggravated by physical activity. According to the
Global Burden of Diseases, migraine represents the third most frequent and the second
most disabling condition in humans, affecting about 16% of the world’s population [1].

The latest edition of the International Classification of Headache Disorders (ICHD-
3) identifies several subgroups of migraine based on the associated symptoms and the
number of monthly headache days [2,3]. The majority of migraine patients experience
migraine without aura and with a frequency < 15 days per month (henceforth called
episodic migraine (EM)). About 3% of migraine patients experience more than 15 headache
days/month for at least 3 months and qualify as chronic migraine (CM) [3]. It has been
estimated that each year, 3% of EM subjects transition to CM, frequently as a result of
ineffective acute treatment and/or acute drug overuse or because of bearing a particularly
aggressive type of migraine [4]. When the transition from EM to CM is associated with
the overuse of acute medications, patients should also receive the diagnosis of medication
overuse headache (MOH) [2]. In all patients, migraine attacks occur with a cyclic pattern of
different phases: a pain-free interictal phase, a prodromal phase with changes in perception
and behavior, an ictal phase with headache and other associated symptoms, and a post-ictal
phase without headache [5]. Additionally, before the ictal phase, about one-third of patients
with migraine experience migraine aura, which is described by the ICHD-3 as brief, entirely
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reversible positive or negative neurological symptoms occurring alone or in succession [2].
Regarding the pathophysiology of a migraine attack, it is believed to originate from the
activation of the brainstem and diencephalic nuclei, followed by the involvement of the
trigeminovascular system (TVS) [6–8]. When the TVS is activated, vasoactive peptides, such
as calcitonin gene-related peptide (CGRP), and proinflammatory mediators are released
in the meninges, resulting in a condition of dural neurogenic inflammation and central
sensitization [9].

Several clinical and preclinical models of migraine pain have been used to replicate
and study the mechanisms underlying the pathophysiology of migraine pain, focusing on
trigeminal sensory processing and the role of vascular and neuronal components involved
in the disease. These clinical and/or preclinical models include (i) infusion or the systemic
administration of migraine-inducing compounds such as nitroglycerin (NTG), CGRP, and
pituitary adenylate cyclase-activating peptide-38 (PACAP-38) [10–12]; (ii) chemical (with
inflammatory molecules or irritant substances) or electrical activation of the structures
included in the TVS (e.g., meninges and trigeminal ganglia) [12–14]; and (iii) the induction
of cortical spreading depression (CSD) over the cortex surface, which is considered as the
neurophysiological correlate of migraine aura [15].

Besides the utility of unraveling the pathophysiological mechanisms of migraine,
the use of these clinical and preclinical models may contribute to the identification of
biomarkers with diagnostic or prognostic value [16,17]. Advances in the identification
of migraine-specific biomarkers are indeed essential for improving the diagnosis and
treatment of migraine, fostering the application of precision medicine strategies.

The research on migraine biomarkers has covered different fields, ranging from
genetics, neuroimaging, and biochemical approaches. Systematic reviews and meta-
analyses have failed so far to identify reliable candidate biomarkers in peripheral blood
(plasma/serum, saliva) or in the cerebrospinal fluid (CSF) of patients with EM or CM [18–21].
Several reliable experimental models of migraine are available in humans and animals.
These have been extensively used in the past two decades [10,12]. In this review, we sum-
marized data from the most studied potential biomarkers for migraine, also including in
the analysis the comparative output of human and animal models, wherever available. Our
ultimate aim was to further elucidate the neurobiology linking the potential biomarkers to
migraine pathophysiology.

2. Methods

In this narrative review, the data originating from both clinical and preclinical studies
on migraine were retrieved from the PubMed/MEDLINE database, covering the period
from September 1988 to November 2022.

The search methodology included studies conducted on adult patients (pediatric
migraine was not considered) suffering from EM (either with or without aura) or CM
(including the subgroup with MOH). Regarding preclinical studies, the articles included
were those involving animal models (either with rats or mice) that reproduce one or more
pathophysiological features of migraine pain. Of these clinical and preclinical studies,
only those reporting changes in circulating (i.e., in blood, CSF, and urine) biomarkers
were included.

3. The Potential Circulating Biomarkers Described in Migraine Patients and Migraine
Animal Models
3.1. Neuropeptides

In this section, we discuss the main (neuro)peptides differently involved in the modula-
tion of migraine-related structures and considered to be of clinical relevance, and glutamate,
the principal excitatory neurotransmitter within the central nervous system [22]. CGRP,
substance P (SP), PACAP, vasoactive intestinal peptide (VIP), and neuropeptide Y (NPY)
are implicated in craniocervical vasodilatation, with SP also having a role in plasma protein
extravasation and CGRP and PACAP in peripheral and/or central sensitization, the main
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mechanisms related to migraine pathophysiology [23], whereas glutamate has been linked
to neuronal hyperexcitability and plays a pivotal role in triggering migraine attacks [24].

3.1.1. Calcitonin Gene-Related Peptide (CGRP)

CGRP is a neuropeptide belonging to the calcitonin family; it exists in two isoforms, α
and β, encoded by two different genes, CALCA and CALCB, respectively [25]. The α form
is mainly expressed in the central and peripheral nervous system, whereas the β form is
located predominantly in the enteric nervous system. Notwithstanding the major role of
CGRP in the pathophysiology of migraine [26,27], its status as a biomarker for migraine
diagnosis is still controversial. A huge number of studies have investigated CGRP levels
in different migraine subtypes and multiple biological specimens (plasma, serum, saliva,
and CSF), yielding contrasting data, which so far prevents considering CGRP a reliable
migraine biomarker.

Multiple studies conducted in patients assessed during the interictal phase report
higher plasma/serum/saliva/CSF CGRP levels in EM and CM patients than in healthy
controls (HC) [28–41]. Differently from EM and HC, Cernuda-Morollón and colleagues
found elevated CGRP serum levels in CM women with and without acute medication
overuse, suggesting a potential pathophysiological mechanism for CGRP in migraine
chronification [35]. This finding was confirmed by Pérez-Pereda and colleagues [42].
Interestingly, a positive correlation between serum CGRP levels and pain intensity was
also reported [41]. It must, however, be noted that other studies did not report any changes
in CGRP levels among EM and CM patients [42–46].

When considering the ictal phase, migraine patients show higher serum levels of CGRP
than HC [47]. Some studies clearly show an increase in plasma/saliva CGRP levels during
the attack compared with the interictal period in EM patients [34,40,48–50]. By contrast,
other studies reported no difference in CGRP levels in jugular venous blood between the
ictal and interictal periods in EM subjects [45,51]. Similarly, Cady and colleagues showed
no difference in the CGRP saliva levels of CM patients during a migraine attack compared
with EM patients, suggesting that the threshold for central activation from peripheral input
is possibly lower in CM than in EM [52].

When considering the aura subtype of migraine, an increase in serum CGRP levels
was found in CM with aura patients compared with those without aura [35], while no
difference between EM with and without aura was reported in patients evaluated in the
interictal phase [32,34,35] and the ictal phase [47]. Hence, further studies on the importance
of CGRP for aura phenomena and migraine are needed to verify whether the peripheral
levels of the neuropeptide may have an informative role in migraine diagnosis [53].

It is interesting to note that CGRP plasma levels also change in experimentally induced
migraine. EM patients challenged with NTG develop migraine-like attacks associated with
CGRP plasma levels increase compared with the baseline [54]; similarly, an increase in
CGRP serum/plasma levels was reported in animals subjected to NTG challenge in a
migraine animal model [55,56]. Changes in peripheral CGRP levels have also been found
in animal migraine models based on the electrical stimulation of the superior sagittal sinus,
trigeminal ganglion, or dura mater, in an animal model of intracisternal inflammatory soup
and in mice with RAMP-1 deficiency [57–62]. By contrast, experimental human models (e.g.,
hypoxia and VIP infusion) did not report any significant change in CGRP blood plasma
levels in migraine patients [46,63]. Finally, in both human and animal models, the increased
CGRP levels were reduced by migraine treatments [55,56,60,64]. In agreement, CGRP
levels were found to be significantly lower after treatment with onabotulinumtoxinA in CM
patients [52,65] and after detoxification in those with MOH [66]. Furthermore, it seems that
peripheral CGRP levels may be useful in predicting some treatments’ outcomes. Higher
baseline CGRP levels in EM patients were associated with better response to rizatriptan [49]
and erenumab [67]. Similarly, the baseline levels of CGRP in patients with CM and MOH
who benefitted from the withdrawal of overused drugs were also significantly higher than
those detected in non-responders to the withdrawal procedure [66]. Cernuda-Morollón and
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colleagues [36] reported a 28-fold higher probability to respond to onabotulinumtoxinA for
CM with a serum CGRP level above the threshold of 72 pg/mL. Dominguez and colleagues
demonstrated that a CGRP level >50 ng/mL in the peripheral blood is associated with a
good response to onabotulinumtoxinA treatment in CM patients [68].

According to recent meta-analysis studies, circulating CGRP is linked to the patho-
physiology of migraine, and its peripheral level may be used as a biomarker for migraine
diagnosis and as a potential indicator of treatment efficacy [20,69], notwithstanding a
certain level of heterogeneity. Indeed, the meta-analyses show higher concentrations of
CGRP in the CSF and blood of CM or EM patients compared with HC, as well as in the
ictal phase of EM compared with the interictal period. Age, aura, menstrual cycle, fre-
quency of migraine attacks, medication overuse, participant selection, psychological factors,
and differences in blood from the jugular vein or antecubital may all have been potential
confounders contributing to the heterogeneity of results [20,70].

3.1.2. Other Peptides of the CGRP Family

Calcitonin, adrenomedullin, and amylin, as well as their receptors, are present within
the TVS but differ in expression and localization [71]. The levels of pro-calcitonin and other
members of the calcitonin family of peptides were altered in subjects with migraine [72].
Specifically, procalcitonin serum levels were higher in EM patients during the ictal phase
when compared to the interictal period and HC [73]. The infusion of adrenomedullin for
20 min resulted in migraine attacks in 55% of migraine patients, whereas placebo infusion
resulted in migraine attacks in only 15% of the patients [74].

Like CGRP, amylin belongs to the calcitonin peptide family; it is produced and secreted
by β cells in the pancreas and shares some CGRP receptors and biological activities [75].
This neuropeptide and its receptors are found in migraine pain-related structures [76]. In a
single study, amylin plasma levels were higher during the ictal phase in CM patients than
in EM patients and HC [77], thus suggesting a possible role in disease chronicization [75].
However, additional studies are needed to test the prognostic/diagnostic potential of the
neuropeptide. Preclinical experiments investigating the symptoms associated with mi-
graine showed that amylin treatment causes cutaneous hypersensitivity and light aversion
in mice [74]. In agreement, pramlintide infusion, an amylin analog, caused migraine-
like symptoms in migraine sufferers without aura, probably via its potent activity on the
CTR/RAMP complexes. Amylin and pramlintide are weak agonists of the CGRP receptor,
with potencies 100 times lower than CGRP at the conventional CGRP receptor [78].

CGRP can bind to both the canonical CGRP receptor and the non-canonical CGRP
receptor (AMY1); thus, an intriguing question is whether the CGRP receptor alone is the
essential molecular site for anti-migraine therapy, or whether the AMY1 receptor is also
involved in migraine pathophysiology, with amylin and/or CGRP being the primary ligand
agonists [78].

3.1.3. Substance P (SP)

The neuropeptide SP belongs to the tachykinin family. It is abundant in the TVS, where
it probably contributes to the transmission of pain. SP is a vasodilator, and its primary role
in migraine is associated with plasma protein extravasation and vasodilation during TVS
activation [6].

Plasma SP levels were higher in EM patients evaluated during the interictal phase
when compared with HC [32], without differences between EM with and without aura [32].
CM patients showed higher plasma and salivary SP levels than HC patients, with a correla-
tion between SP levels and pain intensity [33]. Nicolodi and Del Bianco [79] reported an
increase in salivary SP levels during migraine attacks compared with HC, but other authors
failed to detect differences in SP plasma in EM subjects compared with HC [80,81].

Interestingly, the stimulation of the trigeminal ganglion in humans induced an increase
in SP plasma levels [82], a finding that has more recently been confirmed in the animal
model based on dural electrical stimulation in rats [62]. Thus, it seems that, at least when
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detected in the plasma, SP may be a candidate biomarker of migraine. It must, however, be
noted that SP antagonists failed to prove efficacy in migraine treatment [83].

3.1.4. Pituitary Adenylate Cyclase-Activating Polypeptide (PACAP)

PACAP is a member of the glucagon/secretin superfamily that can be found in two
forms (PACAP-27 and PACAP-38). The isoform PACAP-38 predominates in neuronal
tissues; it is found in parasympathetic and sensory neurons, such as migraine-relevant
brain structures, where it modulates pain processing and has vasodilatory effects [84].

PACAP-38 serum levels were higher in CM subjects tested interictally than in EM
and HC patients, without any difference between EM and HC [42]. By contrast, Cernuda-
Morollón et al. [85] failed to detect any differences in the serum PACAP-38 levels of subjects
with CM or EM tested interictally and compared with HC. In this context, it is worth noting
that Togha et al. [86] found higher interictal serum levels in EM patients than in CM and HC
patients. In this variable scenario, some authors also reported lower interictal PACAP-38
plasma levels in EM than in HC [87,88], although PACAP-38 levels tended to increase in the
ictal phase [87,89] without, however, reaching significantly different levels than HC [87].
Zagami et al. [89] found higher PACAP levels in the external jugular vein of patients with
moderate or severe pain intensity; the levels decreased 1 h after receiving sumatriptan
medication and further upon the end of the episode. These results are consistent with pre-
clinical models in which PACAP-38 plasma levels increased after the electrical stimulation
of the superior sagittal sinus, trigeminal ganglion, or dura mater [57,61,62,90].

Multiple studies have confirmed the function of PACAP in the pathophysiology of
migraine [84]. PACAP infusion has been shown to induce a migraine-like attack in migraine
patients [91]. The intravenous administration of PACAP may cause CGRP release and
migraine attacks [89]. However, the contradictory data presented above do not speak in
favor of the suitability of PACAP as a biomarker of migraine diagnosis or progression. As
highlighted by other authors, sensitive plasma tests and improved collection techniques
are required to evaluate the relevance of this neuropeptide in migraine pathogenesis [92].

3.1.5. Vasoactive Intestinal Polypeptide (VIP)

VIP, like PACAP, is a polypeptide belonging to a glucagon/secretin superfamily. It is
expressed in the parasympathetic nerves and exerts vasodilatory effects on cerebral and
cortical pial vessels [93].

Increased interictal VIP levels were found in CM compared with EM and HC pa-
tients [36,42,65,85], and between EM and HC [31,65,86], but not in all studies [42]. An
increase in VIP plasma levels was reported in animal models of migraine based on the elec-
trical stimulation of the trigeminal ganglion or dura mater [61,62]. By contrast, no difference
was found in plasma VIP levels collected from the cubital fossa and external jugular vein,
during the headache phase in EM patients without and with aura compared with control
values. However, two patients with aura showed prominent symptoms of lacrimation and
rhinorrhea with marked elevations in the external jugular vein VIP levels [81].

Interestingly, changes in VIP levels were found in migraine patients with pronounced
autonomic symptoms [81,94]; indeed, it was found that VIP correlates with the presence
and degree of cranial parasympathetic symptoms in CM [95], thus suggesting a link
between VIP levels and the degree of the activation of the cranial parasympathetic system
in migraine [96]. VIP plasma levels were significantly decreased after rizatriptan, suggesting
its potential use as a therapeutic biomarker [94]. In patients with EM, VIP causes migraine
attacks 2 h after its infusion, suggesting an important role in migraine pathophysiology [97].
Increased plasma levels of CGRP were found in EM before the onset of migraine attacks but
were unrelated to the occurrence of VIP-triggered migraine attacks [46]. The continuous
intravenous infusion of VIP over two hours causes delayed mild headaches in HC, as
well as long-lasting cranial vasodilation and activation of the cranial parasympathetic
system [95,96]. VIP receptors are localized in rat middle meningeal artery [98], and the
antagonism of the VPAC1 receptor represents a potential target for migraine headaches.
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VPAC1 and VPAC2 play a role in the stimulation of parasympathetic cerebral outflow
during migraine attacks [99].

These observations sparked interest in elucidating the function of VIP. Future research
is required to unveil the mechanisms underlying VIP-induced migraine attacks and the
potential utility of VIP as a possible biomarker.

3.1.6. Neuropeptide Y (NPY)

NPY is found in the sympathetic nerve endings innervating the dura mater and pial
blood vessels and cerebral arteries, and it acts as a vasoconstrictor [23].

Higher CSF NPY levels have been found in subjects with migraine during the ictal
period compared with HC [100]. In accord, elevated NPY plasma levels were reported in
an animal model of migraine after the electrical stimulation of the trigeminal ganglion [61].
On the other hand, some investigations did not detect any change in NPY plasma or CSF
levels either during or outside of a migraine attack in migraine patients [81,101] or even
reported lower levels of NPY in subjects with migraine than in HC [102].

3.2. Classic Neurotransmitters

Some authors have proposed that migraine is linked to the altered metabolism of
glutamate, serotonin, gamma-aminobutyric acid, dopamine, and noradrenalin [103,104]. In
support, alterations in their precursors and metabolites, as well as in the neurotransmitters
themselves, have been reported in some clinical and preclinical studies [103–110]. A
recent meta-analysis showed that patients with EM have higher 5-HT blood levels than
HC patients, both ictally and interictally, although the authors reported a substantial
heterogeneity across studies [20]. However, serotonin plasma levels did not change after
NTG in rats [111].

Clinical and preclinical observations suggest an involvement of the excitatory neu-
rotransmitter glutamate in migraine mechanisms. For instance, glutamate is implicated
in TVS activation, as in central sensitization [24,112,113]. In migraine, the glutamatergic
system becomes overactive. According to different studies [106,114–119], EM and CM pa-
tients had considerably greater plasma and salivary levels of glutamate than HC during the
headache-free time. In addition, the baseline glutamate levels in the CM group decreased
following preventive treatment (regardless of the type of preventive drug) but were still
higher than HC [117]. Notably, Nam et al. [118] described higher salivary glutamate levels
in CM than in EM.

The levels of glutamate further increased in patients with migraine in the ictal phase [114];
within the ictal phase, higher levels of glutamate in CSF were found in EM and CM than in
HC [30,120,121]. In agreement with clinical findings, increased plasma glutamate levels were
observed in an animal model of migraine based on NTG administration [122].

The above-mentioned data are supported by a meta-analysis [69] pointing to circulat-
ing glutamate levels as a putative biomarker to discriminate between migraine patients
and HC and possibly also to differentiate CM from EM.

3.3. Mediators of Inflammation and Immunity

Migraine is associated with an alteration in peripheral immune homeostasis, inflam-
mation, and autoimmune diseases. According to some research on migraine patients,
inflammatory mediators may decrease the threshold for the onset of the attack, leading to
central sensitization and promoting the persistence and progression of migraine [123,124].
As a result, a widespread alteration in inflammatory patterns is observed in migraine
sufferers, supporting the hypothesis that inflammation plays a role in the evolution of the
disease [125–129].

Here, we will focus on the most studied inflammatory mediators that may qualify as
potential migraine biomarkers.
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3.3.1. Cytokines

Although there may be some differences, it is clear that changes in inflammatory
cytokines play a role in migraine. The findings related to cytokine changes in migraine
have been the object of recent overviews [130,131]. Similarly, the C-reactive protein (CRP),
a positive acute-phase protein that increases in response to inflammation, might play a
role in migraine pathogenesis, but the findings are conflicting [132–135]. In this section,
we focus on the serum/plasma or CSF levels of tumor necrosis factor-alpha (TNF-α),
interleukin-1 beta (IL-1β), and interleukin-6 (IL-6) because of their crucial role in trigeminal
pain [130,136,137].

Specifically, the levels of proinflammatory cytokines such as IL-6, TNF-α, IL-1β,
and transforming growth factor-β1 (TGF-β1) were elevated in EM during the interictal
phase [132,138–140]. Interestingly, IL-6, TNF-α, and IL-1β levels were also increased
in the serum of rats treated with NTG [56]. The studies focusing on the ictal phase of
migraine report a wide variability in cytokine levels, which were either stable or changing
compared with interictal values, indicating the dynamic nature of these inflammatory
molecules [141,142]. Such contrasting results may be related to preanalytical sampling
procedures. For instance, anticoagulants or specific clock proteins in the circadian system
may interfere with assays [143]. Some studies suggest that the serum levels of IL-6 and
TNF-α are higher in CM patients than in EM patients [130,134,144], although Rozen and
Swidan described a substantial rise in TNF-α levels in the CSF, but not serum, of CM
patients when compared to HC [145].

To summarize, the relationship between changes in TNF-α and other cytokines and
migraine pathogenesis is uncertain. The findings of numerous studies [135] are diverse and
occasionally contradictory, which limits the possibility of including these cytokines in the
panel of biomarkers for disease diagnosis.

3.3.2. Adipocytokines

Obesity is listed among the risk factors for migraine and its chronification [146]. As a
result, the involvement of adipocytokines in migraine would not be surprising. Several
studies suggest that CM patients have higher levels of serum leptin and adiponectin than
EM patients and HC [147–149]. Interestingly, the ictal serum levels of adipokines in EM
were associated with pain severity and treatment response [150]. Although still little
exploited, this line of research seems to hold promise for the possible identification of
biomarkers for the risk of the negative outcomes of migraine disease.

3.3.3. Prostaglandins

Mounting evidence from clinical and preclinical data supports the involvement of
prostaglandins in migraine pathophysiology [151]. Prostaglandins and their receptors are
widely distributed within the trigeminovascular structures, thus highlighting their role in
the trigeminal pain pathways [151]. Estrogen fluctuations cause changes in prostaglandin
production. An increased release of prostaglandins during the perimenstrual period leads
to perimenstrual pain and increased proneness to migraine [152,153]. Conversely, estrogen
withdrawal may increase vulnerability to prostaglandins and stimulate neuroinflammation
via the increased production of neuropeptides such as CGRP, SP, and neurokinin [154].
Prostaglandin infusion causes headaches and the dilatation of intra-cranial and extra-
cranial arteries in migraine subjects and HC [151]. Prostaglandins and other inflammatory
molecules influence the activation of trigeminovascular afferents [13]. Among the members
of the prostaglandin family, the most studied in migraine mechanisms is prostaglandin-
E2 (PGE2). Serum levels of PGE2 are lower in EM patients than in HC [155], but no
difference has been reported between EM and HC in PGE2 saliva levels [156]. During
a migraine attack, plasma and saliva PGE2 levels increase compared with a pain-free
period [48,152,157]. Notably, during migraine attacks, the serum levels of cyclooxygenase 2
(COX-2), an enzyme implicated in the production of PGE2 [158], were higher in migraine
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patients than in HC [159]. PGE2 serum levels positively correlated with headache frequency
in migraine patients [155].

3.3.4. Pentraxin-3 (PTX-3)

PTX-3 is a protein involved in inflammation, innate immunity, and endothelial dys-
function [160,161].

PTX-3 serum levels increase during migraine attacks and are higher in the interictal
phase in EM patients than in HC [41,162,163]. Since longer attacks are associated with
lower serum levels of PTX-3, PTX-3 is not an indicator of pain intensity [41], while it may be
correlated with the length of the disease [162], to suggest that inflammatory processes may
change during migraine progression [162]. Increased interictal serum levels of PTX3 were
also found in CM compared with HC [38,68,164]. Additionally, CM patients responding to
onabotulinumtoxinA showed higher serum levels of PTX-3 than non-responders, which
suggests that PTX-3 has a role as a biomarker for treatment selection in CM [68].

3.3.5. IgG

There is some evidence in the literature that dietary intolerances and sensitivities based
on IgG cause migraine [165–167]. Increased levels of cytokines and IgG antibodies are
associated with inflammatory response, which is involved in migraine [168]. The blood IgG
levels of EM patients were found higher than those of HC, without any differences between
the ictal and interictal phases [166,169]. Xu and colleagues [169] used IgG N-glycopeptide
expression to build a migraine prediction model, an intriguing approach that awaits testing
in a large population.

3.3.6. Matrix Metalloproteinase-9 (MMP-9)

Matrix metalloproteinases, especially the MMP-9, have drawn attention in relation
to migraine discomfort because the increased activity may impact the permeability of the
blood–brain barrier [170]. A change in the permeability of the blood–brain barrier, however
brief, may occur during a migraine attack [171,172]. Following this hypothesis, the plasma
levels of MMP-9 are reported to be significantly higher in EM than in HC in the interictal
period and even higher during the headache phase [173–175]. These findings, however,
were not confirmed by other researchers, who found no changes in MMP-9 levels between
subjects with migraine and HC [176,177], suggesting that, although increased MMP-9 levels
are intriguing, a more thorough examination is necessary.

It should be noted that while a putative correlation between blood–brain barrier dis-
ruption and CSD (related to the aura phenomenon) has been suggested [172,178], multiple
studies failed to detect any difference in MMP-9 levels between subjects with aura and
those without aura [173–175].

3.4. Endocannabinoids and Related Lipids

Inflammatory and pain-related mediators are produced by lipids, which are also major
energy storage sources [179]. According to Castor et al. [180], aberrant lipid metabolism in
CM is linked to alterations in plasma and CSF lipids, which may point to an altered energy
equilibrium. Endocannabinoids, endogenous retrograde neurotransmitters with lipid bases
widely distributed in peripheral organs and the nervous system, make up the complex cell
signaling known as the endocannabinoid system (ECS). The ECS consists of cannabinoid
receptors type-1 (CB1) and type-2 (CB2), their endogenous ligands anandamide (AEA) and
2-arachidonoylglycerol (2-AG), and the enzymes involved in their synthesis and degra-
dation. This system is functionally connected with other signaling pathways that include
fatty acids, esters, and amides, such as palmitoylethanolamide (PEA). These are congeners
of endocannabinoids, which may be synthesized and hydrolyzed by endocannabinoid
metabolic enzymes but do not bind to CB receptors [181].

The ECS is implicated in multiple physiological processes and functions, including
pain processing and modulation. An increasing amount of evidence suggests a dysregula-
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tion of the ECS in migraine [182–184]. Concerning the circulating endocannabinoids and
related lipids, reduced levels of AEA, 2-AG, and PEA have been reported by some authors
in the CSF and platelets of patients with CM and MOH compared with HC [185,186]. Other
studies failed to detect significant differences in the plasma levels of AEA and related lipids
between EM patients and HC [187,188], suggesting that the deregulation of ECS may be
specific to the CM subtype. However, increased levels of PEA were reported in EM patients
compared with HC during an experimentally induced migraine attack [188], a finding that
was interpreted as a compensatory mechanism. Recently, lower levels of PEA were found
in the saliva of migraine subjects compared with control subjects [189], although the study
did not report the clinical characteristics of the patients.

A few studies have evaluated the metabolism of endocannabinoids. Cupini et al. [190]
found significantly higher activities of fatty acid amide hydrolase (FAAH, the main AEA
catabolic enzyme) and the AEA transporter in the platelets of women with EM compared
with HC. FAAH and AEA transporter activities were lower in patients with CM and MOH
than in EM and HC subjects [191]. Transcriptional changes in ECS components were also
reported in the peripheral blood mononuclear cells (PBMCs) of migraine patients compared
with controls [192]. These changes were detected peripherally, which makes them amenable
for wider adoption to further investigate their role and applicability in the clinical field.

In the NTG-based animal model of migraine, we found increased activity of the en-
docannabinoid degrading enzymes (FAAH and MAGL) and an increased number of CB
receptor binding sites in brain areas [193]. In the same migraine model, AEA administra-
tion reduced NTG-induced hyperalgesia during the plantar formalin test and neuronal
activation in the trigeminal nucleus caudalis [194].

Notably, treatment with methanandamide, an anandamide synthetic analog, attenu-
ated NTG-induced CGRP increases in plasma, trigeminal ganglia, and the brainstem, and
it inhibited dural mast cell degranulation [195]. AEA significantly reduced the neurogenic
inflammation caused by dural electrical stimulation in rats [196,197].

Collectively, these results suggest that the ECS is dysfunctional in migraine patients,
particularly in those with CM, and call for focused research to validate whether peripheral
endocannabinoids and associated lipid levels can be adopted as disease biomarkers.

3.5. MicroRNAs

MicroRNAs have recently generated interest as putative biomarkers for migraine [198–200].
They are non-coding RNA filaments of 22 or fewer nucleotides involved in modulating phys-
iological circumstances and are associated with several diseases. MicroRNAs interact with
the 3’ untranslated region of target mRNAs to promote their degradation and translational
repression, which are the two post-transcriptional mechanisms through which they control gene
expression [201,202].

There is mounting evidence suggesting that microRNAs are dysregulated in pain
conditions, including migraine [66,203–206]. For instance, Andersen and colleagues found
higher MiR-34a-5p levels in serum during migraine attacks, while miR-382-5p levels were
higher in the interictal period [204]. Furthermore, juvenile migraine patients receiving
treatment had a lower peripheral expression of miR-34a-5p in their saliva, suggesting a
potential role in therapeutic response prediction [198]. MiR-30a expression was lower in
migraine patients with and without aura serum [205], whereas miR-155 expression was
higher during interictal phases [206].

Recently, a link between some microRNAs and phenotype and migraine severity
has been proposed. Specifically, the interictal expression of miR-382-5p and miR-34a-5p
was significantly higher in the PBMCs of patients with CM and MOH [66]. In contrast,
a previous study failed to detect any significant difference in the expression of the same
microRNA gene in these cells. The contrasting data are likely due to the small number of
patients used [207].

In the preclinical area, there are no data about circulating microRNA levels, but
we showed that NTG induced an increase in the miR-155-5p, miR-34a-5p, and miR-382-
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5p expression in specific areas of the central nervous system of rats. This increase was
significantly attenuated by the CGRP antagonist olcegepant [56].

More clinical and mechanistic investigations are required to clarify the physiological
roles played by microRNA in migraine and to validate them as migraine biomarkers [208].

3.6. Mediators of Endothelial/Vascular Functions

Some studies suggest an alteration in the endothelial function in migraine [34,209–211]
and a relationship between migraine and vascular risk [212].

The mediators associated with endothelial functions whose blood levels appear to
change in migraine are discussed below.

3.6.1. Endothelial Progenitor Cells (EPCs)

EPCs are circulating cells, considered markers of endothelial function [213], involved
in vascular homeostasis and integrity [214].

EM patients showed reduced numbers and functions of EPCs from peripheral blood
than HC [34,215,216], without any difference between EM patients with and without
aura [34,216]. Lower EPC counts were also found during headache attacks, compared with
the pain-free state, and this further decreased with the longer duration of the disease [34].
These findings suggest that migraine patients experience a long-term change in endothe-
lial function (with a decreased ability to repair the endothelium) [34]. Additionally, the
reduction in and dysfunction of EPCs in migraine raise the possibility that migraine and
cardiovascular risk are related [215,216]. Data in animal models support the suggestion
that triptans and β-blockers interact with the endothelial cell component of the blood vessel
to produce anti-hyperalgesia [217].

3.6.2. Endothelin-1 (ET-1)

ET-1 is a potent vasoconstrictor produced by vascular endothelial cells [218]. ET-1
may be involved in the onset of the aura phenomenon and the ensuing migraine headache
because of the vascular connection in the CSD-related pathways [219]. Higher ET-1 plasma
levels have been reported during the ictal phase in EM patients than in HC, particularly in
the early stages of the attack [220–224].

By contrast, as regards the interictal phase, the findings are conflicting [221,222,225–227].
Conflicting results with either an increase or a decrease in ET-1 plasma levels were reported
after NTG administration in rats [108,228]. Moreover, ET-1 was reported to induce CSD in
rats [229,230]. However, intravenous ET-1 in migraine with aura patients failed to provoke
migraine aura symptoms and did not induce any headache [231]. Furthermore, ET-1 plasma
levels did not differentiate between patients with and without aura [221,224,226].

Thus, we suggest that ET-1 function is more likely related to the vascular tone alter-
ations that are noticed when migraine attacks first start, most likely those that occur at
early time points [219]. However, based on the available evidence, ET-1 does not represent
a reliable indicator for separating patients with aura from those without aura.

3.6.3. Homocysteine

Homocysteine (Hcy) is a simple sulfur-containing molecule that differs from the amino
acid cysteine in the presence of a single adjunctive methylene group. Hcy is synthesized
in humans from methionine, its precursor, throughout a complex metabolic pathway that
involves several essential enzymes and co-factors [232]. Different degrees of hyperho-
mocysteinemia are usually present alongside the absence of one or more enzymes and
co-factors [233,234].

Hcy serum levels were higher in migraine patients, in particular in those with aura,
compared with HC, although other studies report lower serum Hcy levels in patients
without aura [235–240]. Furthermore, Hcy plasma levels were lower in females than in
male patients with migraine [241]. Several other studies failed to detect a significant
difference between migraine patients and HC [242–245]. Concerning CSF, according to one
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study [246], patients with aura have higher CSF Hcy levels than patients without aura. The
elevated levels of Hcy enhance migraine symptoms such as increased cortical excitability,
mechanical allodynia, photophobia, and anxiety in rats [234,247].

Higher-than-normal Hcy levels have been linked to an increased risk of vascular
events, whereas lower-than-normal levels seem to be protective. Further research is needed
to disentangle a possible link between Hcy levels in migraine and vascular risk.

3.7. Other Biomarkers

These represent potential biomarkers for migraine with limited/conflicting data from
human studies and a lack of preclinical evidence.

3.7.1. Tryptophan and Kynurenine

Tryptophan is an amino acid essential for the biosynthesis of different proteins, in-
cluding 5-HT and melatonin. About 95% of tryptophan is metabolized by the kynurenine
pathway, which generates neuroactive compounds that interact with glutamate recep-
tors [248].

Clinical and preclinical evidence suggests a depressed kynurenine pathway in mi-
graine [110,249–251]. Indeed, tryptophan, and most of the kynurenine pathway metabolites,
were found to be decreased interictally in the plasma of EM patients compared with HC
subjects [110] and ictal period [252]. Others, however, found no difference in plasma trypto-
phan levels in EM [253] or even an increase in EM and CM patients’ plasma/serum levels
when compared with HC [254,255]. Notably, kynurenine metabolites in serum decrease
in CM patients [254]. These findings and the neurobiological link between tryptophan,
kynurenine, and glutamate call for more studies on tryptophan metabolites to test whether
they play any role as biomarkers.

3.7.2. Melatonin

The fundamental relevance of melatonin in the regulation of circadian rhythms and
sleep is widely known. Melatonin may also have a crucial involvement in headache
disorders [256]. Several studies have reported lower plasma/serum and urine melatonin
levels in migraine patients (EM and CM) than in HC, especially during a migraine attack.
Melatonin could also be effective in treating migraines by lowering the number of days
with headaches per month [257–260].

3.7.3. Growth Factors

Growth factors are a broad class of secreted proteins known to exert a key role in
regulating cell survival, growth, and differentiation; some of them, such as nerve growth
factor (NGF), brain-derived neurotrophic factor (BDNF), and neurotrophin 4/5, can en-
hance pain in some circumstances [261–263]. The most studied within the migraine field
are the neurotrophins NGF and BDNF; however, it should be noted that changes in other
growth factors were also reported in migraine sufferers. For instance, CM and EM pa-
tients showed higher neurotrophin 4/5 plasma levels than HC [264]. Notably, the authors
did not detect any difference in glial-cell-line-derived neurotrophic factor (GDNF), while
Sarchielli et al. [265] reported lower levels of GDNF in the CSF of CM patients tested during
the interictal period compared with HC. Regarding NGF, the literature provides conflicting
findings on the amounts of circulating levels. Patients with EM tested interictally had
lower NGF plasma levels than HC [155,266]. In comparison, Martins et al. [264] showed
no difference in NGF plasma levels between migraine patients (EM and CM) and HC.
Other studies reported higher CSF/plasma/saliva levels of NGF in CM patients compared
with HC [29,33,267]. Interestingly, NGF levels seem to positively correlate with headache
frequency [29,155]. Regarding BDNF, higher levels were reported in the CSF of CM pa-
tients compared with HC [267]. Additionally, BDNF plasma levels were higher in EM
subjects during the ictal period compared with the interictal one and HC [268,269]. Notably,
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other studies found lower plasma/serum levels of BDNF in EM and CM compared with
HC [155,266] and lower levels in CM compared with EM [264].

In conclusion, the heterogeneity of findings precludes at this moment the possibility
to suggest a role for growth factors as migraine biomarkers. Migraine pathogenesis is
associated with oxidative stress by altering cerebral blood flow [270,271].

3.7.4. Mediators of Oxidative Stress

Oxidative stress can be induced by common migraine triggers. These mechanisms
include, for instance, a high rate of energy production by the mitochondria, toxicity, calcium
excess, excitotoxicity, and neuroinflammation, depending on the stimulus [272]. Increased
levels of reactive oxygen and nitrogen species increase vulnerability to oxidative com-
pounds and the reduction in antioxidative defense. Selenoproteins such as glutathione
peroxidases (GPx), thioredoxin reductases (TrxRs), or selenoprotein P (SelP) with antiox-
idant activity are indeed crucial for maintaining the physiology of neurons and glial
cells [273]. Malondialdehyde (MDA) is a product of lipid peroxidation and has been
widely used as a biomarker of oxidative stress [274,275]. Nitric oxide (NO) is a well-known
oxidant/vasodilator with a critical function in migraine pathophysiology, and it is consid-
ered an indicator of nitrosative stress [276]. Patients with migraine show higher serum
levels of MDA [277]; this finding confirmed the similar results obtained previously by
Togha et al. [278], who reported higher interictal serum levels of MDA in both CM and
EM subjects compared with HC. In the same study, the authors reported higher NO serum
levels in both groups of migraine patients compared with HC [278]. Interestingly, higher
levels of both MDA and NO metabolites were detected in the platelets of migraine patients
evaluated ictally [278]. The higher levels of NO metabolites and nitrites were also found
in plasma, supporting NO modulatory role in biological processes, particularly vasodila-
tion [48]. Catalase and superoxide dismutase are antioxidant enzymes less studied in the
migraine area. Their serum levels were lower in CM subjects when compared with EM or
HC subjects in several studies [278,279].

3.7.5. Apolipoprotein E

(ApoE) ApoE is implicated in lipid transport and metabolism, and it is involved
in different neurological and vascular disorders [280,281], including migraine. Indeed,
serum ApoE protein levels were higher in EM patients than in HC [45], particularly during
migraine attacks [45,282]. Accordingly, ApoE polymorphisms were associated with an
increased risk of headaches [283] and migraine [284]. Although there have only been a few
studies reporting changes in circulating levels, ApoE appears to be a potential biomarker
for migraine diagnosis and is worth further investigating [285].

4. Fitting Together the Pieces of a Complex Picture

Migraine disease consists of recurrent attacks that display a cyclic profile made of
different phases, culminating in a full-blown attack, characterized by pain and multiple
associated symptoms [5]. Multiple systems and mediators are involved in different phases
of the attack and thus in the diverse clinical manifestation of the disease itself. Several
studies have investigated a multitude of circulating signaling molecules/biomarkers linked
to migraine pathogenesis. Table 1 outlines an analytical list of the alterations documented
in preclinical and clinical studies. The possible interactions between pathways and these
signaling molecules are summarized in Figure 1.
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Table 1. Biomarker evaluations and main findings.

Biomarkers Clinical Sample Preclinical
Sample

Clinical
Findings

Preclinical
Findings

Key
Conclusions

Neuropeptides

CGRP

Blood
(plasma,
serum),
Saliva, CSF

Blood (plasma,
serum)

↑ Levels in EM and CM patients during interictal and ictal phases
[28–42,47–49,54];
Index of good response to onabotulinumtoxinA treatment and
detoxification in CM or MO-CM patients [36,52,65,66,68];
Unchanged levels in EM and CM patients during interictal and ictal phases
[42–46,52,63]

↑ in rodents and cat
[55–62]

Potential diagnostic
biomarker and
potential biomarker
for prediction of
response to treatments

Substance P
Blood
(plasma,
serum)

Blood (plasma,
serum)

↑ Levels in EM patients during interictal and ictal phases and interictal CM
[32,33,79]
Unchanged levels in EM patients and HC [80,81]

↑ levels in rat [62]

PACAP
Blood
(plasma,
serum)

Blood
(plasma)

↑ Levels in EM patients during interictal and ictal phases [42,86,87,89] or
↓levels in EM patients during interictal phase [87,88]↑ levels in CM patients
during interictal phase [42]
Unchanged in EM or CM during interictal or vs. HC [42,85]

↑ levels in rat and cat
[57,61,62,90]

Potential Therapeutic
Biomarker

VIP Blood
(plasma)

Blood
(plasma)

↑Levels EM and CM patients during interictal and ictal phases
[31,36,42,65,81,85,86]
Correlation with autonomic symptoms [81,94] and cranial parasympathetic
symptoms [95]
Index of good response to triptan treatment in EM [94]

↑ levels in rat [61,62]

NPY
Blood
(plasma)
CSF

Blood
(plasma)

↑ Levels in CSF [100] or ↓ levels in plasma in CM and EM patients during
ictal phase migraine patients [102]
Unchanged levels in EM patients during ictal and interictal phases and vs.
HC [81,101]

↑ levels in rat [61]

Classic
Neurotransmitters

Glutamate

Blood
(plasma)
Saliva
CSF

Blood (serum)
↑ Plasma and salivary levels in EM and CM patients vs. HC during
interictal and ictal phase [106,114–119]
↑ CSF levels in EM and CM vs. HC during ictal phase [30,120,121]

↑ levels in rat [122]

Inflammatory
Mediators

Cytokines
Blood
(plasma,
serum), CSF

Blood (serum)
↑ IL-6, TNF-α, IL-1β, TGF-β1 levels in EM patients during interictal phase
[132,138–140] ↑ IL-6, TNF-α levels in CM patients during ictal and interictal
phase [134,144,145]

↑ IL-6, TNF-α, IL-1β
levels in rat [56]
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Table 1. Cont.

Biomarkers Clinical Sample Preclinical
Sample

Clinical
Findings

Preclinical
Findings

Key
Conclusions

Other
Potential
Biomarkers

Endocannabinoids
and related lipids

Blood (platelets,
plasma),
Saliva, CSF

Data available
only for brain
areas

↑ PEA levels in EM patients during ictal phase induced by nitroglycerin
[188]
↓ Salivary PEA levels in migraine patients [189]
↓ AEA, 2-AG, and PEA levels in CM and MOH patients [185,186]
AEA and related lipid levels unchanged during the interictal phase in EM
patients vs. HC [187,188]
↑FAAH and AEA transporter activities in woman EM patients [190] ↓FAAH
and the AEA transporter activity in CM and MOH
patients [191]

Increased levels of the
degrading enzymes
FAAH and MAGL [193]

MicroRNAs Blood (plasma,
serum)

Data available
only for brain
areas

↑ miR-34a-5p levels in CM during ictal phase and in CM and MOH patients
during interictal phase [66,204]
↑miR-382-5p levels CM during ictal phase and CM and MOH patients
during interictal phase [66,204]
↓ miR-30 in EM patients [205]
↑ miR-155 in EM patients in interictal phase [206]

↑ miR-155-5p,
miR-34a-5p, and
miR-382-5p in several
brain areas. Inhibitory
effect of a CGRP
antagonist [56]

ET-1 Blood
(plasma)

Blood
(plasma)

↑ levels in EM patients in the early stages of the attack [220–224]
Conflicting results in interictal phase [221,222,225–227]

↑ or ↓ levels in rodents
[108,228]

Tryptophan and
Kynurenine
Metabolism

Blood
(plasma,
serum)

CSF

↓ Levels in EM patients during interictal and ictal phases [110,252]
↓ levels only of kynurenine metabolites in CM patients during interictal
phase [254]
↑ levels in EM and CM patients vs. HC during interictal phase [254,255]
Unchanged levels in EM patients during interictal phase [253]

↓ levels in rat [251]
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interactions within the neuropeptides (i.e., CGRP)–inflammation–ECS in neuronal and 
non-neuronal cells. Red arrow: increase; green arrow: decrease; BDNF: brain-derived neurotrophic 
factor; cAMP: cyclic AMP; cGMP: cyclic GMP; CGRP: calcitonin gene-related peptide; COX-2: cy-
clooxygenase-2; CREB: cyclic AMP response element-binding protein; ECS: endocannabinoid sys-
tem; E/L: endocannabinoids and related lipids; Glut: glutamatergic signaling; IL-6: interleukin 6; 
KP: kynurenic pathway; MAPKs: mitogen-activated protein kinases; MMP-9: matrix metallopep-
tidase 9; NF-kB: nuclear factor kappa B; NGF: nerve growth factor; NO: nitric oxide; PACAP: pitu-
itary adenylate-cyclase-activating polypeptide; PGE2: prostaglandin E2; SP: substance P; TNF-α: 
tumor necrosis factor-alpha. 

Figure 1. Mechanisms underlying migraine pathophysiology: Reciprocal interactions among the
systems and pathways whose components are altered in migraine patients and potential molecular
interactions within the neuropeptides (i.e., CGRP)–inflammation–ECS in neuronal and non-neuronal
cells. Red arrow: increase; green arrow: decrease; BDNF: brain-derived neurotrophic factor; cAMP:
cyclic AMP; cGMP: cyclic GMP; CGRP: calcitonin gene-related peptide; COX-2: cyclooxygenase-2;
CREB: cyclic AMP response element-binding protein; ECS: endocannabinoid system; E/L: endo-
cannabinoids and related lipids; Glut: glutamatergic signaling; IL-6: interleukin 6; KP: kynurenic
pathway; MAPKs: mitogen-activated protein kinases; MMP-9: matrix metallopeptidase 9; NF-kB:
nuclear factor kappa B; NGF: nerve growth factor; NO: nitric oxide; PACAP: pituitary adenylate-
cyclase-activating polypeptide; PGE2: prostaglandin E2; SP: substance P; TNF-α: tumor necrosis
factor-alpha.



Int. J. Mol. Sci. 2023, 24, 5334 16 of 30

TVS activation is generally accepted as one of the primary pathophysiological pro-
cesses in migraine pathophysiology [8], although it is still uncertain whether TVS activation
is of central or peripheral origin. The identification of the biological agents involved in
migraine pathogenesis is a further pertinent question. As demonstrated by a number of
clinical and preclinical investigations, the function of CGRP is undeniable in this regard.
However, due to the complexity of migraine disease, it is more likely that multiple factors
act in concert together with the neuropeptide CGRP. CGRP is released by the peripheral and
central terminals of trigeminal ganglion neurons and has the ability to cause nociception,
vasodilation, and neurogenic inflammation [286]. Considering its significant impact on
migraine pathophysiology, researchers have worked hard to create medications that either
target CGRP or its receptor complex. The development and use of monoclonal antibodies
directed against the neuropeptide CGRP or its receptor are the most recent achievement in
the field of migraine [287]. However, despite the success displayed by such monoclonal an-
tibodies, there is still a great percentage of migraine patients for whom the beneficial effects
are minimal or completely absent, which underscores the involvement of other biological
players in migraine generation and maintenance besides CGRP [288–290]. An important
role is played by NO. CGRP and other peptides, once released from activated trigeminal
fibers in the trigeminovascular space, act on the vascular smooth muscle cells inducing
vasorelaxation [25] and endothelial cells to promote NO release [291]. This sequence of
events is supported by both human and animal studies [27,48,291–302]. Protein ApoE may
also be required for NO production in addition to the pathways indicated above [303].
Specifically, ApoE polymorphisms can alter arginine uptake, resulting in increased NO,
via a NOS-independent mechanism [304], but it also may influence the expression of
cytokines [305] and CGRP [27]. Besides the NO-induced pathways, CGRP release may
promote the production of inflammatory mediators such as cytokines [306]. In agreement,
data from the NTG animal model of migraine report higher protein levels or gene expres-
sion of proinflammatory cytokines (e.g., IL-1β, IL-6, and TNF-α) in the peripheral blood
and trigeminovascular areas [56,302,307,308]. These alterations have been confirmed in
the peripheral blood of migraine patients [130,131]. Elevated serum levels of TNF-α have
also been linked with endothelial dysfunction, which is reportedly present in migraine
patients [211,309,310]. The increased plasma levels of ET-1 in migraine patients [219] can
cause a release of CGRP [311], NO [312], and proinflammatory mediators [313]. Other
neuropeptides, including SP, VIP, and PACAP may contribute to trigeminovascular activa-
tion [23,314]; meanwhile, increased inflammation may cause NGF and BDNF release, which
in turn affect nociceptive pathways [264]. NGF may induce hyperalgesia by enhancing the
production and release of SP and CGRP, via the activation of the transient receptor potential
vanilloid 1 (TRPV1) channel [264,315,316]. Some microRNAs associated with inflammation,
such as miR-382-5p and miR-34a-5p, were altered in CM patients. These microRNAs target
genes involved in anti-nociceptive and anti-inflammatory mediators regulation [200]. The
intriguing concept related to these microRNAs is that not only can they modulate the
molecular targets relevant to migraine pain, but they can also be stimulated by molecules
whose levels are increased in migraine [317–320]. An alteration in the glutamatergic neu-
rotransmission leads to excitotoxicity and neuronal hyperexcitability [321]. On the other
hand, a downregulation of the kynurenine pathway may increase CGRP and PACAP levels,
thus enhancing the generation of migraine attacks [322]. Among the numerous systems
and pathways outlined above, all of which are connected and reciprocally influenced, the
ECS is deeply entangled with most of them [323–325]. Indeed, ECS and related lipids are
involved in migraine-related mechanisms, such as the inflammatory pathways, neuropep-
tidergic and neurotransmitter signaling. AEA can inhibit NO and CGRP-induced dural
vasodilatation [196] and can desensitize the TRPV1 channels [326], whose activation on the
trigeminal fibers promotes the release of CGRP [197,327]. Moreover, PEA may indirectly
lead to the downregulation of proinflammatory transcription factors such as AP-1 and
NF-κB [328]. ECS may cooperate differently with other migraine-related pathways, such as
the kynurenine pathway [323,324], thus causing the modulation of glutamatergic signaling.
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5. Considerations and Perspectives

The search for a potential biomarker for migraine has persisted for a long time, and
the potential molecules implicated in disease pathogenesis and chronification have been
investigated in saliva, blood, and CSF. However, even in the hopeful case of CGRP and
other biomarkers, their clinical use may be affected by a variety of biological factors,
such as phases of the menstrual cycle, and non-biological factors, including the lack of
standardized protocols and methodologies. Thus, the non-specificity and non-sensitivity
of biomarker change remain a problem in migraine. At present, studies suggest that the
action of the CGRP is pivotal in the trigeminovascular complex, but other neurobiological
factors associated with it may offer alternative possibilities in precision medicine. The exact
mechanisms through which CGRP initiates and sustains the other pain and inflammatory
mediators in a reciprocal loop are yet to be defined, although recently, it was proposed that
SFK activity plays a pivotal role in facilitating the crosstalk between CGRP and cytokines
by transmitting CGRP receptor/protein kinase A signaling in TG and trigeminovascular
sensitization [329]. An evaluation of multiple panels of biomarkers, including CGRP and
other neuropeptides, microRNAs, and proinflammatory peptides could be useful to identify
the signatures of migraine patients and to develop personalized therapy.

The wealth of clinical and preclinical data on the role of sexual hormones in mi-
graine [330], as well as the output of in vitro and in vivo studies evaluating the mediation
of prolactin [73], calls for future fundamental and clinical studies aimed at investigating
certain aspects of sex-related responses and differences between females and males in
laboratory settings and in humans.
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