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Abstract: Developmental and epileptic encephalopathies (DEEs) are a group of epilepsies with early
onset and severe symptoms that sometimes lead to death. Although previous work successfully
discovered several genes implicated in disease outcomes, it remains challenging to identify causative
mutations within these genes from the background variation present in all individuals due to
disease heterogeneity. Nevertheless, our ability to detect possible pathogenic variants has continued
to improve as in silico predictors of deleteriousness have advanced. We investigate their use in
prioritising likely pathogenic variants in epileptic encephalopathy patients’ whole exome sequences.
We showed that the inclusion of structure-based predictors of intolerance improved upon previous
attempts to demonstrate enrichment within epilepsy genes.

Keywords: developmental and epileptic encephalopathies (DEEs); pathogenic variants; structure-
based predictors

1. Introduction

Developmental and epileptic encephalopathies (DEEs) are a class of severe, early-onset
epilepsies characterised by hypsarrhythmia detected by electroencephalogram (EEG), in-
fantile spasms, multi-form seizures, cognitive and behavioural deficits, and can sometimes
lead to death. Many studies have investigated a likely genetic basis underpinning the
disease. Nevertheless, identifying causal variants in patients remains challenging due to
the apparent disease heterogeneity [1].

Studies investigating the genetic basis of DEE have primarily focused on de novo
mutations (DNMs), as, due to the early onset and severity of the disease, few causal
variants are disseminated and maintained in the healthy population. 30–50% of infants
have causative variants with severe DEE. However, in many cases, multiple DNMs may be
identified with no prior history of functional studies or previous observation in epilepsy
patients [2]. In order to prioritise candidate DNMs that are likely to be the cause of a
patient’s phenotype, in silico predictors of deleteriousness have proven to be beneficial.
However, their overall predictive accuracy is not generalisable and, therefore, far from ideal.

A previous study [3] aimed to identify genes linked to DEE and to identify causal
DNMs in a cohort of 356 patients through a collaboration between two consortia (EuroEPI-
NOMICS and Epi4K/EPGP) [3]. A likelihood analysis revealed an enrichment of DNMs
in patients compared with a 411-trio exome sequencing control cohort. Furthermore, they
observed while analysing their predictions that 75% of the 429 DNMs identified in patients
disrupt synaptic transmission regulation.

Since this analysis, our repertoire of valuable datasets and tools has grown, which
can significantly improve our ability to assess a variant’s likelihood of pathogenicity. For
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example, recent large datasets of population variation, such as gnomAD [4], allow us
to filter observed variants in patients into the healthy population. In particular, current
measurements of missense intolerance may be highly informative for DNM assessment,
where it is likely that pathogenic DNMs cluster within intolerant regions due to their
severity [5].

Using recent in silico predictors of pathogenicity, we revisit the missense variants in the
cohort provided by ClinVar. We perform this exploratory analysis to identify whether there
is a significant enrichment of predicted damaging variants in patient samples compared to
controls. Within this analysis, we investigate whether these new tools allow us to identify a
different set of causative variants or epilepsy-associated genes.

Additionally, we investigate the enrichment of likely pathogenic missense variants
within genes associated with DEE within the publicly available Epi25K dataset. Our analy-
sis shows enrichment of these variants within these genes despite including both de novo
and non-de novo variants within the DEE patient whole exome sequencing experiments.

2. Results
2.1. Pathogenic and Background Missense Variants among Epilepsy Genes

We examined missense variants exome-wide and within 34 genes implicated in epilep-
tic encephalopathies using the Epi4K case-ascertained de novo missense variants, Epi25K
case-ascertained missense variants, and ClinVar missense variants (accessed 16 June 2020).

Thirty-four key genes implicated in epileptic encephalopathies were selected based
on a comprehensive literature review by He et al. (2019) [6]. Of the 34 genes, 14 are
components of ion channels (SCN1A, SCN2A, SCN8A, KCNA1, KCNA2, KCNB1, KCNQ2,
KCNT1, CACNA1A, GRIN1, GRIN2A, GRIN2B, GRIN2D, HCN1) and 20 are not (ATP1A2,
NTRK2, SLC2A1, SLC6A1, STXBP1, FGF12, YWHAG, DYNC1H1, SPTAN1, ANKRD11,
EEF1A2, FOXG1, NACC1, CHD2, DNM1, DNM1L, GNAO1, HECW2, NEDD4L, SYNGAP1).

We evaluated the distributions of commonly used sequence-based in silico predictors
of deleteriousness on case-ascertained and control variants both exome-wide and within
these 34 genes. Table S1 summarises the control groups. First, we compared 276 case-
ascertained confirmed de novo variants from the Epi4K consortium dataset with 454 control
de novo variants not derived from epilepsy patients (control group 1). We then used the
second set of 762 control variants for comparison with studies of autism spectrum disorders
(control group 2). We annotated all variants using the Variant Effect Predictor (release 101)
and the plugin dbNSFP 3.5a, confirming that all are missense variants. We also included
1,082,844 missense variants from the Epi25K consortium dataset’s developmental and
epileptic encephalopathies (DEE) analysis group for comparison. We contrasted these with
the DiscovEHR missense variants, derived from the general population and presumed to be
primarily depleted of pathogenic variation. We considered only variants in the DiscovEHR
not present in the Epi25K dataset.

We were able to locate 29 variants of the 276 case-ascertained de novo missense variants
within 15 of the 34 genes implicated in DEE (CACNA1A: 1, DNM1: 5, GNA01: 2, GRIN1:
1, GRIN2B: 1, HECW2: 1, KCNB1: 1, KCNQ2: 2, KCNT1: 1, NEDD4L: 1, SCN1A: 4, SCN2A:
2, SCN8A: 2, STXBP1: 4, YWHAG: 1), compared with only 1 control group 1 variant
(NTRK2: 1) and 3 from control group 2 (GRIN1: 1, SCN1A: 1, SLC2A: 1). These 29 variants
are shown in Figure 1 as lollipop plots [7].

We used the ClinVar variant summary dataset to assess the predictive power of a
range of in silico predictors. We annotated this dataset using the same approach and filtered
the missense variants. We performed this procedure to guarantee accurate comparisons to
the other variant sets under investigation. In this case, we removed variants with unknown
or conflicting significance. While we could not confirm that all variants in this set are
related to DEE, the predictive tools used in this study could still provide insights into likely
impacts on protein function regardless of the resulting phenotype.
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2.2. Identifying Missense-Intolerant Regions in Epilepsy Genes

We previously investigated missense intolerance within epilepsy genes and have
shown that the Missense Tolerance Ratio (MTR) can be a powerful tool to identify func-
tionally important regions within genes [8]. Since this former study, we recalculated the
MTR using additional variation from gnomAD v2, including exomes and genomes, UK
Biobank’s 50,000 exomes, and DiscovEHR, increasing the accuracy of scores.

We examined the predictive utility of the updated MTR scores by comparing the
number of unique Epi4K variants within the top 25% of most intolerant MTR scores
exome-wide, corresponding to an MTR score < 0.78 with control group sets. Of the 276 case-
ascertained variants, we observed 91 (33%) within highly intolerant regions compared with
88 (19%) control group 1’s variants and 147 (19%) control group 2’s variants. These results
provide signs of other implicated genes harbouring de novo variants in disease outcomes.
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Considering only variants within the 34 DEE genes, we discovered 21 (72%) case-
ascertained variants within intolerant regions, as well as the single (100%) control group
1’s variant and 2 (50%) control group 2’s variants. While we lack sufficient sample sizes to
draw direct comparisons between these, it is unsurprising that many control variants are
within intolerant regions given how intolerant and conserved these genes are.

Additionally, we examined whether there is an enrichment of Epi25K missense variants
within the 34 DEE genes compared with the DiscovEHR control variants after filtering
any Epi25K missense variants from the DiscovEHR control variants. Furthermore, we
also observed 4656 of the total 10,740 missense variants (43%) within intolerant regions,
compared with 6867 of the 17,229 DiscovEHR missense variants (40%).

2.3. Investigating Spatial Missense Intolerance within Protein Structures of Epilepsy Genes

We next investigated intolerance within the 34 DEE genes in the context of their
tertiary protein structures, utilising experimentally determined structures from the RCSB
PDB [9] and homology-modelled structures from SWISS-MODEL [10]. 115 case-ascertained
variants, 170 control group 1’s variants and 263 control group 2’s variants had a valid
Missense Tolerance Ratio-3D (MTR3D) score for analysis. By defining MTR3D < 0.75 as
intolerant, we observe 47 case-ascertained variants (41%), 36 control group 1’s variants (21%)
and 58 control group 2 variants (22%). On the other hand, by delineating MTR3D < 0.5 as
strongly intolerant, we discovered 22 (19%) case-ascertained variants, 7 control group 1 (4%)
and 14 control group 2’s missense variants (5%). Thus, we observed significant enrichment
of de novo mutations within intolerant regions in the epilepsy analysis group compared
with both control groups across all genes with observed DNMs, possibly suggesting other
genes implicated in disease outcomes.

Specific to the 34 DEE genes, we could derive MTR3D scores for only 17 case-
ascertained variants. The MTR3D score for 16 of the 17 was below 0.75, and 10 of these
16 had an MTR3D score below 0.5, denoting strong intolerance.

Additionally, we utilised the Missense Tolerance Ratio consensus (MTRX), a com-
bined measure of intolerance built through a Random Forest approach using the MTR v1
(41 codons), MTR v2 (21 codons), MTR3D, and residue solvent accessibility (RSA). MTRX
scores were available for 92 case-ascertained variants, 151 in control group 1, and 238 in
control group 2. We considered MTRX scores approaching 1 more likely to be deleterious.
Using a cutoff of 0.75, we found 38 cases-ascertained (41%), 28 control group 1 variants
(19%), and 60 control group 2 variants (25%), within these intolerant regions. We could
locate 12 case ascertained variants within the 34 DEE genes with a valid MTRX score, 11 of
which were within intolerant regions, with an overall mean MTRX score of 0.93.

Next, we calculated conservation for all genes and compared this with the MTR
estimates. With all de novo variants, we observed a Pearson’s correlation of 0.03 (p < 0.58),
indicating a low correlation between these scores. However, for the 34 DEE genes, we
observed a Pearson’s correlation of 0.34 (p < 0.001). These statistics indicate a moderate
correlation between these scores within the 34 DEE genes.

2.4. Evaluating the Predictive Utility of In-Silico Predictors of Deleteriousness

In silico predictors of deleteriousness are of high value in prioritising likely deleterious
variants from among background variants when diagnosing rare diseases. Hence, to assess
their efficacy in epilepsy, we compared the predictions of several scores obtained through
dbNSFP between the case-ascertained DNM variants from Epi4K and the control groups
described above.

First, we examined variants to verify whether the distribution of case-ascertained
DNMs yielded significantly different scores compared to control variants. Currently, there
are over 100 different in silico predictors available. Nevertheless, for the purpose of this
study, we selected a subset available in Variant Effect Predictor (VEP) and through dbNSFP.
This set provides a mixture of scores created using physicochemical properties, standing
variation in the human population, and combined approaches through machine learning.
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Next, we utilised the provided rank scores for each metric, where we converted each score
to a percentile based on all scored positions within the dataset.

Owing to the small number of control de novo variants observed within the 34 DEE
genes, we compared the in silico predictions for these as a combined set. We examined
Spearman’s correlation between the predictive tools’ scores pairwise (Figure 2). Given
our analysis, we could observe that the correlations were higher for the subset of variants
within the DEE genes. However, overall, we noticed a correlation in the scores across all
genes, especially those derived from similar properties.
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Figure 2. Correlation plot of in silico predictor scores for complete cases of variants. (A) Correlation
of scores for all Epi4K variants across all genes. (B) Correlation of scores for Epi4K variants within
the 34 DEE genes.

Wilcox signed rank tests comparing epilepsy DNMs to control groups identified a sig-
nificant difference in rank scores for CADD (p < 0.008), DANN (0.03), Eigen-PC-raw (0.0008),
FATHMM (p < 0.002), GenoCanyon (p < 0.02), LRT (p < 0.01), M-CAP (p < 3.8 × 10−5), Met-
aLR (p < 0.0004), MetaSVM (p < 0.0003), MutPred (p < 0.02), MutationTaster (p < 0.01),
PROVEAN (p < 5.3 × 10−5), Polyphen2-HDIV (p < 2.9 × 10−5), REVEL (p < 1.2 × 10−6),
SIFT (p < 0.002) and VEST3 (p < 3.8 × 10−6) and MTR (p < 1.3 × 10−6). We also noted that
scores in GERP++ RS differ but do not achieve significance (p < 0.06). Figure 3 presents the
distributions for these scores.

Examining the variants specific to the DEE genes, we could verify similar separation
between case-ascertained and control variants for CADD (p < 0.005), DANN (p < 0.02),
Eigen-PC-raw (p < 0.003), LRT (p < 0.007), M-CAP (p < 0.05), MetaLR (p < 0.01), Muta-
tionTaster (p < 0.0001), PROVEAN (p < 0.01), Polyphen2-HDIV (p < 5.5 × 10−5), REVEL
(p < 0.009), SIFT (p < 0.01) and VEST3 (p < 0.004). Nevertheless, we could not find statis-
tical significance for FATHMM (p < 0.08), GERP++ RS (p < 0.12), GenoCanyon (p < 0.11),
MetaSVM (p < 0.15), and MutPred (p < 0.06).
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3. Discussion

In silico predictors of deleteriousness continue to show great utility in identifying likely
pathogenic variants, with key relevance to developmental and epileptic encephalopathies.
In this scenario, different studies often observe the attribution of disease to a single vari-
ant. As a result of the conceptualisation of new approaches and the availability of novel
datasets, our repertoire of tools continues to expand, possibly meaning new discoveries for
each variant.

Difficulties arise when researchers design tools based on the use of different human
reference genomes and different transcript versions. For example, the Variant Effect Pre-
dictor and ANNOVAR are extremely useful tools in this regard. However, issues are
inevitable as each tool relies on different transcripts while building and updating their
respective predictors.

Given the severity and early onset of the disease, intolerance-based predictors and
conservation are highly effective and valuable predictors. As also shown in a previous study
of ClinVar variants, we have observed this to be the case in genes with known dominant



Int. J. Mol. Sci. 2023, 24, 5114 7 of 9

and recessive patterns of inheritance [11], with a greater enrichment of pathogenic variants
in dominant genes. Of the 34 DEE genes under investigation, 30 are within the top 10%
of the most intolerant genes, indicating that variants arising within these genes in most
regions (and not just the known domains) are likely deleterious. Despite the overall
strong intolerance of these genes, we still see significant differences in the MTR predictions
between the case and control de novo variants.

Using the spatial-based MTR3D, where a successful alignment between sequence
and structure was available and a score could be derived, we identified 16 of the 17 case-
ascertained de novo variants residing within intolerantly scored regions. However, due to
the few control variants residing within the 34 DEE genes and with none located in a region
with a valid MTR3D score, it is challenging to provide conclusions for this result. Similarly,
this remains a challenge for many structure-based predictors that rely on the availability of
a resolved or homology-modelled protein structure.

Nevertheless, we see great potential in their utility as an additional tool for variant
prioritization, where we can calculate these scores and run such predictors. It is clear that
the accuracy of predictive tools as a whole continues to improve. Surprisingly, we observed
that de novo missense variants within DEE genes are more likely to be deleterious than
control de novo missense variants.

These results confirm the utility of in silico predictors for prioritising variants in DEE
and suggest that additional genes are of interest to further our understanding of the disease.

4. Material and Methods
4.1. Study Subjects and Sequencing Procedures

We evaluated three epileptic encephalopathy cohorts for this study from the Epi4K
de novo mutations study: (1) Epilepsy Phenome/Genome Project cohort 1 (n = 264 trios),
(2) Epilepsy Phenome/Genome Project cohort 2 (n = 73 trios), and (3) EuroEPINOMICS-RES
cohort (n = 19 trios). In addition, we obtained informed consent from the parents or legal
guardians of each participant, and we received approval for studies from the local ethics
committees of each participating centre. Epi4K publication [3] provides further information.

We also included missense variants from the Epi25K whole-exome sequencing variant-
level summary for analysis, filtered to only developmental and epileptic encephalopathy
patients (n = 1021), thus removing samples from genetic generalised epilepsy (n = 3108)
and non-acquired focal epilepsy (n = 3597). We downloaded this dataset from the Epi25
WES Browser, and it is publicly available pre-filtered for missense variants with missense
badness, PolyPhen-2, and constraint (MPC) ≥ 2, which included both de novo and non-
de novo variants.

We used the DiscovEHR whole-exome sequencing dataset to compare with the
epilepsy cohorts [12], which included exomes from 50,000 individuals.

4.2. Missense Variant Annotation

We annotated Epi4K de novo variants using the Variant Effect Predictor (version
101) [13] and the dbNSFP 3.5a plugin [14] to include a range of predictors of deleteri-
ousness based on physicochemical properties, conservation, and combined approaches.
We also had dbNSFP’s rank scores, where we ranked each score from 0–1 based on its
percentile across all scored coding positions within the dbNSFP dataset. We consider scores
closer to 1 more likely to be severe. Following annotation, we selected unique variants
classified as missense for subsequent analysis (case-ascertained variants: N = 276; control
group: N = 454).

We applied the same annotation procedure to the Epi25K missense variants
(N = 1,082,844) and the DiscovEHR control population variants (N = 2,134,301). Similarly,
we filtered these sets to only those with missense consequences.

We further annotated variants with MTR, MTR3D, and MTRX scores to explore re-
gional intolerance to missense variation at each variant’s position. MTR3D and MTRX
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scores are available for a subset of epilepsy-related genes, depending on the availability of
tertiary protein structures.

We selected a subset of the Epi4K de novo missense variants where these reside
within 34 genes with evidence of being implicated in developmental and epileptic en-
cephalopathies (DEE) as described by He et al. (2019) [6].

Moreover, we annotated ClinVar variants using the same procedure described above
and filtered to those predicted to be missense and benign, likely benign, pathogenic,
or likely pathogenic, omitting those with unknown significance [15]. To examine the
distribution of pathogenic variants within epilepsy genes, we subset these to the previously
described 34 epileptic encephalopathy genes. To ensure these are mutually exclusive for test
sets, we filtered variants to exclude 16 variants that overlapped with the case-ascertained
de novo variants.

4.3. Calculating Conservation

We utilised the toolset by Capra and Singh (2007) [16] to estimate sequence conserva-
tion based on Jensen-Shannon divergence from a multiple sequence alignment. We could
locate some positions where variants are, but we could not measure the conservation due
to gaps in aligned sequences, lowering confidence in the results.

4.4. Annotating Variants with MTR3D Scores

As the MTR3D predicted scores include mappings between sequence protein positions
and structural residue numbers, we used these to map the Epi4K de novo variants, Epi25K
variants, and ClinVar pathogenic and benign variants to protein structures. We preferen-
tially employed an experimentally resolved structure from the RCSB Protein Data Bank,
where MTR3D mappings were available. Otherwise, we utilised a homology-modelled
tertiary protein structure from the SWISS-MODEL database. When we could map multiple
structures where we could identify a variant, we selected the structure with the highest
proportion of matching sequence and structural positions. This selection varies due to
partial experimental structures representing only certain regions and domains of a gene
and residues that may be different due to different transcripts or substitutions to assist in
the stability of the structure’s creation. For instance, we used multiple structures for genes
where partial structures best fit different variants (see Supplementary Table S2).

5. Conclusions

Overall, we noted significant differences between case-ascertained and control vari-
ants in the majority of commonly used predictors of deleteriousness, as well as the MTR,
MTR3D, and MTRX. We further show that the inclusion of structure-based predictors of
intolerance improves upon previous attempts to demonstrate enrichment within epilepsy
genes. These results highlight the importance of considering protein 3D structural informa-
tion in the characterization of novel variants and as a key link between protein sequence
and phenotype.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/ijms24065114/s1.

Author Contributions: Conceptualisation, D.B.A.; methodology, M.S.; formal analysis, M.S.; data
curation, M.S.; writing—original draft preparation, M.S.; writing—review and editing, A.d.S., M.O.
and D.B.A.; supervision, D.B.A. All authors have read and agreed to the published version of
the manuscript.

Funding: This research was funded by an Investigator Grant from the National Health and Medical
Research Council (NHMRC) of Australia [GNT1174405] and the Victorian Government’s Operational
Infrastructure Support Program (in part).

Data Availability Statement: All data used in this study is freely available in publicly accessible
repositories. Data information is also provided in Supplementary Materials.

https://www.mdpi.com/article/10.3390/ijms24065114/s1
https://www.mdpi.com/article/10.3390/ijms24065114/s1


Int. J. Mol. Sci. 2023, 24, 5114 9 of 9

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Happ, H.C.; Carvill, G.L. A 2020 View on the Genetics of Developmental and Epileptic Encephalopathies. Epilepsy Curr. 2020,

20, 90–96. [CrossRef] [PubMed]
2. Scheffer, I.E.; Berkovic, S.; Capovilla, G.; Connolly, M.B.; French, J.; Guilhoto, L.; Hirsch, E.; Jain, S.; Mathern, G.W.; Moshé, S.L.;

et al. ILAE classification of the epilepsies: Position paper of the ILAE Commission for Classification and Terminology. Epilepsia
2017, 58, 512–521. [CrossRef]

3. Appenzeller, S.; Balling, R.; Barisic, N.; Baulac, S.; Caglayan, H.; Craiu, D.; De Jonghe, P.; Depienne, C.; Dimova, P.; Djémié, T.;
et al. De novo mutations in synaptic transmission genes including DNM1 cause epileptic encephalopathies. Am. J. Hum. Genet.
2014, 95, 360–370. [CrossRef]

4. Karczewski, K.J.; Francioli, L.C.; Tiao, G.; Cummings, B.B.; Alfoldi, J.; Wang, Q.; Collins, R.L.; Laricchia, K.M.; Ganna, A.;
Birnbaum, D.P.; et al. The mutational constraint spectrum quantified from variation in 141,456 humans. Nature 2020, 581, 434–443.
[CrossRef] [PubMed]

5. Silk, M.; Petrovski, S.; Ascher, D.B. MTR-Viewer: Identifying regions within genes under purifying selection. Nucleic Acids Res.
2019, 47, W121–W126. [CrossRef] [PubMed]

6. He, N.; Lin, Z.-J.; Wang, J.; Wei, F.; Meng, H.; Liu, X.-R.; Chen, Q.; Su, T.; Shi, Y.-W.; Yi, Y.-H.; et al. Evaluating the pathogenic
potential of genes with de novo variants in epileptic encephalopathies. Genet Med. 2019, 21, 17–27. [CrossRef]

7. Jay, J.J.; Brouwer, C. Lollipops in the Clinic: Information Dense Mutation Plots for Precision Medicine. PLoS ONE 2016, 11,
e0160519. [CrossRef] [PubMed]

8. Traynelis, J.; Silk, M.; Wang, Q.; Berkovic, S.F.; Liu, L.; Ascher, D.B.; Balding, D.J.; Petrovski, S. Optimizing genomic medicine in
epilepsy through a gene-customized approach to missense variant interpretation. Genome Res. 2017, 27, 1715–1729. [CrossRef]
[PubMed]

9. Berman, H.M.; Battistuz, T.; Bhat, T.N.; Bluhm, W.F.; Bourne, P.E.; Burkhardt, K.; Feng, Z.; Gilliland, G.L.; Iype, L.; Jain, S.; et al.
The protein data bank. Acta Cryst. Sect. D Biol. Crystallogr. 2002, 58, 899–907. [CrossRef] [PubMed]

10. Bienert, S.; Waterhouse, A.; de Beer, T.A.P.; Tauriello, G.; Studer, G.; Bordoli, L.; Schwede, T. The SWISS-MODEL Repository-new
features and functionality. Nucleic Acids Res. 2017, 45, D313–D319. [CrossRef] [PubMed]

11. Silk, M.; Pires, D.E.V.; Rodrigues, C.H.M.; D’Souza, E.N.; Olshansky, M.; Thorne, N.; Ascher, D.B. MTR3D: Identifying regions
within protein tertiary structures under purifying selection. Nucleic Acids Res. 2021, 49, W438–W445. [CrossRef] [PubMed]

12. Dewey, F.E. Distribution and clinical impact of functional variants in 50,726 whole-exome sequences from the DiscovEHR Study.
Science 2017, 354, aaf6814. [CrossRef] [PubMed]

13. McLaren, W.; Gil, L.; Hunt, S.E.; Riat, H.S.; Ritchie, G.R.S.; Thormann, A.; Flicek, P.; Cunningham, F. The Ensembl Variant Effect
Predictor. Genome Biol. 2016, 17, 1–14. [CrossRef] [PubMed]

14. Liu, X.; Jian, X.; Boerwinkle, E. dbNSFP: A lightweight database of human nonsynonymous SNPs and their functional predictions.
Hum. Mutat. 2011, 32, 894–899. [CrossRef] [PubMed]

15. Landrum, M.J.; Lee, J.M.; Benson, M.; Brown, G.R.; Chao, C.; Chitipiralla, S.; Gu, B.; Hart, J.; Hoffman, D.; Jang, W.; et al. ClinVar:
Improving access to variant interpretations and supporting evidence. Nucleic Acids Res. 2018, 46, D1062–D1067. [CrossRef]
[PubMed]

16. Capra, J.A.; Singh, M. Predicting functionally important residues from sequence conservation. Bioinformatics 2007, 23, 1875–1882.
[CrossRef] [PubMed]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://doi.org/10.1177/1535759720906118
http://www.ncbi.nlm.nih.gov/pubmed/32166973
http://doi.org/10.1111/epi.13709
http://doi.org/10.1016/j.ajhg.2014.08.013
http://doi.org/10.1038/s41586-020-2308-7
http://www.ncbi.nlm.nih.gov/pubmed/32461654
http://doi.org/10.1093/nar/gkz457
http://www.ncbi.nlm.nih.gov/pubmed/31170280
http://doi.org/10.1038/s41436-018-0011-y
http://doi.org/10.1371/journal.pone.0160519
http://www.ncbi.nlm.nih.gov/pubmed/27490490
http://doi.org/10.1101/gr.226589.117
http://www.ncbi.nlm.nih.gov/pubmed/28864458
http://doi.org/10.1107/S0907444902003451
http://www.ncbi.nlm.nih.gov/pubmed/12037327
http://doi.org/10.1093/nar/gkw1132
http://www.ncbi.nlm.nih.gov/pubmed/27899672
http://doi.org/10.1093/nar/gkab428
http://www.ncbi.nlm.nih.gov/pubmed/34050760
http://doi.org/10.1126/science.aaf6814
http://www.ncbi.nlm.nih.gov/pubmed/28008009
http://doi.org/10.1186/s13059-016-0974-4
http://www.ncbi.nlm.nih.gov/pubmed/27268795
http://doi.org/10.1002/humu.21517
http://www.ncbi.nlm.nih.gov/pubmed/21520341
http://doi.org/10.1093/nar/gkx1153
http://www.ncbi.nlm.nih.gov/pubmed/29165669
http://doi.org/10.1093/bioinformatics/btm270
http://www.ncbi.nlm.nih.gov/pubmed/17519246

	Introduction 
	Results 
	Pathogenic and Background Missense Variants among Epilepsy Genes 
	Identifying Missense-Intolerant Regions in Epilepsy Genes 
	Investigating Spatial Missense Intolerance within Protein Structures of Epilepsy Genes 
	Evaluating the Predictive Utility of In-Silico Predictors of Deleteriousness 

	Discussion 
	Material and Methods 
	Study Subjects and Sequencing Procedures 
	Missense Variant Annotation 
	Calculating Conservation 
	Annotating Variants with MTR3D Scores 

	Conclusions 
	References

