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Abstract: Epilepsy is a highly prevalent, severely debilitating neurological disorder characterized by
seizures and neuronal hyperactivity due to an imbalanced neurotransmission. As genetic factors play
a key role in epilepsy and its treatment, various genetic and genomic technologies continue to dissect
the genetic causes of this disorder. However, the exact pathogenesis of epilepsy is not fully understood,
necessitating further translational studies of this condition. Here, we applied a computational in silico
approach to generate a comprehensive network of molecular pathways involved in epilepsy, based
on known human candidate epilepsy genes and their established molecular interactors. Clustering
the resulting network identified potential key interactors that may contribute to the development of
epilepsy, and revealed functional molecular pathways associated with this disorder, including those
related to neuronal hyperactivity, cytoskeletal and mitochondrial function, and metabolism. While
traditional antiepileptic drugs often target single mechanisms associated with epilepsy, recent studies
suggest targeting downstream pathways as an alternative efficient strategy. However, many potential
downstream pathways have not yet been considered as promising targets for antiepileptic treatment.
Our study calls for further research into the complexity of molecular mechanisms underlying epilepsy,
aiming to develop more effective treatments targeting novel putative downstream pathways of
this disorder.

Keywords: epilepsy; genes; genetic bases; molecular network; in silico modeling

1. Introduction

Epilepsy is a widespread, severely debilitating and complex neurological disorder
characterized by central nervous system (CNS) hyperactivity, epileptic seizures and a gen-
eral imbalance of excitatory and inhibitory neurotransmission. Caused by multiple external
and internal factors that range from genetic mutations to infections, birth defects, stroke,
and traumatic brain injuries [1], epilepsy is highly prevalent globally, with nearly 70 mil-
lion people affected worldwide [2]. Furthermore, despite recent progress in antiepileptic
drug development, their efficacy remains low due to various treatment-resistant types of
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epilepsy and multiple reported side effects (e.g., memory loss, neurotoxicity, suicides and
even mortality) [3].

Genetic factors play an important role in the pathogenesis of epilepsy and modulating
its sensitivity to antiepileptic therapy [1,4]. The application of genetic and genomic technolo-
gies has tremendously facilitated the discovery of genetic causes of epilepsy. For example,
genome-wide association studies (GWAS) have identified multiple genes as risks of devel-
oping epilepsy, linking specific low-level somatic mutations to intractable epilepsy [5–8].
However, the exact pathogenesis of epilepsy and its true complexity remain poorly under-
stood, necessitating further studies based on forward genetics, and more holistic, systems
biology approaches in both clinical and preclinical models [9]. As such, our improved
understanding of the complex molecular machinery underlying epilepsy is critical for its
treatment and prevention. To better understand the complexity of molecular mechanisms
involved in epilepsy, here we applied computational in silico approaches to generate a
common network of molecular pathways involved in epilepsy, based on comprehensive
analyses of human candidate epilepsy genes and their known molecular interactors.

2. Generation of a Global Molecular Network for Epilepsy

To generate a comprehensive network of molecular interactions, we analyzed mul-
tiple established human epilepsy-related genes identified previously [5] and also added
new relevant information with searches performed on the Online Mendelian Inheri-
tance in Man database (OMIM, www.omim.org/, accessed on 22 November 2022), us-
ing “epilepsy/epilepsy encephalopathy/epileptic” as search terms. We then used several
publicly available genetic resources, including the Gene Cards database (www.genecards.
org/, accessed on 22 November 2022) and searching publications since 1996 relevant to
clinical epilepsy (search terms “epilepsy/epileptic” + gene name) in PubMed database
(www.ncbi.nlm.nih.gov/pubmed/, accessed on 22 November 2022), collectively yielding a
comprehensive list of 623 candidate epilepsy-linked genes (Supplementary Table S1 online)
whose associated phenotypes show high variability in epilepsy and other clinical mani-
festations. Our analyses excluded several genes described as “functional categories of the
neurodevelopment-associated epilepsy genes” [5], but not reconfirmed as associated with
epilepsy in PubMed and OMIM databases. Using the generated list of putative epilepsy-
associated genes, we next constructed their global molecular interaction network (based on
known protein-protein interactions, PPIs) in order to identify potential key interactors that
can contribute to epilepsy pathogenesis.

Finally, clustering these molecular networks based on known molecular interactions
between the protein products of identified genes allowed us to identify critical molecular
pathways associated with epilepsy. For this, we used the search tool for the retrieval of
interacting genes/protein database (STRING version 11.5; available online: www.string-
db.org, accessed on 22 November 2022) with medium confidence interval (0.40) selected
for building the molecular network. To link all main clusters and identify novel potential
epilepsy-associated genes, we added the number of interactors (20 interactors for the “1st
shell” and 60 for the “2nd shell”) to the network settings, chosen here to ensure sufficient
interconnectedness between the main clusters within the overall PPI network.

This approach has generated a list of additional 74 putative genes likely positioned
within epilepsy-associated pathways, 29 of which have been reconfirmed by published
findings in PubMed, hence confirming their clinical role in epilepsy. The present study
employed a conservative approach to selecting molecular interactors, using only “exper-
imental data” as the search criterion (i.e., not assessing indirect evidence, such as text
mining, co-occurrence or co-expression data) to generate a comprehensive molecular PPI
network (Figure 1).

www.omim.org/
www.genecards.org/
www.genecards.org/
www.ncbi.nlm.nih.gov/pubmed/
www.string-db.org
www.string-db.org
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Figure 1. The protein-protein interaction (PPI) network obtained and visualized using the STRING
database. Nodes denote individual proteins, thickness of edges represents their respective interaction
scores. The network was divided into four panels (A–D); continued on the next pages, for conve-
nience of visual presentation. Panel A mostly represents products of the mTOR system, chromatin
remodeling, zinc fingers clusters and others intermediate genes. Panel B contains mainly cytoskeletal,
cell division, peroxisomal, gamma-aminobutyric acid (GABA)-ergic and translation elongation initia-
tion gene products. Panel C consists mainly of glutamate receptor- and potassium channel-related
proteins. Panel D represents mitochondrial and N-oligosaccharyl transferase gene clusters.
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Finally, the STRING database linked 329 of 623 into a single molecular network, leaving
240 genes that did not link to other genes and 89 genes that formed two- or three-gene
clusters unlinked to the main built molecular network. The results of our analyses were
next visualized using the STRING tools, as well as the CytoHubba plugin of the Cytoscape
(version 3.9.1) software, searching for ‘hub’ genes from the global PPI network, as assessed
by a combination of Betweenness, Stress and BottleNeck methods (Figure 2). Specifically,
genes were deemed ‘hub’ if highly ranked by all three methods, which were chosen here for
their known best performance in global network-based analyses from hub proteins from
clusters of heterogeneous networks [10]. Betweenness centrality measures the number of
times a node lies on the shortest path between other nodes. Betweenness identifies the
nodes acting as “bridges” between nodes in a network, analyzing all its shortest paths and
then counting how many times each node falls on one. The BottleNeck algorithm similarly
searches for the shortest path between the nodes, albeit computing the minimum weight
edge in the shortest path. The Stress of a node in a protein-signaling network represents the
relevance of a protein as functionally capable of holding together communicating PPI nodes
(its higher values reflect higher relevance of a protein for connecting regulatory molecules).

Figure 2. Cont.
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Figure 2. Summary of modules extracted from the global protein-protein interaction (PPI) network
based on their Betweenness centrality (Panel (A), 30 nodes and 35 edges), Stress centrality (Panel (B),
30 nodes and 36 edges) and BottleNeck centrality (Panel (C), 30 nodes and 38 edges). Colors denote
significance (high-ranked modules = red, low-ranked modules = yellow). For interpretation of the
references to color in this figure legend, the reader is referred to the web version of this article.
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To identify significantly enriched molecular pathways, we applied GO biological pro-
cess and KEGG pathway enrichment analyses of hub genes (Figure 3), using the ShinyGO
(www.bioinformatics.sdstate.edu/go/, accessed on 15 February 2022) version 0.77 tool
with adjusted p-value < 0.05 considered as statistically significant.

Figure 3. Enrichment analysis of the ‘hub’ genes identified in the present study. Color represents the
-log10 (false discovery rate) of the pathway/terms, the X axis represents the enrichment, as assessed
for top 10 genes by the KEGG (Kyoto Encyclopedia of Genes and Genomes) pathway (A) and GO
(Gene Ontology) terms (B). For interpretation of the references to color in this figure legend, the
reader is referred to the web version of this article.

www.bioinformatics.sdstate.edu/go/
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3. Discussion of Identified Pathways

Epilepsy pathogenesis is traditionally linked to neuronal hyperactivation that arises from
aberrant ion channel (especially, Ca++ and K+) activity, imbalanced excitatory and inhibitory
neurotransmission, or shifting the number of excitatory vs. inhibitory neurons [1,2,11], also
see Figure 4 further.

Figure 4. Summary diagram mapping main biomolecular pathways involved in epilepsy patho-
genesis. Known biological interactions between protein products of various epilepsy-related genes
are presented as bigger clusters, with selected key proteins highlighted in green, and identified
central ‘hub’ genes (interconnected with most genes and clusters) in yellow. Genes originally not
associated with epilepsy are shown in white, and genes not forming clusters highlighted in orange.
For interpretation of the references to color in this figure legend, the reader is referred to the web
version of this article.
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Figure 4 shows that genes related to all these three processes have been successfully
identified and mapped in the present study, hence corroborating their critical role within a
complex molecular PPI network underlying epilepsy pathogenesis. However, our analyses
yielded some other gene clusters beyond neural hyperactivity (Figure 4), including genes
that have not been directly related to epilepsy, but are otherwise crucial for CNS functioning,
hence meriting further scrutiny.

In addition, topological and functional enrichment analyses were performed using the
STRING database and the ‘Network Analyzer’ function of the Cytoscape (version 3.9.1)
software. For statistical analysis, we used the network without additional molecular
interactors (to avoid skewing the results). Network statistics generated by the STRING
database revealed a final graph containing 623 nodes and 560 edges. The average node
degree and average local clustering coefficient of the network was determined to be 1.8
and 0.382, respectively (Table 1). The ‘Network Analyzer’ function estimated several other
topological parameters, such as network diameter, radius, shortest path, characteristic path
length and average number of neighbors (Table 1).

Table 1. Topological parameters of the protein-protein interaction (PPI) network generated in the
present study.

Source Network Statistics Values

STRING Number of nodes 623
(Including single nodes) Number of edges 560

Network Analyzer Average node degree 1.8
(Not including single nodes) Avg. local clustering coefficient 0.382

Expected number of edges 176
PPI enrichment p-value <1 × 10−16

Number of nodes 329
Number of edges 560

Avg. number of neighbors 3.404
Network diameter 6

Network radius 1
Characteristic path lengths 1.936

Clustering coefficient 0.158
Network density 0.005

Utilizing the three algorithms of the cytoHubba plugin, we calculated the top 30 hub
genes for each algorithm (Figure 2) and then merged their results in order to choose genes
overlapping for all three methods (Table 2). The GO biological process and KEGG pathway
enrichment analyses, performed by the ShinyGO (www.bioinformatics.sdstate.edu/go/,
accessed on 15 February 2022, version 0.77) tool, showed that most proteins significantly
enriched in established biological processes were involved in the electron transport chain,
cellular respiration, cellular respiration, microtubule cytoskeleton organization and protein-
containing complex assembly (Figure 3B). The KEGG enrichment analysis revealed the iden-
tified hub genes as associated with key neurodegenerative (e.g., Huntington’s, Parkinson’s
and Alzheimer’s) diseases often comorbid with epilepsy [12,13]. Interestingly, significant
over-enrichment was seen here for the gap junction pathway and temperature regulation
(Figure 3A). The former has been consistently linked to epilepsy [14–16], whereas the latter
can reflect increased metabolism commonly seen in epileptic phenotypes [17].

www.bioinformatics.sdstate.edu/go/


Int. J. Mol. Sci. 2023, 24, 5280 9 of 16

Table 2. Functional analyses of the identified ‘hub’ genes.

№ Genes Details

1 MTOR Serine/threonine-protein kinase mTOR
2 PEX14 Peroxisomal membrane protein PEX14
3 NDUFS2 NADH dehydrogenase [ubiquinone] iron-sulfur protein 2
4 SDHA
5 TUBB Succinate dehydrogenase [ubiquinone] flavoprotein subunit, mitochondrial
6 DLD Tubulin beta chain
7 DNM1 Dihydrolipoyl dehydrogenase, mitochondrial
8 GRIN1 Dynamin-1
9 HSD17B12 Glutamate receptor ionotropic, NMDA 1

10 TUBA1A Very-long-chain 3-oxoacyl-CoA reductase
11 CENPJ Tubulin alpha-1A chain
12 DYNC1H1 Centromere protein J
13 UBE3A Cytoplasmic dynein 1 heavy chain 1
14 ETFA Ubiquitin-protein ligase E3A
15 TSC2 Electron transfer flavoprotein subunit alpha, mitochondrial
16 CREBBP CREB-binding protein
17 CLN3 CLN3 lysosomal/endosomal transmembrane protein
18 TUBB3 Tubulin beta-3 chain
19 AFG3L2 AFG3-like protein 2
20 ATP5A1 ATP synthase complex subunit B1, mitochondrial
21 DYRK1A Dual specificity tyrosine-phosphorylation-regulated kinase 1A
22 HERC2 E3 ubiquitin-protein ligase HERC2
23 NDUFS1 NADH-ubiquinone oxidoreductase 75 kDa subunit, mitochondrial
24 SYNGAP1 Ras/Rap GTPase-activating protein SynGAP
25 TUBB2B Tubulin beta-2B chain

3.1. Mitochondrial and Metabolic Genes

Mitochondrial and metabolic genes formed one of the largest PPI clusters in the
present study (Figure 4, Table 3). Although mitochondrial encephalopathies often present
epileptic symptoms clinically [18], mitochondria-related epilepsy is commonly caused
by mutations of mitochondrial DNA [19]. Such deficits usually affect tissues with high
energy needs, including the brain, hence resulting in epilepsy when brain metabolism is
disturbed. However, based on our systems biology-based analyses (Figure 4), mutations of
the mitochondrial genome can impact other, higher-level systems that may also be relevant
to epilepsy pathogenesis. Indeed, since many molecular processes are ATP-dependent,
if a mutation occurs in a mitochondrial gene, there is a high risk of disrupting such
ATP-dependent mechanisms in general. For example, as can be seen in Figure 4, the
mitochondrial complex is directly related to many other cellular systems and processes,
such as the exosomal complex, the mTOR signaling, the N-oligosaccharyltransferase cluster,
chromatin remodeling, as well as transcription and translation factors, whose functional
activity depends on normally functioning mitochondria, and may therefore be disrupted
by mutations in mitochondrial genes.

Directly linked to them, the exosomal complex genes are also involved in the matu-
ration and degradation of various types of RNA, and thereby can play an important role
in epigenetic regulation. The exosomal complex modulates the activity of mitochondrial
genes, regulating their expression using microRNAs [20]. In addition, the disruption of
exosomal activity is itself a powerful trigger for epilepsy, negatively affecting many sys-
tems, such as the mTOR system and the translation machinery [21,22]. Separately from this
complex, the LMNB2 gene mutations are often accompanied by epilepsy [23], and this gene
is also involved in epigenetic regulation, directly affecting chromatin and the structure of
the nucleus [24].
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Table 3. Epilepsy-related genes analyzed in the present study and their clustering within a complex
molecular network. Bolded genes listed here were absent in the original list of epileptic genes
selected for our analyses here (see above), but have been identified by the STRING database, hence
representing potential novel molecular targets.

Molecular Function/Cluster Genes

Mitochondrial genes

GCDH, COQ4, COQ9, COQ6, PQBP1, ATP5A1, NDUFA6, NDUFA2,
NDUFB6, SURF1, NDUFV1, NDUFA5, NDUFS5, COX10, ADCK3,

NDUFAF5, NDUFB8, PDSS1, AFG3L2, SDHAF1, BCKDHB, COX6B1,
NDUFS2, NDUFB9, NDUFA11, NDUFB10, DBT, NDUFB1, NDUFAF1,

NDUFAF3, CPS1, NDUFB4, NDUFA13, SUCLG1, NDUFS1, NDUFA9, DLD,
NDUFS7, COX15, NDUFS6, PDSS2, PDHB, DGUOK, NDUFAB1, HSPD1,

MT-CO2, NDUFA12, NDUFB3, PPM1K, NDUFS3, PDHA1, NDUFB5,
SDHB, HADH, CPT1A, NDUFV3, SUCLA2, NDUFAF4, NDUFA7, MT-ND6,

MT-ND5, MT-ND4, UQCRFS1, PDP1, NDUFB7, COX20, ETHE1, IVD,
BCKDHA, NDUFA10, PDHX, FOXRED1, NDUFA8, MT-ND1, ATP6V0A1,

ATP6AP2, ATP1A2, ATP6V1D, ATP6V1A

Exosomal genes EXOSC6, EXOSC4, DIS3L, EXOSC2, DIS3, EXOSC1, EXOSC10, EXOSC5,
EXOSC9, EXOSC8, EXOSC3, EXOSC7, SKIV2L2

N-oligosaccharyl transferase-related genes DDOST, STT3A, ALG12, RPN2, PC, ALG9, STT3B, SSR4, DAD1, TUSC3,
ALG6, RPN1, ALG3

The mTOR signaling pathway

MAP2K1, RRAGC, LAMTOR5, MAP2K2, MECP2, NPRL2, DEPDC5, TSC1,
RHEB, LAMTOR1, MTOR, SZT2, PAK3, BRAF, MAPKAP1, RICTOR,
MLST8, PTEN, RPTOR, PIK3CA, TSC2, KPTN, LAMTOR2, RRAGA,

LAMTOR4, NPRL3, AKT3

Transcription process
CDK19, TCF4, TAF13, CREBBP, MED12, ARS, TAF10, POLR3B, TBP, TAF7,

ATN1, REST, TAF1, TAF2, TAF3, TAF4, TAF4B, TAF5, TAF6, TAF9B,
TAF11, TAF12, TAF8, MED17, POLR3A, GTF2A1, GTF2A2, AK6

Chromatin remodeling SMARCC1,SMARCC2, SMARCC2, SMARCB1, SMARCA4, ACTL6B,
WDR5, KDM6A, KMT2D, ATRX

Translation process EIF2B1, EIF2B5, EIF2B4, EIF2B2, EIF2B3, EIF2S1, AIMP1, DARS, EPRS,
RARS2, AARS, EEF1A2

Glutamate neurotransmission GRIN1, GRIN2A, SYNGAP1, DLG3, GRIN2B, KCNJ10, GNAO1, GRIA3,
ADAM22, DLG4, LGI1, GABBR2

Cytoskeleton and cell cycle

TUBA1A, RNASEH2B, STILL, ACTB, SMC1A, RNASEH2A, TUBB2B, KIF7,
RNASEH2C, ATR, NIPBL, TRACK1, TUBB2A, FGF13, CEP135, CEP152,

BUB1B, PAFAH1B1, SASS6, DNA2, CSPP1, CASC5, SMC3, TUBA8, ASPM,
CEP290, EZH2, CEP63, TUBB, KIF2A, ACTG1, TUBG1, DCX, CENPE,

MCPH1, OFD1, TUBB3, CDK5RAP2, ANAPC7, HDAC8, PCNT, CENPJ,
MAD2L1, KIF5C, NDE1, RAD21, CDC20, TBCE, RRM2B, DYNC1H1,

STAG1, STAG2, CDC27, CDC16

Peroxisomal complex PEX5, PEX2, PEX7, PEX6, PEX3, PEX12, ABCD1, PEY, PEX16, PEX14,
PEX26, PEX19, PEX11B, PEX13, PEX1

Gamma aminobutyric acid (GABA)
neurotransmission

GABRA1, GABRA2, GABRG2, GABRA5, GABRB3, GABRA5,
GABRB2, GABRD

Vesicular transport STXBP1, STX1B, CPLX1, SNAP29, GOSR2, DNAJC5, SYP, NAPB
Potassium voltage-gated channel genes KCNA2, KCNA1, CNTNAP2, CNTN2, KCNQ2, KCNB1, KCNQ3
Voltage-sensitive Ca++ channel function CACNA1A, CACNA1H, CACNA1E, CACNB4, RYR3

Golgi complex COG6, COG7, COG1, COG5, COG8, COG4

Genes not included in specific molecular clusters

SLC25A22, LMNB2, DOCK7 DOCK8, NSUN, PAFAH1B1, DYRK1A, UBE3A,
HERC2, DNM1, RPS6KA3, RAB3GAP1, RAB3GAP2, CASK, CASR, INS,

PPP3CA, ATP6, IL1RAPL1, HSD17B12, CLN3, ALG3L2, GLI2, GLI3, PTCH1,
ZIC2, SHH, CDON, FKBP1A, IRS1, RPS6KA3, RPS6KB1

Genes of the N-oligosaccharyltransferase complex are crucial for cell development
and survival. Congenital glycosylation disorders (CDG) are a heterogeneous group of
congenital metabolic diseases with multisystem clinical lesions [25–28] due to mutations in
N-linked glycosylation genes, that may also affect CNS and, thus, contribute to epilepsy [29].
Multiple mannosyltransferase genes are also located in this gene cluster (Figure 4), and
their aberrant activity is associated with a very rare subtype of CDG, accompanied by
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several forms of early-onset epileptic encephalopathies [30,31]. Finally, together with the
mitochondrial compartment, the N-oligosaccharyltransferase genes are associated with
such important genes as CLN3 and SLC25A22, responsible for the formation and transport
of endosomes and glutamate, a major excitatory neurotransmitter [32–35] directly involved
in epilepsy pathogenesis.

3.2. The mTOR Signaling Pathway

The mammalian target of rapamycin (mTOR) pathway is a key signaling system regu-
lating cell growth, development, proliferation and motility. Like mitochondrial genes, mu-
tations within the mTOR pathway genes are the commonest cause of epilepsy, often accom-
panying focal cortical dysplasia (PCD) and other cortical malformations [8,11,36]. MTOR
functions as a serine/threonine protein kinase forming two main complexes, mTORC1 and
mTORC2. MTOR acts as a protein tyrosine kinase that promotes the activation of insulin
receptors and insulin-like growth factor receptors [37]. Since mTORC2 is also involved
in the control and maintenance of cytoskeleton [38], this system is key for neuroplasticity
and, accordingly, the distribution of inhibitory and excitatory neurons that, as already
mentioned, are directly related to epilepsy pathogenesis. Mutations in the mTOR-inhibiting
(e.g., tuberous sclerosis TSC1, TSC2 and GATOR1 complex) genes are particularly strongly
linked to epilepsy. For example, hyperactivation of the mTORC1 complex and the rise of
S6 and S6K phosphorylation [11,39–41] produce enlarged neurons, which, in turn, lead to
neurotransmitter imbalance and focal seizures.

Notably, the mTOR system is associated with glutamate signaling, Ca++ genes and the
mitochondrial compartment (Figure 2). Furthermore, the mTOR pathway is controlled by
multiple other mechanisms, including the methyl CpG-binding protein 2 gene (MECP2), an
epigenetic regulator with several important functions in the brain [42]. De novo mutations
of X-linked MECP2 are the main cause of Rett syndrome often involving epileptic symp-
toms [43]. MECP2 mutations in humans with Rett syndrome are associated with impaired
regulation of nucleolin, rRNA transcripts, and mTOR signaling through participation in
post-transcriptional processing of certain microRNAs [44,45].

Another important mTOR regulator involved in epilepsy is dual specificity tyrosine-
phosphorylation-regulated kinase 1A (DYRK1A), an inhibitor of mTORC1. In contrast, its
overexpression increases phosphorylation and activity of both TSC1 and TSC2, whereas
increased phosphorylation of S6K1 and 4E-BP1 is observed in DYRK1A knockdown cancer
cells—the effect inhibited by the mTOR-inhibiting drug rapamycin [46,47]. A deficiency in
ubiquitin protein ligase E3A (UBE3A) also modulates the mTOR system activity, elevating
levels of TSC2 responsible for inhibiting mTOR, hence hyperactivating the mTORC1-S6K1
pathway [48]. Its link to Ca++ channels is also relevant here, since Ca++ channelopathies
themselves often cause epilepsy, and mutations in such channel genes also impact the
mTOR system. For example, mutations in FKBP1A are associated with RYR3 dysregula-
tion [49], whereas mutations of CACNA1A impair mTOR signaling [50].

3.3. Transcription Factors and Chromatin Remodeling Genes

As shown in Figure 4, genes of the mTOR pathway, such as MECP2 and DYRK1A,
also interact with other genes, including the gene of the CREB binding protein (CREBBP),
a critical cellular epigenetic regulator and a common transcription factor that specifically
binds to DNA upstream of the 5′ ends of genes to initiate the landing of RNA polymerase,
thereby exerting its regulatory effects. Although some tumor-related transcription fac-
tors can participate in the pathogenesis of neurological diseases, the transcription factor
genes have not been viewed as classical epilepsy-associated genes, and their putative
role in epilepsy merits further scrutiny [51]. In the present study, CREBBP has emerged
as one of the central hub genes of the generated epilepsy PPI network (Figure 1). Not
surprisingly, mounting evidence implicates CREBBP in multiple physiological processes,
such as cell cycle regulation, neuroplasticity, learning, memory [52,53] and, more recently,
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epilepsy [54,55]. CREBBP is also an important regulator of the brain-derived neurotrophic
factor (BDNF), indirectly affecting the mTOR pathway [56] and, hence, epileptogenesis.

REST (RE1 silencing transcription factor) is an important transcriptional repressor
that silences target genes through epigenetic remodeling, thereby regulating neurogen-
esis, differentiation and the expression of specific genes controlling brain development.
REST, like CREBBP, regulates numerous target genes that encode neuronal receptors, ion
channels, neuropeptides and synaptic proteins, key for synaptic plasticity and vesicular
transport [52,54,57]. Not surprisingly, REST and CREBBP are both prominently present in
the epilepsy PPI network generated here (Figure 1). In addition to transcription factors, this
network also contains zinc finger and chromatin remodeling factors (CRFs). Although zinc
finger genes have not been recognized as directly linked to epilepsy, they are important
modulators of the transcription process and are involved in the sonic hedgehog signaling
pathway that is directly associated with epilepsy [58–61]. As such, our analyses suggest
zinc finger genes as novel potential candidate epilepsy genes.

CRFs play a crucial role in epigenetic regulation, determining the activity of transcrip-
tion factors by forming open sections of DNA for their landing. Chromatin remodeling
is an ATP- and actin-dependent process, and may therefore be directly linked to the mi-
tochondrial and cytoskeleton gene clusters [62] implicated in epilepsy by our analyses
(Figure 1). Interestingly, among multiple CRF genes, only SMARCA2, SMARCB1, ACTL6B
and KDM5C have been previously associated with epilepsy, and some other members of this
cluster (e.g., SMARCC1, SMARCC2, SMARCA4 and WRD5) are only cursorily mentioned
among epilepsy candidate genes [62–65]. As such, our analyses suggest that CRFs may
represent a more important group of putative epileptic genes than previously recognized,
thereby calling for further probing of the role of these genes in epilepsy in both clinical and
preclinical models.

3.4. Cytoskeleton and Cell Division

In epileptic brain, cytoskeletal disruption is often viewed as being secondary to aber-
rant neuronal activity. However, mounting data indicate that cytoskeletal and cell division
genes are critical factors in the pathogenesis of epilepsy, as well as neuronal migration
disorders and channelopathies [66,67]. The cell cycle genes are also involved in neuronal
migration and proliferation, and are closely related to cytoskeletal function as well. For
instance, commonly causing epilepsy, mutations in tubulin coding genes [68,69] are respon-
sible for a wide range of brain malformations secondary to abnormal neuronal migration,
manifesting as motor disorders, mental retardation and epilepsy [70]. Moreover, tubulin
is an important protein for the transport of the gamma aminobutyric acid A (GABA-A)
receptors and for formation of peroxisomes [69,71,72]. Collectively, this suggests that
aberrant cytoskeletal functions may cause epilepsy indirectly, impacting major CNS trans-
port systems, including the formation of both key membrane receptors and cell growth
and mobility.

3.5. Some Other Potential Novel Epilepsy-Associated Genes

Our in silico analyses have identified 74 additional genes that are actively involved
either in processes within the same cluster, or interact between different clusters (Table 3).
Although these genes all represent important components of the clusters they form, there
is either no confirmation of their direct involvement in epilepsy, or they remain unstudied
in this regard. By identifying these genes as core elements of epilepsy-related clusters
that form a meaningful molecular network (Figure 4), the present study calls for further
in-depth analyses of such novel potential candidate genes and their putative predicted role
in epilepsy.

4. Concluding Remarks

An important aspect of the present in silico study is its focus on epilepsy-associated
proteins using unbiased bioinformatics-based analyses of known molecular interactions.
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Overall, this supports the involvement of cytoskeletal, mitochondrial and metabolic path-
ways in epilepsy, which until recently have been considered secondary to the core of its
pathogenesis. Although mutations in transcription factors-, zinc finger-, or chromatin
remodeling-related genes may not directly cause neuronal hyperactivity and epilepsy,
they may still disrupt cellular processes that could trigger a wide range of consequences,
indirectly evoking epileptic symptoms.

We also recognize the fact that most modern antiepileptic therapies demonstrate low
effectiveness, as they usually tend to target a single ‘terminal’ key mechanisms of epilepsy.
For example, common antiepileptic drugs target GABA-A receptors (e.g., benzodiazepines,
vigabatrin and phenobarbital) and Ca++ channels (ethosuximide), without affecting down-
stream cellular processes. However, as recent studies show, the true root cause of a disorder
often lays within the common downstream pathways responsible for the operation of the
entire system as a whole.

Although novel medications have already been proposed for some of them (e.g.,
antiepileptic activity of rapamycin that acts by suppressing the mTOR signaling system),
the majority of other potential downstream pathways are not yet considered as feasible
targets. In turn, this may also impede adequate diagnostics and treatment (e.g., in mito-
chondrial encephalopathy, as with ordinary epilepsy, symptomatic seizures are observed,
but some classical antiepileptic drugs, such as valproate, would typically only worsen the
situation) [73,74]. Thus, increasingly deeper understanding of genetic causes underlying
both common and rare forms of epilepsy, involving a wider spectrum of molecular events
and clusters (Figure 4), as well as their interplay, and deeper downstream common signal-
ing processes, are urgently needed for tackling epilepsy and identifying novel targets and
drugs for its treatment.
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