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Abstract: Safflower (Carthamus tinctorius. L) possesses anti-tumor, anti-thrombotic, anti-oxidative,
immunoregulatory, and cardio-cerebral protective effects. It is used clinically for the treatment of
cardio-cerebrovascular disease in China. This study aimed to investigate the effects and mecha-
nisms of action of safflower extract on myocardial ischemia–reperfusion (MIR) injury in a left anterior
descending (LAD)-ligated model based on integrative pharmacology study and ultra-performance liq-
uid chromatography–quadrupole time-of-flight-tandem mass spectrometer (UPLC-QTOF-MS/MS).
Safflower (62.5, 125, 250 mg/kg) was administered immediately before reperfusion. Triphenyl
tetrazolium chloride (TTC)/Evans blue, echocardiography, terminal deoxynucleotidyl transferase-
mediated dUTP nick-end labeling (TUNEL) assay, lactate dehydrogenase (LDH) ability, and superox-
ide dismutase (SOD) levels were determined after 24 h of reperfusion. Chemical components were
obtained using UPLC-QTOF-MS/MS. Gene ontology (GO) and Kyoto Encyclopedia of Genes and
Genomes (KEGG) analyses were performed. Quantitative real-time polymerase chain reaction (qRT-
PCR) and Western blotting were used to analyze mRNA and protein levels, respectively. Safflower
dose-dependently reduced myocardial infarct size, improved cardiac function, decreased LDH levels,
and increased SOD levels in C57/BL6 mice. A total of 11 key components and 31 hub targets were
filtered based on the network analysis. Comprehensive analysis indicated that safflower alleviated in-
flammatory effects by downregulating the expression of NFκB1, IL-6, IL-1β, IL-18, TNFα, and MCP-1
and upregulating NFκBia, and markedly increased the expression of phosphorylated PI3K, AKT,
PKC, and ERK/2, HIF1α, VEGFA, and BCL2, and decreased the level of BAX and phosphorylated
p65. Safflower shows a significant cardioprotective effect by activating multiple inflammation-related
signaling pathways, including the NFκB, HIF-1α, MAPK, TNF, and PI3K/AKT signaling pathways.
These findings provide valuable insights into the clinical applications of safflower.

Keywords: safflower; integrative pharmacology; myocardial ischemia–reperfusion injury;
UPLC-QTOF-MS/MS; LAD ligation; inflammation-related signaling pathways

1. Introduction

Acute myocardial ischemia (AMI) is a leading cause of morbidity and mortality
worldwide, and it arises due to the disruption of a vulnerable atherosclerotic plaque or
erosion of the coronary artery endothelium in most cases [1]. Timely myocardial reperfusion
through percutaneous coronary intervention (PCI) or thrombolysis is the most effective
method for treating myocardial infarction injury. However, it is associated with serious
adverse outcomes, including arrhythmias, reversible contractile dysfunction, endothelial
and microvascular dysfunction, and lethal cell damage, which are collectively termed
“myocardial ischemia–reperfusion (MIR) injury” [2,3]. MIR injury contributes to 50%
of the final infarct size in AMI. Excessive inflammatory responses due to infiltration of
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circulating leukocytes following reperfusion aggravate cardiomyocyte death, resulting
in the development of heart failure. Unfortunately, clinical trials have reported only
few successful interventions for reperfusion injuries [4]. Therefore, the development of
pharmacological interventions is a promising strategy for reperfusion injury therapy.

Traditional Chinese medicine (TCM) has more than 2000 years of history and widespread
clinical applications. TCM therapies consider multi-ingredients and multi-targets, lead
to few adverse reactions, and are cost-effective. TCM might be used as a complementary
and alternative approach to the primary and secondary prevention of cardiovascular dis-
ease [5,6]. TCM syndromes of AMI refer to thoracic obstruction, which was considered
as qi and blood deficiency, liver depression and spleen deficiency (transmural ischemia),
blood stasis and obstruction collaterals, and qi stagnation and blood stasis (thrombotic
occlusion) [7,8]. The traditional effects of safflower (Carthamus tinctorius L.) include the
regulation of blood stasis and improvement of blood circulation. It is commonly used as
herbal medicine and has been for more than 1000 years [9]. Modern pharmacological stud-
ies have demonstrated that safflower possesses anti-tumor, anti-thrombotic, anti-oxidative,
immunoregulatory, and cardio-cerebral protective effects [10–12]. Clinical preparations of
safflower, such as safflower injection and safflower yellow injection, have been used clini-
cally for the treatment of cardio-cerebrovascular disease in China for many years [5,13–15].
As one of the important components of Danhong injection, it has been used in the clinical
therapy of cardiovascular and cerebrovascular diseases in China for several years [10].
In addition, studies also indicated that safflower reduces MIR injury by increasing left
ventricular systolic pressure (LVSP), rate of left ventricular pressure change (+dp/dtmax
and -dp/dtmax), and by decreasing the levels of malonaldehyde [11,12]. However, there
is little in-depth and comprehensive evidence on the mechanisms of safflower against
MIR injury.

Traditional Chinese medicine integrative pharmacology (TCMIP) is an interdisci-
plinary subject based on the theory of TCM that comprehensively explores the interaction
between various components of TCM and the body [16,17]. Briefly, by predicting the
targets and pharmacological effects of herbal medicine, it enables the revelation of the
association of the drug–gene–disease synergistic module, screens the synergistic multi-
components, and clarifies the herbal ingredients and their related characteristics, as well
as the relationship between the compound–target and target–disease [18]. This approach
will be the next promising paradigm shift, from “one target, one component” to “network
targets, multi-component” [19]. Ultraperformance liquid chromatography–quadrupole
time-of-flight–tandem mass spectrometer (UPLC-QTOF-MS/MS) is a powerful tool for
the qualitative characterization of chemical components in herbs by providing high chro-
matographic and mass resolution, accurate mass measurement, and abundant fragment
ion information [20,21]. In this study, we used UPLC-QTOF-MS/MS for chromatographic
separation and structural elucidation.

In the present study, we employed the Integrative Pharmacology-based Network
Computational Research Platform of TCM (TCMIP v2.0, http://www.tcmip.cn/, accessed
on 3 January 2022) to evaluate the efficacy of safflower in the treatment of MIR injury by
using a classical mouse model of ligation of the left anterior descending (LAD) coronary
artery, described the chemical fingerprint of safflower by UPLC-QTOF-MS/MS, explored
the mechanism of action of safflower against MIR injury verified the key genes by qRT-PCR
and Western blotting. The present study provides a comprehensive understanding of the
multi-target regulation induced by safflower against MIR injury, and complements the
discovery of key ingredients and targets (Figure 1).

http://www.tcmip.cn/
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Figure 1. A schematic diagram of the systematic strategies for uncovering the pharmacological 
mechanisms of safflower action on MIR injury. 

Figure 1. A schematic diagram of the systematic strategies for uncovering the pharmacological
mechanisms of safflower action on MIR injury.
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2. Results
2.1. Effect of Safflower for Protection against MIR Injury in Mice

Mice were randomly divided into six groups, including the sham group, control group,
safflower low-dose group, medium-dose group, high-dose group (62.5 mg/kg, 125 mg/kg,
250 mg/kg, 4 times/24 h, i.v.), and positive control metoprolol group (12.5 mg/kg/d, i.p.).
Cardiac infarct size was determined by triphenyl tetrazolium chloride (TTC)/Evans blue
staining in mice who had undergone 30 min ischemia and 24 h reperfusion (Figure 2A).
Based on the similar area at risk (AAR) (Figure 2B), the control group had a higher in-
farct size than the other groups following MIR injury, suggesting that the MIR model
was established successfully. Safflower treatment (62.5, 125, 250 mg/kg, 4 times/24 h,
i.v.) and metoprolol treatment (12.5 mg/kg, once for 24 h, i.p.) significantly reduced the
percentage of infarct area (IS) in AAR (Figure 2C). Cardiac function was analyzed using
echocardiography 24 h after reperfusion (Figure 2F–L). As shown in Figure 2H,L, the left
ventricular ejection fraction (EF%) and left ventricular shortening fraction (FS%) values
in the control group were significantly lower than those in the sham group (p < 0.001).
Safflower (62.5, 125, and 250 mg/kg, 4 times/24 h) significantly improved cardiac contrac-
tile function, as reflected by increasing in EF% and FS% (p < 0.05). Safflower (62.5, 125,
and 250 mg/kg, 4 times/4 h) also improved the left ventricular end-diastolic anterior wall
thickness (LVAWs), left ventricular internal diameter systolic (LVIDs), and left ventricular
volume systolic (LV Volume s) (Figure 2J–L, p < 0.05). Safflower in the high-dose group
(250 mg/kg, 4 times/24 h, i.v.) showed an effect equivalent to that observed in the positive
control metoprolol group (12.5 mg/kg, once for 24 h, i.p.). Similarly, to verify the effect
of safflower on myocardial necrosis and oxidative stress in the serum, we measured the
levels of LDH and SOD (Figure 2D,E). We found that LDH activity in the control group
was higher than that in the sham group, while the SOD activity was lower in the control
group than that in the sham group. LDH activity in the groups treated with safflower
profoundly reduced in a dose-dependent manner, whereas the level of SOD increased after
treatment with safflower and metoprolol in MIR-injured mice. Furthermore, we determined
cardiomyocyte death through TUNEL staining (Figure 2M,N). The TUNEL-positive cells
increased in the control group. Safflower and metoprolol treatment markedly reduced
apoptosis in myocardial tissue (Figure 2N). No apoptosis was observed in the sham group
(Figure 2M).

2.2. Identification and Characterization of Chemical Constituents in Safflower

The base peak intensity (BPI) chromatograms of the water extraction of safflower in the
positive and negative ion modes detected by UPLC-QTOF-MS/MS are shown in Figure 3.
A total of 79 chemical compounds (51 in electrospray ionization [ESI+] and 51 in ESI-) in
safflower were identified or tentatively characterized using UNIFI 1.8 software, and they
included flavonoids, phenylpropanoids, alkaloids, lignans, and fatty acids. Among them,
flavonoids accounted for 67% (Figure 3E) and glycosides accounted for 57% of the total
phytoconstituents (Figure 3F). Detailed information on the chemical compounds is listed
in Supplementary File S1, including the component name, half relaxation time (tR, min),
measured value (m/z), theoretical value (m/z), error (ppm), formula used, response value, and
fragment. Hydroxysafflor yellow A (HSYA) and N1,N5,N10-(Z)-tri-p-cou-maroylspermidine
were used as examples to illustrate the identification process in detail. As shown in Figure 3C,
the ion [M + H]+ 613.17534 was mainly determined as the molecular ion peak of HSYA, and
representative fragments were m/z 451.12319 [M + H-Glc]+, 433.1127 [M + H-Glc-OH]+,
415.10177 [M + H-C6H14O7]+,and 235.08432 [M + H-C11H7O2]+, all of which were identified
as HSYA [22]. As For N1,N5,N10-(Z)-tri-p-cou-maroylspermidine [23], the most indicative
fragments were identified at m/z 582.2624 [M-H]-, and the other fragments were 316.16630
[M-H-C9H7O2-C8H7O]-, 145.02862 [M-H-C9H7O2-C8H7O-C8H17ON3]-, and 119.04965 [M-H-
C9H7O2-C8H7O-C8H17ON3-CO]- (Figure 3D).



Int. J. Mol. Sci. 2023, 24, 5313 5 of 26Int. J. Mol. Sci. 2023, 24, x FOR PEER REVIEW 5 of 26 
 

 

 
Figure 2. Pharmacodynamic studies of safflower effect on MI/R injury. Representative photographs 
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250 mg/kg, 4 times/24 h) and metoprolol groups (12.5 mg/kg/24 h) (A, scale bar is 200 pixels). Infarct 
size (IS) (C) and area at risk (AAR) (B) were quantified after MIR injury for 24 h (n = 9). Representa-
tive echocardiograph depicted for sham, control, safflower treatment, and metoprolol treatment (F) 
(n = 6). Rate (G), EF (H), FS (I), LVAWs (J), LVIDs (K), and LV Volume s (L) values were quantified. 
Average serum LDH (D) (n = 6) and SOD (E) (n = 6) activities in MIR injury mice assayed on reper-
fusion for 24 h. Representative photographs of TUNEL staining (M, scale bar is 50 μm) and the 
statistical diagram of quantification (N) were shown (n = 3). One-way ANOVA with Tukey’s multi-
ple comparison test. Values are means ± standard error of mean (SEM), ###p < 0.001 vs. sham, respec-
tively; * p < 0.05, ** p < 0.01, *** p < 0.001 vs. control, respectively; one-way ANOVA. 
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Figure 2. Pharmacodynamic studies of safflower effect on MI/R injury. Representative photographs
of TTC/Evans blue perfused hearts were shown for sham, control, safflower treatment (62.5, 125,
250 mg/kg, 4 times/24 h) and metoprolol groups (12.5 mg/kg/24 h) (A, scale bar is 200 pixels).
Infarct size (IS) (C) and area at risk (AAR) (B) were quantified after MIR injury for 24 h (n = 9).
Representative echocardiograph depicted for sham, control, safflower treatment, and metoprolol
treatment (F) (n = 6). Rate (G), EF (H), FS (I), LVAWs (J), LVIDs (K), and LV Volume s (L) values were
quantified. Average serum LDH (D) (n = 6) and SOD (E) (n = 6) activities in MIR injury mice assayed
on reperfusion for 24 h. Representative photographs of TUNEL staining (M, scale bar is 50 µm) and
the statistical diagram of quantification (N) were shown (n = 3). One-way ANOVA with Tukey’s
multiple comparison test. Values are means ± standard error of mean (SEM), ### p < 0.001 vs. sham,
respectively; * p < 0.05, ** p < 0.01, *** p < 0.001 vs. control, respectively; one-way ANOVA.
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2.3. Target Prediction and Functional Enrichment

The TCMIP v2.0 database was used to search for candidate targets of safflower. A
total of 486 major candidate human genes corresponding to 79 chemical compound iden-
tifications were collected with similarity scores of 0.7 (Supplementary File S3). A total of
4579 MIR-related targets were obtained from three databases, including the GeneCard
database (2341 genes), DisGeNET database (2173 genes), and TCMIP v2.0 database (65 genes),
by searching for the keywords “myocardial ischemia–reperfusion injury,” “myocardial
ischemia injury,” and “myocardial infarction injury.” A total of 859 targets were filtered
for the next analysis with scores >10 for the GeneCard database, >0.1 for the DisGeNET
database, and all the genes of the TCMIP v2.0 database.

To identify the common genes between safflower and MIR injury, a Venn diagram
was developed, which screened 105 overlapping genes between MIR targets (859) and
safflower-related genes (486) (Figure 4A). A total of 105 overlapping genes were subjected
to Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) functional
enrichment analyses using the Database for Annotation, Visualization and Integrated Dis-
covery (DAVID v6.8). The GO terms included 329 biological processes (BPs), 59 cellular
components (CCs), and 72 molecular functions (MFs) (Supplementary File S4, p < 0.05).
The top 30 BP terms closely related to MIR injury are shown in Figure 4B, which suggests
that biological processes mainly focus on the negative regulation of inflammation, hypoxia,
and apoptosis. One hundred and forty-nine signaling pathways of safflower in MIR injury
were enriched based on the KEGG database, 34 of which were optimally related to the cor-
responding pathological events involved in MIR injury (Figure 4C, Supplementary File S5).
These pathways could be divided into three functional modules: 1© Inflammation, which
includes the TNF signaling pathway, NFκB signaling pathway, natural killer cell-mediated
cytotoxicity, T-cell receptor signaling pathway, Toll-like receptor signaling pathway, and
NOD-like receptor signaling pathway. The inflammation module, compared with the oth-
ers, was the primary module; 2©Metabolism, which includes the AMPK signaling pathway,
cAMP signaling pathway, and arachidonic acid metabolism. This module contributes to
cell metabolism, 3© apoptosis, Ca2+ overloading, and oxidant stress.
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2.4. Screening of Key Components and Hub Genes

To screen hub components and key targets, we constructed a multi-dimensional
network using CytoScape 3.7. Based on the results of GO and KEGG analyses, 71 important
targets were screened from the 34 pathological event pathways of MIR injury, which were
regarded as effective targets in the therapeutic effect of safflower on MIR injury. The
71 important targets were discovered in 55 chemical compounds. Coincidentally, most of
these were flavonoids, flavonoid glycosides, and other glycosides.

The 71 key targets, 55 active ingredients, and 34 KEGG pathways were entered into Cy-
toScape 3.7, and a correlative network of “compounds-targets-pathways-symptoms” was
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constructed (Figure 5A). The active ingredients marked in blue were divided into three cat-
egories: flavonoids, flavonoid glycosides, and other compounds. Notably, flavonoids
played a critical role in the treatment of MIR injury. The targets and pathways marked in
orange and pink, respectively, were distributed into three groups based on pharmacological
activities, including immune inflammation, metabolism, and others. In addition, gene
classification was dependent on the frequency of gene targets in different pathways.
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Figure 5. The interactive network of “components-targets-pathways-symptoms” (A) was shown.
The network of hub targets and key pathways (B) were also shown. In (A), yellow nodes refer to the
safflower, blue nodes refer to putative targets of safflower, orange nodes refer to therapeutic targets
of MIR, and pink nodes refer to KEGG pathway. In (B), orange nodes refer to hub targets filtered
from (A), and the blue one refers to the key pathway.

As shown in Figure 5A, immune inflammation accounted for the largest proportion.
The interactive network consisted of 160 nodes and 729 edges, and detailed information is
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provided in Supplementary File S6. The network was divided into three parts: components,
targets, and pathways. The topological feature “degree” was chosen to identify topologi-
cally important nodes. Nodes with degree values greater than the median were filtered
out as hub targets. For genes, the median value of “degree” was 6. Thirty-two nodes were
selected as the hub genes (Table 1). The top ten genes were PRKCA, AKT1, CSNK2A1,
CSNK2B, PIK3CG, HSPA2, PTGS1, MAPK1, HK1, and TNF.

Table 1. The key targets screened from the network analysis.

Targets Degree Closeness Betweenness

PRKCA 46 0.46939 0.13402
AKT1 38 0.45609 0.11656

PIK3CG 36 0.39558 0.04650
CSNK2A1 36 0.38609 0.03410
CSNK2B 36 0.38609 0.03410
HSPA2 35 0.38983 0.03284
PTGS1 27 0.38609 0.08554

MAPK1 26 0.42037 0.05791
HK1 23 0.34773 0.03794
TNF 19 0.36508 0.02730

PTK2B 19 0.34183 0.01179
INS 14 0.36842 0.01911

PPARG 13 0.35698 0.01304
IL1β 13 0.34183 0.01452
IL6 13 0.35385 0.01586

PPP3R1 13 0.37182 0.01717
PPP3CA 13 0.37182 0.01717
ATP1A1 12 0.33472 0.05071
BCL2L1 12 0.33612 0.00845
NFκBIA 11 0.35385 0.00975
PPARA 11 0.34328 0.00984
PTGS2 10 0.34773 0.01090
CASP3 10 0.33612 0.00581
TLR4 10 0.35698 0.01096

VEGFA 9 0.35076 0.00812
LCN2 8 0.32525 0.00361

PLA2G2A 8 0.34475 0.01259
EGF 8 0.33895 0.01847

CYP2C9 8 0.33612 0.00471
TRPV1 7 0.32394 0.01434
ICAM1 7 0.32924 0.00425

The 31 hub genes were subjected to functional enrichment analysis again. The
main functional module was significantly associated with immune inflammation and in-
cluded the NFκB, PI3K/AKT, MAPK, HIF1α/VEGFA, TNF, and IL-17 signaling pathways
(Figure 5B, Supplementary File S7), which are marked in blue, and the size of the node
represents its importance in the network. The five most significantly regulated pathways
were chosen to be verified.

Homogenization is a challenging problem in the network pharmacology of TCM. To
overcome the bottleneck problem, an integrative pharmacology strategy has been firstly
applied for the effects of safflower on MIR injury by network analysis of Component–Target–
Disease weighted by chemical composition content, literature mining based on key active
components and bioactivities, and quantitative analysis [24–40]. A total of 19 chemical
components with a degree greater than the median of 8 were selected. Literature mining
was performed to verify the reliability of the key components prediction results, which
were filtered by the median of 8. As shown in Supplementary File S8, the literature based
on animal studies or cell experiment with the model of hypoxia/reoxygenation or myocar-
dial ischemia/reperfusion injury. In addition, the compound content was considered an
important filter condition. As shown in Figure 3 and Supplementary File S1, we listed
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the compounds in descending order of response value and screened the compounds with
a median response value of 67667. A total of 11 compounds were filtered by the three
above-mentioned factors, including quercetin (+40), luteolin (−44, +55), apigenin (−47,
+58), rutin (+33), hydroxysafflor yellow A (−11, +17), kaempferol (−42, +44), baicalin (−40,
+51), eriodictyol (+23), 6-hydroxyapigenin (−48, +46), 6-hydroxykaempferol (−32, +35),
and 6-hydroxykaempferol 3-rutinoside-6-glucoside. Quercetin (+40), luteolin (−44, +55),
apigenin (−47, +58), kaempferol (−42, +44), baicalin (−40, +51), and eriodictyol (+23) had
higher degree values and higher response values. Rutin (+33) and HSYA (−11, +17) had
a lot of literature evidence and higher response values. 6-hydroxyapigenin (−48, +46),
6-hydroxykaempferol (−32, +35), and 6-hydroxykaempferol 3-rutinoside-6-glucoside had
high degree values and higher response values. However, they have not been reported
thus far (Table 2).

Table 2. The key components filtered from the network.

Component Targets Degree Response Literature Mining

Quercetin (+40) PRKCA, AKT1, ACTB, CSNK2A1, CSNK2B, PIK3CG,
HSPA2, PTK2B, PPARG, BCL2L1, PPARA, LCN2 12 233,661 17 [24–40]

Luteolin (-44, +55) PRKCA, AKT1, ACTB, CSNK2A1, CSNK2B, PIK3CG,
HSPA2, PTK2B, PPARG, BCL2L1, PPARA, LCN2 12 90,094 23 [41–63]

Apigenin (-47, +58) PRKCA, AKT1, ACTB, CSNK2A1, CSNK2B, PIK3CG,
HSPA2, PTK2B 11 175,455 6 [64–69]

Rutin (+33) PRKCA, ACTB, CSNK2A1, CSNK2B, PIK3CG,
HSPA2, CYP2C9 7 732,202 4 [25,70–72]

HSYA (-11, +17) PTGS1, HK1 2 4,210,682 8 [73–80]

Kaempferol (-42, +44) PRKCA, AKT1, ACTB, CSNK2A1, CSNK2B, PIK3CG,
HSPA2, PTK2B, PPARG, PPARA 12 876,007 5 [81–85]

Baicalin (-40, +51) PRKCA, AKT1, ACTB, CSNK2A1, CSNK2B, PIK3CG,
HSPA2, PTK2B, 8 73,419 9 [86–94]

Eriodictyol (+23) PRKCA, AKT1, ACTB, CSNK2A1, CSNK2B, PIK3CG,
HSPA2, PTK2B, CYP2C9 9 306,217 2 [95,96]

6-hydroxyapigenin (-48, +46) PRKCA, AKT1, ACTB, CSNK2A1, CSNK2B, PIK3CG,
HSPA2, PTK2B, PPARG, BCL2L1, PPARA, LCN2 12 338,578 0

6-Hydroxykaempferol (-32, +35) PRKCA, AKT1, ACTB, CSNK2A1, CSNK2B, PIK3CG,
HSPA2, PTK2B, PPARG, BCL2L1, PPARA, LCN2 12 1,375,662 0

6-Hydroxykaempferol
3-Rutinoside-6-glucoside

ACTB, CSNK2A1, CSNK2B, PIK3CG, HSPA2,
PTGS1, HK1 9 1,632,678 0

2.5. The Mechanism and Molecular Docking

A diagram of the mechanism, including the hub targets, key components, and crucial
signaling pathways, is shown in Figure 6A. Molecular docking was also performed to
determine the binding affinities of key ingredients and hub targets. The crucial proteins,
including PRKCA, PIK3CG, and AKT1, were filtered for molecular docking. The results
showed that PRKCA, PIK3CG, and AKT1 had a good affinity with 11 hub compounds with
stable conformations and high binding activity. As for PRKCA, a total of 10 of 11 hub com-
pounds bind with binding affinities of less than -7.8 kcal/mol (Figure 6B, Supplementary
File S10), including 6-hydroxykaempferol-3-rutinoside-6-glucoside, 6-hydroxykaempferol,
apigenin, baicalin, eriodictyol, HSYA, kaempferol, luteolin, quercetin, and rutin. And the
five hub compounds, including eriodictyol, HSYA, kaempferol, luteolin, quercetin, and
rutin, can bind to PIK3CG and AKT1 with the binding affinities of less than −5.9 (C) and
−7.5 (D) kcal/mol, respectively, respectively (Figure 6C,D, Supplementary File S10). In
this study, the binding affinities of less than –5.0 kcal/mol were employed as screening
criteria [97], and PyMOL 2.5 was used for visualization.

2.6. Safflower Inhibits Inflammation-Related Factors in MIR Mice

The accuracy of the network pharmacology prediction results was verified by perform-
ing qRT-PCR and Western blot. The NFκB, HIF-1α, MAPK, TNF, and PI3K/AKT signaling
pathways are all involved in the activation of inflammation-related factors. The upstream
hub genes were quantified through Western blotting, and the downstream inflammatory
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factors were detected by using qRT-PCR. Safflower treatment increased the expression
of phosphorylation of PI3K and AKT, HIF1α, VEGFA, ERK1/2, and PKC, and decreased
the level of phosphorylated p65 (Figure 7A–F). Safflower also inhibited the MIR-injured
cardiomyocyte apoptosis, inhibited the expression of BAX, and promoted the expression
of BCL2 (Figure 7G). As shown in Figure 7H–N, the expression of inflammation-related
factors, including NFκB-1, IL-6, IL-1β, IL-18, MCP-1, and TNF-α, in the heart tissue of the
mice in the control group was significantly upregulated compared to that in the sham group
(p < 0.01), whereas the expression of NFκBia was downregulated. A dose-independent
decrease in NFκB-1, IL-6, IL-1β, IL-18, MCP-1, and TNF-α expression was observed in
safflower-treated mice (p < 0.05), and NFκBia mRNA expression significantly increased
(p < 0.01). However, there were no significant differences in the mRNA levels of PI3K or
HIF1α (Supplementary File S11).
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3. Discussion

In the present study, we identified 11 key components and 31 hub targets of safflower
treatment in MIR injury using an integrative pharmacological strategy and focused on
the mechanism of inflammatory response mediated by the NFκB, HIF-1α, MAPK, TNF,
and PI3K/AKT signaling pathways. According to Network Pharmacology Evaluation
Method Guidance, the network pharmacology evaluation is conducted from reliability,
standardization, and rationality [98]. In our study, UPLC-QTOF-MS/MS, literature mining,
and experimental verification ensured the reliability, and TCMIP v2.0 supplemented the
standardization and rationality.
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Inflammation plays a prominent role in MIR injury. During the initial stages of AMI,
an acute inflammatory response is evoked, in which neutrophils infiltrate the myocardium
via chemotactic attraction and aggravate the state of the already injured tissue. When neu-
trophils reach the reperfused tissue, they are exposed to chemotactic agents that are mainly
released from endothelial cells and activated in their normal systemic circulation path [99].
This pro-inflammatory response is exacerbated and continues to cause cardiomyocyte death
6–24 h post-reperfusion [100]. Necrotic cardiac cells release nuclear factors, such as TLR4
and MCP-1, to activate the HIF-1α, MAPK, and PI3K/AKT signaling pathways, further
promoting the NFκB signaling pathway [22,23,101]. Then the signaling pathways mediate
the release of inflammatory cytokines, such as IL-6, IL-1β, IL-18, TNF-α, etc., leading to
neutrophil attraction, sequestration, and adhesion [100]. Accompanied by the release of
these cytokines, pro-inflammatory signaling pathways are activated again. Therefore, the
inhibition of inflammatory factors during MIR injury effectively inhibits myocardial injury.
β-blocker metoprolol administered before reperfusion can reduce myocardial infarct size in
mice, pigs, and humans by eliminating exacerbated inflammation [102]. PKC also plays an
important role during myocardial I/R in redox regulation (redox signaling and oxidative
stress), cell death (apoptosis and necrosis), Ca2+ overload, and mitochondrial dysfunc-
tion [23]. In the present study, the mechanism of safflower treatment in MIR injury was
an inflammatory response mediated by the NFκB, HIF-1α, MAPK, TNF, and PI3K/AKT
signaling pathways. Safflower markedly inhibited the expression of inflammatory factors,
including IL-6, IL-1β, IL-18, MCP-1, and TNF-α.

In the present study, we identified 79 compounds in safflower using UPLC-QTOF-
MS/MS. UPLC-QTOF-MS/MS is a powerful tool for the qualitative characterization of
chemical components in herbs because it provides high chromatographic and mass resolu-
tion, accurate mass measurement, and abundant fragment ion information [20]. Compared
with other mass spectrometers, the TOF analyzer has a higher mass resolution, sensitivity,
and accuracy; in addition, it can provide accurate ion mass and molecular formulas. MSE

technology is a new data acquisition method. It is helpful for the comprehensive analysis of
complex samples, and can obtain accurate mass measurements of precursors and product
ions at a significant speed [21]. For the first time, we used the UPLC-QTOF-MS/MS strategy
to identify safflower phytochemicals.

Safflower is widely used in the clinical treatment of cardio-cerebrovascular diseases.
The commonly used safflower preparations include safflower yellow injection, safflower in-
jection, and safflower oil (p.o.). Safflower preparations show excellent protection and safety
in treating coronary heart disease, angina pectoris, obesity, and blood pressure [103–106].
Safflower, as the gentleman medicine of Xuebijing injection, has apparent clinical effects on
sepsis [107]. Danhong injection is a medicinal preparation based on Salviae Miltiorrhizae
and Flos Carthami (safflower) and has also been used in the clinical therapy of cardiovas-
cular and cerebrovascular diseases in China for many years [10]. Flavonoids are the main
active components of safflower [108]. In the present study, we identified 53 flavonoids out
of the 79 compounds in safflower. Flavonoids possess anti-oxidant, anti-microbial, and
anti-platelet aggregation effects; they are also recognized as excellent anti-inflammatory
agents [109,110]. Flavonoids can inhibit the activation of inflammatory pathways, such
as the NFκB, MAPK, and bone morphogenetic protein 2/small mothers against decapen-
taplegic (BMP2/SMAD) signaling pathways. In addition, they inhibit the expression of
pro-inflammatory enzymes, such as activating protein-1, cyclooxygenase-2, lipoxygenase,
and inducible nitric oxide, and decrease the expression of various pro-inflammatory cy-
tokines [111,112].

In the present study, we filtered out 11 core anti-MIR injury compounds, including
quercetin, luteolin, apigenin, rutin, HSYA, kaempferol, baicalin, eriodictyol, 6-hydroxyapigenin,
6-hydroxykaempferol, and 6-hydroxykaempferol 3-rutinoside-6-glucoside. These com-
pounds belong to the family of flavonoids and flavonoid glycosides. Quercetin is a charac-
teristic flavonoid that has been extensively studied. Quercetin exhibits significant pharma-
cological effects such as anti-inflammatory, anti-oxidant, anti-viral, and cardioprotective
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effects [113,114]. Furthermore, quercetin is involved in the NFκB and MAPK signaling
pathways and inhibits pro-inflammatory factors. Luteolin is present in vegetables and
fruits and is known to be responsible for its anti-inflammatory activity [115,116]. Lute-
olin inhibits the expression of IL-1β, IL-2, IL-6, IL-8, IL-12, IL-17, TNF-α, and interferon
(IFN)-β. Kaempferol also potently inhibits pro-inflammatory proteins such as PKC, NFκB,
and MAPK (ERK, p38, and JNK) [117]. Apigenin promotes different anti-inflammatory
pathways, such as p38/MAPK and PI3K/AKT [118]. Other flavone compounds also show
excellent anti-inflammatory activities [119,120].

HSYA, rutin, and 6-hydroxykaempferol 3-rutinoside-6-glucoside are flavonoid glyco-
sides (quinochalcone C-glycosides) that are characteristic ingredients of safflower [121–123].
HSYA, a quality marker (Q-marker) for safflower, is a representative quinochalcone
C-glycoside. It exerts anti-oxidant, anti-inflammatory, anti-coagulant, anti-cancer, and
cardio-cerebrovascular protective effects. HSYA attenuates the activation of NFκB, MAPK,
and Nrf-2/HO-1 signaling pathways [124,125]. Rutin is involved in p53 expression and in
the PI3K/AKT signaling and NFκB signaling pathways [126]. To date, 23 quinochalcone
C-glycosides have been isolated from safflowers [6,123,125], including safflower yellow
B, carthamin, hydroxyethylcarthamin, safflomin A, safflomin B, safflomin C, isoflurane C
(isosafflomin C), pre-carthamin, anhydrosafflor yellow B (AHSYB), nitrogen-containing
quinochalcone C-glycoside tinctormin and cartormin, saffloquinoside A, saffloquinoside
B, saffloquinoside C, methylsafflomin C, methylisosafflomin C, hydroxysafflor yellow B
(HSYB), hydroxy red anthocyanin C (HSYC), carthorquinoside A, carthorquinoside B, and
isocartormin, all of which possess significant therapeutic potentials [127,128]. However,
flavonoids are poorly absorbed, with an extremely low oral bioavailability and a short
half-life. Their plasma concentrations in the human body are usually < 1 µmol/L, which
presents great challenges for clinical application [129–131].

We predicted the mechanism of action of safflower by using TCMIP v2.0. The ad-
vantages of the TCMIP are summarized in three aspects. The first is a combination of
computational biology and network pharmacology. TCMIP is carried out from the per-
spective of computer virtualization for the interaction among big data. The second is
experimental verification. TCMIP pays more attention to pharmacological evaluation
to verify it from a “practical” perspective. Thirdly, the integration of pharmacokinetics
and pharmacodynamics. To study the interaction between TCM prescriptions and the
body from multiple levels and links and systematically and comprehensively reveal the
pharmacodynamic material basis and mechanism of the efficacy of TCM prescriptions, we
performed a comprehensive and systematic evaluation by integrating virtual prediction
and experimental verification to increase data accuracy [13,132]. To avoid the homoge-
nization of key components screening of “different diseases and different prescriptions”,
we addressed the current gaps in the literature of integrated pharmacology, and used
UPLC-QTOF-MS/MS to supplement the deficiencies of the database. Integrated pharma-
cology is a qualitative analysis based on the “component–target–disease” network that
ignores the influence of component quantifications. Therefore, we increased the screening
of component contents.

4. Materials and Methods
4.1. Data Preparation
4.1.1. Preparation of Safflower

Safflower (210616z11) was purchased from Beijing Shengshilong Pharmaceutical Co.,
Ltd., (Beijing, China). The safflower powder was sieved through a 50-mesh sieve and
4.0 g of it was soaked in 50 mL of 25% methanol before ultrasonic extraction for 40 min
(power 300 W, frequency 50 kHz). After the supernatant was centrifuged at 3000× g rpm
for 10 min, it was filtered through a 0.22 µm filter (Pall Corporation, Beijing, China). Then,
2 µL aliquots were injected into the UPLC-QTOF-MS/MS system. Metoprolol (H32025391;
AstraZeneca, Switzerland) was used as the positive control.
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4.1.2. Animals

All procedures were approved by the Medicine Ethics Review Committee for Ani-
mal Experiments at the Institute of Chinese Materia Medica, China Academy of Chinese
Medical Sciences. C57/BL6 male mice (specific pathogen-free (SPF) grade, Certification
No. 111251220100022578, Ethical No. 2022B039), weighing 20 ± 2 g and eight weeks old,
were purchased from Beijing Huafukang Bioscience Co. (Beijing, China). The mice were
housed in a controlled environment (24 ± 1 ◦C temperature, 50 ± 10% relative humidity)
with a 12/12 h light/dark cycle and free access to water and standard diet under specific
pathogen-free (SPF) conditions.

4.2. Pharmacological Evaluation
4.2.1. Induction and Treatment of MIR-Injured Mice

A mouse model of MIR injury was established by LAD ligation as previously de-
scribed [15]. The mice were anesthetized with 3% isoflurane (Beijing ZS Dichuang Tech-
nology Development Co., Ltd., Beijing, China) inhalation using a respiratory anesthesia
machine (ZS-MV, Beijing ZS Dichuang Technology Development Co., Ltd., Beijing, China).
Afterward, the mice were transferred to 1% isoflurane for maintenance anesthesia. After the
pericardium was opened, the heart was exposed between the third and fourth intercostal
space on the left, and 2–3 mm of the coronary artery was ligated using a 7–0 silk suture.
After 30 min of ligation, reperfusion was performed for 24 h. Mice in the sham group
without LAD ligation were also subjected to reperfusion as described above. A total of
126 mice were randomly divided into six groups, including the sham group, control group,
safflower low-dose group, medium-dose group, high-dose group (62.5 mg/kg, 125 mg/kg,
250 mg/kg, 4 times/24 h, i.v.), and positive control metoprolol group (12.5 mg/kg/d,
i.p.) [11,133]. Among them, 36 mice (six in each group) were used to detect echocardiog-
raphy, biochemical markers, and qRT-PCR. A total of 54 mice (9 from each group) were
assigned to the TTC/Evans blue staining experiment. Western blot and TUNEL experi-
ments (three in each group) included 18 mice in each experiment. Safflower extract and
metoprolol were all dissolved in 0.9% NaCl. It was immediately injected into the tail
vein injection after ischemia and before reperfusion. Because of rapid elimination within
6 h of safflower [134], it was administered every 6 h. Metoprolol was administered via
intraperitoneal injection (12.5 mg/kg/d) [102]. Mice in the sham and control groups were
treated with the solvent carrier.

4.2.2. Echocardiography

After 24 h of reperfusion, the mice were transferred to 1% isoflurane for maintenance
anesthesia. Cardiac function was evaluated by echocardiography (VisualSonics VeVo
2100 Imaging System). Each group had six mice.

4.2.3. TTC/Evans Blue Staining

Mice were anesthetized with 1% pentobarbital sodium after 24 h reperfusion. 200 µL
of 2% Evans blue (Sigma, E2129, Steinheim, Germany) was perfused through thoracic
aorta for 30 s. Subsequently, the heart was immediately harvested and frozen in a −80 ◦C
refrigerator for 30 min. Afterward, the heart was sectioned into 2 mm thick slices below the
ligation position using heart mold and stained with 1% TTC (Sigma, T8877-100G, USA) at
37 ◦C for 10 min. Each group had nine mice.

4.2.4. Detection of Biochemical Markers in the Blood

After 24 h of reperfusion, the mice were anesthetized with 1% pentobarbital sodium.
Blood was collected from the inferior vena cava and centrifuged at 8000× g rpm under 4 ◦C
for 5 min. The plasma in the upper layer was harvested for the detection of SOD (Beyotime,
S0101S, Beijing, China) and LDH (Solarbio, BC0685, Beijing, China) activities.
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4.2.5. TUNEL Assay

After 24 h of reperfusion, the mice were anesthetized with 1% pentobarbital sodium.
The hearts were harvested after perfusing with 5 mL PBS. TUNEL staining was performed
using the In Situ Cell Death Detection Kit, Fluorescein (Roche, Beijing, China). The sections
(4 µm) were deparaffinized using xylene, rehydrated in 100%, 90%, 80%, and 70% ethanol,
and permeabilized in 0.1% Triton-X-100 for 8 min at 37 ◦C. We mixed 50 µL terminal
deoxynucleotidyl transferase (TdT) and 450 µL fluorescein-labeled dUTP solution. A
20 µL volume of staining solution was added per sample. Apoptotic cells were detected
after incubation with the mixture for 30 min at 37 ◦C. The nuclei were labeled with DAPI
(ZSGB-BIO, ZLI-9556, Beijing, China).

4.3. Data Collection
4.3.1. Component Identification

Chromatography was performed using a Waters UPLC I-Class system (Waters Corp.,
Milford, MA, USA) equipped with a binary pump, online vacuum degasser, autosampler,
and automatic thermostatic column oven coupled with a quadrupole-time-of-flight mass
spectrometer. A Waters Xevo G2-S Q-TOF Mass System (Manchester, United Kingdom)
equipped with electrospray ionization (ESI). Data were recorded using Masslynx V4.1
(Waters Corporation, Milford, MA, USA). The UNIFI software 1.8 (Waters Corporation,
Milford, MA, USA) was used for peak detection and preliminary compound identification.
Chromatographic separation was performed on a Waters Acquity UPLC HSS T3 column
(100 mm × 2.1 mm, i.d., 1.8 µm) maintained at 30 ◦C, and a linear gradient of 0.1% formic
acid–water (A) and 0.1% formic acid–acetonitrile (B) was used for the elution procedure, as
follows: 0–2 min, 5–90% B; 2–10 min, 90–80% B; 10–16 min, 80–60% B; 16–20 min, 60–5% B.
The flow rate was set at 0.2 mL/min, and a 2.0 µL aliquot was set as the injection volume.

4.3.2. Mass Spectrometry Conditions

The UPLC-QTOF-MS/MS data were collected in full-scan auto mode in positive
and negative ion modes. The optimal parameters for the best response for most of the
compounds were set as follows: ESI+ capillary voltage, 0.5 KV; ESI- capillary voltage,
2.5 KV; sampling cone, 40 V; source temperature, 100 ◦C; desolvation temperature, 450 ◦C;
gas temperature of atmospheric gas, 450 ◦C; cone gas flow, 50 L/h; desolvation gas flow,
900 L/h; mass range, 50–1, 500 m/z. The collision energies were 40–60 V for ESI+ and
60–80 V for ESI−.

4.3.3. Data Processing

Waters UNIFI 1.8 data processing software was used to process the quasi-molecular ion
peaks collected using the UPLC-QTOF-MS/MS system. The MSE data collected in a contin-
uum mode were processed and matched to a customized library based on the Encyclopedia
of Traditional Chinese Medicine (ETCM, http://www.nrc.ac.cn:9090/ETCM/, accessed on
2 January 2022) using the Waters UNIFI system with an error of 1× 10−5 ppm. The analysis
process included data acquisition, data mining, library searching, and report generation.

4.4. Mechanism Prediction
4.4.1. Prediction of the Targets of Safflower

The chemical structural formula (sdf.) of identified compounds in safflower were
collected from PubChem (https://pubchem.ncbi.nlm.nih.gov/, accessed on 20 January
2020), which were transformed into mol. formula by OpenBabel GUI 2.4.1 (last update on
21 September 2016, version 2.4.1, http://openbabel.org/wiki/MainPage, accessed on 20
January 2022). And then uploaded them to TCMIP v2.0 (http://www.tcmip.cn, accessed
on 20 January 2020) to predict putative targets with a Tanimoto score of 0.7.
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4.4.2. Collection of MIR-Related Targets

MIR-related targets were collected from three well-known databases with the key-
words of “Myocardial ischemia–reperfusion injury,” “Myocardial ischemia injury,” “Acute
myocardial ischemia injury,” and “Myocardial infarct injury”: the DisGeNET database
(http://www.disgenet.org, accessed on 20 January 2022), GeneCards: The Human Gene
Database (https://www.genecards.org/, accessed on 20 January 2022), and TCMIP v2.0.
Scores > 0.1 for DisGeNET, scores > 10 for GeneCards, and no threshold for TCMIP v2.0.
We combined all the genes, removed duplicates, and obtained MIR-related targets. Detailed
information is provided in Supplementary File S2.

4.4.3. Functional Analysis and Network Construction

To better demonstrate the common targets of safflower and MIR injury, the predictive
targets of safflower and MIR-related genes were uploaded to the website of the Venn
diagram (Supplementary File S9) (http://bioinformatics.psb.ugent.be/webtools/Venn/,
accessed on 22 January 2022). Overlapping genes from the two groups were used for
further analysis. The potential biological function of safflower was analyzed by KEGG
and GO enrichment using the DAVID v6.8 database (Supplementary Files S4 and S5)
(https://david.ncifcrf.gov/, accessed on 30 January 2022). The top 30 BP terms and
34 KEGG terms were shown in Figure 4. To clearly explain the complex relationships
between components of safflower, known MIR-related genes, and predicted signaling
pathways, network visualization was performed using the CytoScape platform (version
3.9.0, https://cytoscape.org/, accessed on 30 January 2022). Components, genes, and
pathways were all present as independent nodes (Supplementary File S11). CytoScape
3.9.0 calculated three topological parameters for each of these nodes, including “degree”,
“betweenness”, and “closeness”.

4.4.4. Hub Target and Key Component Screening

(1) Hub target screening:

Hub target screening was performed using network topological analysis. The hub
genes were defined as having higher degree values than the median. For genes, the median
degree value is 6.

(2) Key component screening:

To avoid homogenization, key component screening was subjected to the three screen-
ing criteria described below, and the components that met two of the three screening criteria
are regarded as core compounds. The details were listed as follows:
1© Network topological analysis: The degree value of the network was calculated to

screen for core compounds. The degree values of the core compounds were higher
than the median. For components, the median degree value is 8;

2© Literature mining: A systematic search was performed on PubMed using the following
sets of keywords: the “name” of the ingredients, “myocardial ischemia–reperfusion,”
and “cardiac ischemia reperfusion.” Studies included in this search were those pub-
lished from 1967 to November 2022. The literature mainly focuses on animal studies,
and none of the ingredients has been found to be used clinically for the treatment of
MIR injury. Articles related to the combinations of ingredients were also included. In
the selected studies, the following data were meticulously reviewed and extracted:
“infarct size detection,” “cardiac function detection” or “serum parameters.” The
median of the number of studies was calculated to filter the key compounds;

3© Quantitative analysis: The response values of the compounds were ranked accord-
ing to UPLC-QTOF-MS/MS to screen for components with response values above
the median.

http://www.disgenet.org
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4.4.5. Molecular Docking Simulation

The molecular docking and virtual screening program were carried out to investigate
the direct binding efficiencies of hub targets and key components. PRKCA (PDB ID: 3iw4),
AKT1 (PDB ID: 3qkm), and PI3K (PDB ID: 1e7u) were collected from the Protein Data Bank
(https://www.rcsb.org/, accessed on 20 January 2023). The ligands of 6-hydroxyapigenin,
6-hydroxykaempferol-3-rutinoside-6-glucoside, 6-hydroxykaempferol, apigenin, baicalin,
eriodictyol, HSYA, kaempferol, luteolin, quercetin, and rutin were downloaded from
the PubChem database (31) in sdf. format, which were converted to pdb. format using
OpenBabel GUI 2.4.1. AutoDock Tools 1.5.6 (https://ccsb.scripps.edu/mgltools/, accessed
on 22 January 2023) was used for dehydration, hydrogenation, and charging. Docking
calculations were performed using AutoDock Vina 1.1.2 (The Scripps Research Institute)
and AutoDock 4.2.6 (The Scripps Research Institute). The visualization and analysis of the
results were used by PyMOL 2.5 (https://pymol.org/2/, accessed on 22 January 2023).

4.5. Mechanism Verification
4.5.1. Quantitative Real-Time Reverse Transcription-Polymerase Chain Reaction (qRT-PCR)

qRT-PCR was performed using the SYBR® Select Master Mix (Toyobo, Tokyo, Japan).
A total RNA was extracted using TRNzol Universal Reagent (Tiangen, DP430, Beijing,
China), and 300 ng RNA was reverse-transcribed into cDNA using ReverTra Ace qPCR RT
Master Mix (TOYOBO, FSQ-301, Osaka, Japan). Single-stranded cDNA was amplified by
PCR with primers for NFκBia, NFκB1, IL6, IL1β, MCP-1, IL-18, TNF-α, and β-actin using
Taq pro Universal SYBR qPCR Master Mix (Vazyme, Q712-02, Nanjing, China); the primer
sequences are shown in Table 3. Primers were synthesized by Tsingke Biotechnology Co.,
Ltd. (Beijing, China).

Table 3. Primers used in this study.

Gene Forward Primer Reward Primer

NFκBia CAAATGGTGAAGGAGCTGCG CCAAGTGCAGGAACGAGTCT
NFκB1 AGCAACCAAAACAGAGGGGA TGCAAATTTTGACCTGTGGGT

IL6 ACAACCACGGCCTTCCCTACTT CACGATTTCCCAGAGAACATGTG
IL1β TGAAGTTGACGGACCCCAAA TGATGTGCTGCTGTGAGATT

MCP-1 GGCTCAGCCAGATGCAGTTAAC GCCTACTCATTGGGATCATCTTG
IL-18 CAGGCCTGACATCTTCTGCAA TCTGACATGGCAGCCATTGT

TNF-α AAGCCTGTAGCCCACGTCGTA GGCACCACTAGTTGGTTGTCTTTG
β-actin CCTGAGCGCAAGTACTCTGTGT GCTGATCCACATCTGCTGGAA

4.5.2. Western Blot

After 24 h of reperfusion, the hearts of mice were collected for Western blot analysis.
The total protein content of the supernatant was quantified using Bicinchoninic acid (BCA)
protein assay kit (Beyotime, P0010S, Nanjin, China). Protein samples were boiled at 100 ◦C
in 5 × SDS loading buffer (Beyotime, P0015) for 10 min. The proteins of 30 µg were run
in 8%, 10%, and 12% gradient SDS-PAGE at 80 V for 30 min, then converted to 120 V
for 60 min; afterward, they were transferred onto 0.45 µm PVDF membranes (Sigma,
HVLP02500) under 200 mA for 1 h, blocked in 5% milk (Sigma, 20-200) for 1.5 h, incubated
in primary antibodies overnight at 4 ◦C, then incubated with secondary biotinylated
antibodies for 2 h at room temperature. Proteins were detected with ECL (32132, Thermo
Fisher, Carlsbad, CA, USA). The antibodies were listed as follows: HIF1α (BIOSS, bs-
20399R), VEGFA (BIOSS, bs-0279R), PI3K (Proteintech, 60225-1-Ig, Rosemont, IL, USA),
phospho-PI3K (Cell Signaling Technology, 4228, Danvers, MA, USA), AKT (BIOSS, bs-
0115R), phospho-AKT(Cell Signaling Technology, 4060), PKCε (Abclonal, A4998, Woburn,
MA, USA), ERK1/2 (Abclonal, A10613), phospho-ERK1/2 (Abclonal, AP0472), p-NFkB-
p65 (Cell Signaling Technology, 3033), NFkB-p65 (Abclonal, A18210), BAX (Proteintech,
50599-2-Ig, Rosemont, IL, USA), BCL2 (Proteintech, 68103-1-Ig), β-tubulin (Proteintech,
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10094-1-AP), anti-rabbit IgG, HRP-linked antibody (Cell Signaling Technology, 7074), and
anti-mouse IgG, HRP-linked antibody (Cell Signaling Technology, 7076).

4.6. Statistical Analysis

Data were analyzed by one-way analysis of variance (ANOVA) using GraphPad Prism
8.0.1 software. Statistical significance was set at p < 0.05. Data are shown as mean ± SEM.

5. Conclusions

We employed an integrative pharmacological strategy to explore the mechanism of
action of safflower in improving MIR injury in mice. We characterized 79 chemical compo-
nents of safflower. Among them, 56 chemical compounds, including 11 key ingredients,
may ameliorate MIR injury partially by interacting with 31 hub candidate targets, mainly
through an “inflammation-immune” system. Further studies are needed to conduct more
systematic efficacy evaluations and mechanistic explorations.
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AAR Area at risk
ADME Absorption, distribution, metabolism, and excretion
AHSYB Anhydrosafflor yellow B
AMI Acute myocardial infarction
ANOVA One-way analysis of variance
BP Biological process
BPI Base peak intensity
CC Cellular component
dUTP 2′-deoxyuridine 5′-triphosphate
EF Ejection fraction
ESI Electrospray ionization
FS Fractional shortening
GO Gene ontology
HSYA Hydroxysafflor yellow A
HSYB Hydroxysafflor yellow B
HSYC Hydroxy red anthocyanin C
IS Infarct area
KEGG Kyoto Encyclopedia of Genes and Genomes analyses
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LAD Left anterior descending
LDH Lactate dehydrogenase
LVSP Left ventricular systolic pressure
MF Molecular function
MIRI Myocardial ischemia–reperfusion injury
PK-PD Pharmacokinetics-pharmacodynamics
qRT-PCR Quantitative real-time polymerase chain reaction
SEM Standard error of mean
SOD Superoxide dismutase
TCM Traditional Chinese medicine
TCMIP Traditional Chinese medicine integrative pharmacology
TTC Triphenyl tetrazolium chloride
TUNEL Terminal deoxynucleotidyl transferase (TdT) dUTP nick-end labeling
UPLC-QTOF-MS/MS Ultra-performance liquid chromatography–quadrupole time-of-flight-

tandem mass spectrometer
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anti-inflammatory and neuroprotective agent: A brief review. Brain Res. Bull. 2015, 2015, 119. [CrossRef]

117. Devi, K.P.; Malar, D.S.; Nabavi, S.F.; Sureda, A.; Xiao, J.; Nabavi, S.M.; Daglia, M. Kaempferol and inflammation: From chemistry
to medicine. Pharmacol. Res. 2015, 2015, 99. [CrossRef]

118. Dabeek, W.M.; Marra, M.V. Dietary quercetin and kaempferol: Bioavailability and potential cardiovascular-related bioactivity in
humans. Nutrients 2019, 11, 2288. [CrossRef]
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